
Logic for Multiagent Systems
Master 1st Year, 1st Semester 2023/2024

Laurenţiu Leuştean
Web page: https://cs.unibuc.ro/~lleustean/Teaching/

2023-LogMA/index.html

1

https://cs.unibuc.ro/~lleustean/Teaching/2023-LogMA/index.html
https://cs.unibuc.ro/~lleustean/Teaching/2023-LogMA/index.html

Propositional logic

2

Language

Definition 1.1

The language of propositional logic PL consists of:

I a countable set V = {vn | n ∈ N} of variables;

I the logic connectives ¬ (non), → (implies)

I parantheses: (,).

• The set Sym of symbols of PL is

Sym := V ∪ {¬,→, (,)}.

• We denote variables by u, v , x , y , z . . .

3

Language

Definition 1.2

The set Expr of expressions of PL is the set of all finite sequences
of symbols of PL.

Definition 1.3

Let θ = θ0θ1 . . . θk−1 be an expression, where θi ∈ Sym for all
i = 0, . . . , k − 1.

I If 0 ≤ i ≤ j ≤ k − 1, then the expression θi . . . θj is called the
(i , j)-subexpression of θ.

I We say that an expression ψ appears in θ if there exists
0 ≤ i ≤ j ≤ k − 1 such thatψ is the (i , j)-subexpression of θ.

I We denote by Var(θ) the set of variables appearing in θ.

4

Language

The definition of formulas is an example of an inductive definition.

Definition 1.4

The formulas of PL are the expressions of PL defined as follows:

(F0) Any variable is a formula.

(F1) If ϕ is a formula, then (¬ϕ) is a formula.

(F2) If ϕ and ψ are formulas, then (ϕ→ ψ) is a formula.

(F3) Only the expressions obtained by applying rules (F0), (F1),

(F2) are formulas.

Notations

The set of formulas is denoted by Form. Formulas are denoted by
ϕ,ψ, χ,

Proposition 1.5

The set Form is countable.
5

Language

Unique readability

If ϕ is a formula, then exactly one of the following hold:

I ϕ = v , where v ∈ V .

I ϕ = (¬ψ), where ψ is a formula.

I ϕ = (ψ → χ), where ψ, χ are formulas.

Furthermore, ϕ can be written in a unique way in one of these
forms.

Definition 1.6

Let ϕ be a formula. A subformula of ϕ is any formula ψ that
appears in ϕ.

6

Language

Proposition 1.7 (Induction principle on formulas)

Let Γ be a set of formulas satisfying the following properties:

I V ⊆ Γ.

I Γ is closed to ¬, that is: ϕ ∈ Γ implies (¬ϕ) ∈ Γ.

I Γ is closed to →, that is: ϕ,ψ ∈ Γ implies (ϕ→ ψ) ∈ Γ.

Then Γ = Form.

It is used to prove that all formulas have a property P: we define Γ
as the set of all formulas satisfying P and apply induction on
formulas to obtain that Γ = Form.

7

Language

The derived connectives ∨ (or), ∧ (and), ↔ (if and only if) are
introduced by the following abbreviations:

ϕ ∨ ψ := ((¬ϕ)→ ψ)

ϕ ∧ ψ := ¬(ϕ→ (¬ψ)))

ϕ↔ ψ := ((ϕ→ ψ) ∧ (ψ → ϕ))

Conventions and notations
I The external parantheses are omitted, we put them only when

necessary. We write ¬ϕ, ϕ→ ψ, but we write (ϕ→ ψ)→ χ.
I To reduce the use of parentheses, we assume that

I ¬ has higher precedence than →,∧,∨,↔;
I ∧,∨ have higher precedence than →,↔.

I Hence, the formula (((ϕ→ (ψ ∨ χ)) ∧ ((¬ψ)↔ (ψ ∨ χ))) is
written as (ϕ→ ψ ∨ χ) ∧ (¬ψ ↔ ψ ∨ χ).

8

Semantics

Truth values

We use the following notations for the truth values:

1 for true and 0 for false.

Hence, the set of truth values is {0, 1}.

Define the following operations on {0, 1} using truth tables.

¬¬¬ : {0, 1} → {0, 1},
p ¬¬¬p
0 1
1 0

→→→: {0, 1} × {0, 1} → {0, 1},

p q p→→→ q

0 0 1
0 1 1
1 0 0
1 1 1

9

Semantics

∨∨∨ : {0, 1} × {0, 1} → {0, 1},

p q p ∨∨∨ q

0 0 0
0 1 1
1 0 1
1 1 1

∧∧∧ : {0, 1} × {0, 1} → {0, 1},

p q p ∧∧∧ q

0 0 0
0 1 0
1 0 0
1 1 1

↔↔↔: {0, 1} × {0, 1} → {0, 1},

p q p↔↔↔ q

0 0 1
0 1 0
1 0 0
1 1 1

10

Semantics

Definition 1.8

An evaluation (or interpretation) is a function e : V → {0, 1}.

Theorem 1.9

For any evaluation e : V → {0, 1} there exists a unique function

e+ : Form→ {0, 1}
satisfying the following properties:

I e+(v) = e(v) for all v ∈ V .

I e+(¬ϕ) = ¬¬¬e+(ϕ) for any formula ϕ.

I e+(ϕ→ ψ) = e+(ϕ)→→→ e+(ψ) for any formulas ϕ, ψ.

Proposition 1.10

For any formula ϕ and all evaluations e1, e2 : V → {0, 1},
if e1(v) = e2(v) for all v ∈ Var(ϕ), then e+

1 (ϕ) = e+
2 (ϕ).

11

Semantics

Let ϕ be a formula.

Definition 1.11

I An evaluation e : V → {0, 1} is a model of ϕ if e+(ϕ) = 1.
Notation: e � ϕ.

I ϕ is satisfiable if it has a model.

I If ϕ is not satisfiable, we also say that ϕ is unsatisfiable or
contradictory.

I ϕ is a tautology if every evaluation is a model of ϕ.
Notation: � ϕ.

Notation 1.12

The set of models of ϕ is denoted by Mod(ϕ).

12

Semantics

Remark 1.13
I ϕ is a tautology iff ¬ϕ is unsatisfiable.

I ϕ is unsatisfiable iff ¬ϕ is a tautology.

Proposition 1.14

Let e : V → {0, 1} be an evaluation. Then for all formulas ϕ, ψ,

I e � ¬ϕ iff e 6� ϕ.

I e � ϕ→ ψ iff (e � ϕ implies e � ψ) iff (e 6� ϕ or e � ψ).

I e � ϕ ∨ ψ iff (e � ϕ or e � ψ).

I e � ϕ ∧ ψ iff (e � ϕ and e � ψ).

I e � ϕ↔ ψ iff (e � ϕ iff e � ψ).

13

Semantics

Definition 1.15

Let ϕ,ψ be formulas. We say that

I ϕ is a semantic consequence of ψ if Mod(ψ) ⊆ Mod(ϕ).
Notation: ψ � ϕ.

I ϕ and ψ are (logically) equivalent if Mod(ψ) = Mod(ϕ).
Notation: ϕ ∼ ψ.

Remark 1.16

Let ϕ,ψ be formulas.

I ψ � ϕ iff � ψ → ϕ.

I ψ ∼ ϕ iff (ψ � ϕ and ϕ � ψ) iff � ψ ↔ ϕ.

14

Semantics

For all formulas ϕ,ψ, χ,

� ϕ ∨ ¬ϕ
� ¬(ϕ ∧ ¬ϕ)

� ϕ ∧ ψ → ϕ

� ϕ→ ϕ ∨ ψ
� ϕ→ (ψ → ϕ)

� (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

� (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

� (ϕ→ ψ) ∨ (¬ϕ→ ψ)

� (ϕ→ ψ) ∨ (ϕ→ ¬ψ)

� ¬ϕ→ (¬ψ ↔ (ψ → ϕ))

� (ϕ→ ψ)→ (((ϕ→ χ)→ ψ)→ ψ)

� ¬ψ → (ψ → ϕ)
15

Semantics

� ψ → (¬ψ → ϕ)

� (ϕ→ ¬ϕ)→ ¬ϕ
� (¬ϕ→ ϕ)→ ϕ

ψ � ϕ→ ψ

¬ϕ � ϕ→ ψ

¬ψ ∧ (ϕ→ ψ) � ¬ϕ
(ϕ→ ψ) ∧ (ψ → χ) � ϕ→ χ

ϕ ∧ (ϕ→ ψ) � ψ

16

Semantics

ϕ ∨ ψ ∼ ¬(¬ϕ ∧ ¬ψ)

ϕ ∧ ψ ∼ ¬(¬ϕ ∨ ¬ψ)

ϕ→ (ψ → χ) ∼ ϕ ∧ ψ → χ

ϕ ∼ ϕ ∧ ϕ ∼ ϕ ∨ ϕ
ϕ ∧ ψ ∼ ψ ∧ ϕ
ϕ ∨ ψ ∼ ψ ∨ ϕ

ϕ ∧ (ψ ∧ χ) ∼ (ϕ ∧ ψ) ∧ χ
ϕ ∨ (ψ ∨ χ) ∼ (ϕ ∨ ψ) ∨ χ

ϕ ∨ (ϕ ∧ ψ) ∼ ϕ

ϕ ∧ (ϕ ∨ ψ) ∼ ϕ

17

Semantics

ϕ ∧ (ψ ∨ χ) ∼ (ϕ ∧ ψ) ∨ (ϕ ∧ χ)

ϕ ∨ (ψ ∧ χ) ∼ (ϕ ∨ ψ) ∧ (ϕ ∨ χ)

ϕ→ ψ ∧ χ ∼ (ϕ→ ψ) ∧ (ϕ→ χ)

ϕ→ ψ ∨ χ ∼ (ϕ→ ψ) ∨ (ϕ→ χ)

ϕ ∧ ψ → χ ∼ (ϕ→ χ) ∨ (ψ → χ)

ϕ ∨ ψ → χ ∼ (ϕ→ χ) ∧ (ψ → χ)

ϕ→ (ψ → χ) ∼ ψ → (ϕ→ χ)

∼ (ϕ→ ψ)→ (ϕ→ χ)

¬ϕ ∼ ϕ→ ¬ϕ ∼ (ϕ→ ψ) ∧ (ϕ→ ¬ψ)

ϕ→ ψ ∼ ¬ϕ ∨ ψ ∼ ¬(ϕ ∧ ¬ψ)

ϕ ∨ ψ ∼ ϕ ∨ (¬ϕ ∧ ψ) ∼ (ϕ→ ψ)→ ψ

ϕ↔ (ψ ↔ χ) ∼ (ϕ↔ ψ)↔ χ

18

Semantics

It is often useful to have a canonical tautology and a canonical
unsatisfiable formula.

Remark 1.17

v0 → v0 is a tautology and ¬(v0 → v0) is unsatisfiable.

Notation 1.18

Denote v0 → v0 by > and call it the truth.
Denote ¬(v0 → v0) by ⊥ and call it the false.

Remark 1.19
I ϕ is a tautology iff ϕ ∼ >.

I ϕ is unsatisfiable iff ϕ ∼ ⊥.

19

Semantics

Let Γ be a set of formulas.

Definition 1.20

An evaluation e : V → {0, 1} is a model of Γ if it is a model of
every formula from Γ.
Notation: e � Γ.

Notation 1.21

The set of models of Γ is denoted by Mod(Γ).

Definition 1.22

A formula ϕ is a semantic consequence of Γ if Mod(Γ) ⊆ Mod(ϕ).
Notation: Γ � ϕ.

20

Semantics

Definition 1.23
I Γ is satisfiable if it has a model.

I Γ is finitely satisfiable if every finite subset of Γ is satisfiable.

I If Γ is not satisfiable, we say also that Γ is unsatisfiable or
contradictory.

Proposition 1.24

The following are equivalent:

I Γ is unsatisfiable.

I Γ � ⊥.

Theorem 1.25 (Compactness Theorem)

Γ is satisfiable iff Γ is finitely satisfiable.

21

Syntax

We use a deductive system of Hilbert type for LP.

Logical axioms

The set Axm of (logical) axioms of LP consists of:

(A1) ϕ→ (ψ → ϕ)

(A2) (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

(A3) (¬ψ → ¬ϕ)→ (ϕ→ ψ),

where ϕ, ψ and χ are formulas.

The deduction rule

For any formulas ϕ, ψ, from ϕ and ϕ→ ψ infer ψ (modus ponens
or (MP)):

ϕ, ϕ→ ψ

ψ

22

Syntax

Let Γ be a set of formulas. The definition of Γ-theorems is another
example of an inductive definition.

Definition 1.26

The Γ-theorems of PL are the formulas defined as follows:

(T0) Every logical axiom is a Γ-theorem.

(T1) Every formula of Γ is a Γ-theorem.

(T2) If ϕ and ϕ→ ψ are Γ-theorems, then ψ is a Γ-theorem.

(T3) Only the formulas obtained by applying rules (T0), (T1),

(T2) are Γ-theorems.

If ϕ is a Γ-theorem, then we also say that ϕ is deduced from the
hypotheses Γ.

23

Syntax

Notations

Γ ` ϕ :⇔ ϕ is a Γ-theorem

` ϕ :⇔ ∅ ` ϕ.

Definition 1.27

A formula ϕ is called a theorem of LP if ` ϕ.

By a reformulation of the conditions (T0), (T1), (T2) using the
notation `, we get

Remark 1.28
I If ϕ is an axiom, then Γ ` ϕ.

I If ϕ ∈ Γ, then Γ ` ϕ.

I If Γ ` ϕ and Γ ` ϕ→ ψ, then Γ ` ψ.

24

Syntax

Definition 1.29
A Γ-proof (or proof from the hypotheses Γ) is a sequence of
formulas θ1, . . ., θn such that for all i ∈ {1, . . . , n}, one of the
following holds:

I θi is an axiom.

I θi ∈ Γ.

I there exist k , j < i such that θk = θj → θi .

Definition 1.30
Let ϕ be a formula. A Γ-proof of ϕ or a proof of ϕ from the
hypotheses Γ is a Γ-proof θ1, . . ., θn such that θn = ϕ.

Proposition 1.31
For any formula ϕ,

Γ ` ϕ iff there exists a Γ-proof of ϕ.

25

Syntax

Theorem 1.32 (Deduction Theorem)

Let Γ ∪ {ϕ,ψ} be a set of formulas. Then

Γ ∪ {ϕ} ` ψ iff Γ ` ϕ→ ψ.

Proposition 1.33
For any formulas ϕ,ψ, χ,

` (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

` (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))

Proposition 1.34

Let Γ ∪ {ϕ,ψ, χ} be a set of formulas.

Γ ` ϕ→ ψ and Γ ` ψ → χ ⇒ Γ ` ϕ→ χ

Γ ∪ {¬ψ} ` ¬(ϕ→ ϕ) ⇒ Γ ` ψ
Γ ∪ {ψ} ` ϕ and Γ ∪ {¬ψ} ` ϕ ⇒ Γ ` ϕ.

26

Consistent sets

Let Γ be a set of formulas.

Definition 1.35

Γ is called consistent if there exists a formula ϕ such that Γ 6` ϕ.
Γ is said to be inconsistent if it is not consistent, that is Γ ` ϕ for
any formula ϕ.

Proposition 1.36

I ∅ is consistent.

I The set of theorems is consistent.

Proposition 1.37

The following are equivalent:

I Γ is inconsistent.

I Γ ` ⊥.

27

Completeness Theorem

Theorem 1.38 (Completeness Theorem (version 1))

Let Γ be a set of formulas. Then

Γ is consistent ⇐⇒ Γ is satisfiable.

Theorem 1.39 (Completeness Theorem (version 2))

Let Γ be a set of formulas. For any formula ϕ,

Γ ` ϕ ⇐⇒ Γ � ϕ.

28

First-order logic

29

First-order languages

Definition 2.1

A first-order language L consists of:

I a countable set V = {vn | n ∈ N} of variables;

I the connectives ¬ and →;

I parantheses (,);

I the equality symbol =;

I the universal quantifier ∀;

I a set R of relation symbols;

I a set F of function symbols;

I a set C of constant symbols;

I an arity function ari : F ∪R → N∗.

I L is uniquely determined by the quadruple τ := (R,F , C, ari).
I τ is called the signature of L or the similaritaty type of L.

30

First-order languages

Let L be a first-order language.

• The set SymL of symbols of L is

SymL := V ∪ {¬,→, (,),=,∀} ∪ R ∪ F ∪ C

• The elements of R∪ F ∪ C are called non-logical symbols.
• The elements of V ∪{¬,→, (,),=,∀} are called logical symbols.

• We denote variables by x , y , z , v , . . ., relation symbols by
P,Q,R . . ., function symbols by f , g , h, . . . and constant symbols
by c, d , e,

• For every m ∈ N∗ we denote:

Fm := the set of function symbols of arity m;

Rm := the set of relation symbols of arity m.
31

First-order languages

Definition 2.2

The set ExprL of expressions of L is the set of all finite sequences
of symbols of L.

Definition 2.3

Let θ = θ0θ1 . . . θk−1 be an expression of L, where θi ∈ SymL for
all i = 0, . . . , k − 1.

I If 0 ≤ i ≤ j ≤ k − 1, then the expression θi . . . θj is called the
(i , j)-subexpression of θ.

I We say that an expression ψ appears in θ if there exists
0 ≤ i ≤ j ≤ k − 1 such thatψ is the (i , j)-subexpression of θ.

I We denote by Var(θ) the set of variables appearing in θ.

32

First-order languages

Definition 2.4

The terms of L are the expressions defined as follows:

(T0) Every variable is a term.

(T1) Every constant symbol is a term.

(T2) If m ≥ 1, f ∈ Fm and t1, . . . , tm are terms, then ft1 . . . tm is a
term.

(T3) Only the expressions obtained by applying rules (T0), (T1),
(T2) are terms.

Notations:
I The set of terms is denoted by TermL.
I Terms are denoted by t, s, t1, t2, s1, s2,
I Var(t) is the set of variables that appear in the term t.

Definition 2.5

A term t is called closed if Var(t) = ∅.
33

First-order languages

Proposition 2.6 (Induction on terms)

Let Γ be a set of terms satisfying the following properties:

I Γ contains the variables and the constant symbols.

I If m ≥ 1, f ∈ Fm and t1, . . . , tm ∈ Γ, then ft1 . . . tm ∈ Γ.

Then Γ = TermL.

It is used to prove that all terms have a property P: we define Γ as
the set of all terms satisfying P and apply induction on terms to
obtain that Γ = TermL.

34

First-order languages

Definition 2.7

The atomic formulas of L are the expressions having one of the
following forms:

I (s = t), where s, t are terms;

I (Rt1 . . . tm), where R ∈ Rm and t1, . . . , tm are terms.

Definition 2.8

The formulas of L are the expressions defined as follows:

(F0) Every atomic formula is a formula.

(F1) If ϕ is a formula, then (¬ϕ) is a formula.

(F2) If ϕ and ψ are formulas, then (ϕ→ ψ) is a formula.

(F3) If ϕ is a formula, then (∀xϕ) is a formula for every variable x .

(F4) Only the expressions obtained by applying rules (F0), (F1),
(F2), (F3) are formulas.

35

First-order languages

Notations
I The set of formulas is denoted by FormL.

I Formulas are denoted by ϕ,ψ, χ,

I Var(ϕ) is the set of variables that appear in the formula ϕ.

Unique readability

If ϕ is a formula, then exactly one of the following hold:

I ϕ = (s = t), where s, t are terms.

I ϕ = (Rt1 . . . tm), where R ∈ Rm and t1, . . . , tm are terms.

I ϕ = (¬ψ), where ψ is a formula.

I ϕ = (ψ → χ), where ψ, χ are formulas.

I ϕ = (∀xψ), where x is a variable and ψ is a formula.

Furthermore, ϕ can be written in a unique way in one of these
forms.

36

First-order languages

Proposition 2.9 (Induction principle on formulas)

Let Γ be a set of formulas satisfying the following properties:

I Γ contains all atomic formulas.

I Γ is closed to ¬,→ and ∀x (for any variable x), that is:

if ϕ,ψ ∈ Γ, then (¬ϕ), (ϕ→ ψ), (∀xϕ) ∈ Γ.

Then Γ = FormL.

It is used to prove that all formulas have a property P: we define Γ
as the set of all formulas satisfying P and apply induction on
formulas to obtain that Γ = FormL.

37

First-order languages

Derived connectives

Connectives ∨, ∧, ↔ and the existential quantifier ∃ are
introduced by the following abbreviations:

ϕ ∨ ψ := ((¬ϕ)→ ψ)

ϕ ∧ ψ := ¬(ϕ→ (¬ψ)))

ϕ↔ ψ := ((ϕ→ ψ) ∧ (ψ → ϕ))

∃xϕ := (¬∀x(¬ϕ))

38

First-order languages

Usually the external parantheses are omitted, we write them only
when necessary. We write s = t, Rt1 . . . tm, ft1 . . . tm, ¬ϕ, ϕ→ ψ,
∀xϕ. On the other hand, we write (ϕ→ ψ)→ χ.

To reduce the use of parentheses, we assume that

I ¬ has higher precedence than →,∧,∨,↔;

I ∧,∨ have higher precedence than →,↔;

I quantifiers ∀, ∃ have higher precedence than the other
connectives. Thus, ∀xϕ→ ψ is (∀xϕ)→ ψ and not
∀x(ϕ→ ψ).

39

First-order languages

I We write sometimes f (t1, . . . , tm) instead of ft1 . . . tm and
R(t1, . . . , tm) instead of Rt1 . . . tm.

I Function/relation symbols of arity 1 are called unary.
Function/relation symbols of arity 2 are called binary.

I If f is a binary function symbol, we write t1ft2 instead of ft1t2.

I If R is a binary relation symbol, we write t1Rt2 instead of
Rt1t2.

We identify often a language L with the set of its non-logical
symbols and write L = (R,F , C).

40

First-order languages

Definition 2.10

Let ϕ = ϕ0ϕ1 . . . ϕn−1 be a formula of L and x be a variable.

I We say that x occurs bound on position k in ϕ if x = ϕk and
there exists 0 ≤ i ≤ k ≤ j ≤ n − 1 such that the
(i , j)-subexpression of ϕ has the form ∀xψ.

I We say that x occurs free on position k in ϕ if x = ϕk , but x
does not occur bound on position k in ϕ.

I x is a bound variable of ϕ if there exists k such that x occurs
bound on position k in ϕ.

I x is a free variable of ϕ if there exists k such that x occurs
free on position k in ϕ.

Example

Let ϕ = ∀x(x = y)→ x = z . Free variables: x , y , z . Bound
variables: x .

41

First-order languages

Notation: FV (ϕ) := the set of free variables of ϕ.

Alternative definition

The set FV (ϕ) of free variables of a formula ϕ can be also defined
by induction on formulas:

FV (ϕ) = Var(ϕ), if ϕ is an atomic formula

FV (¬ϕ) = FV (ϕ)

FV (ϕ→ ψ) = FV (ϕ) ∪ FV (ψ)

FV (∀xϕ) = FV (ϕ) \ {x}.

42

L-structures

Definition 2.11

An L-structure is a quadruple

A = (A,FA,RA, CA),

where

I A is a nonempty set.

I FA = {f A | f ∈ F} is a set of functions on A; if f has arity
m, then f A : Am → A.

I RA = {RA | R ∈ R} is a set of relations on A; if R has arity
m, then RA ⊆ Am.

I CA = {cA ∈ A | c ∈ C}.
I A is called the universe of the structure A. Notation: A = |A|
I f A (RA, cA, respectively) is called the interpretation of f (R,

c , respectively) in A.
43

Examples - The language of equality L=

L= = (R,F , C), where

I R = F = C = ∅;
I this language is proper for expressing the properties of

equality;

I L=-structures are the nonempty sets.

Examples of formulas:

• equality is symmetric:

∀x∀y(x = y → y = x)

• the universe has at least three elements:

∃x∃y∃z(¬(x = y) ∧ ¬(y = z) ∧ ¬(z = x))

44

Examples - The language of arithmetics Lar

Lar = (R,F , C), where

I R = {<̇}; <̇ is a binary relation symbol;

I F = {+̇, ×̇, Ṡ}; +̇, ×̇ are binary function symbols and Ṡ is a
unary function symbol;

I C = {0̇}.
We write Lar = (<̇; +̇, ×̇, Ṡ ; 0̇) or Lar = (<̇, +̇, ×̇, Ṡ , 0̇).

The natural example of Lar -structure:

N := (N, <,+, ·, S , 0),

where S : N→ N,S(m) = m + 1 is the successor function. Thus,

<̇N =<, +̇
N

= +, ×̇N = ·, ṠN = S , 0̇N = 0.

• Another example of Lar -structure: A = ({0, 1}, <,∨,∧,¬, 1).
45

Examples - The language with a binary relation symbol

LR = (R,F , C), where

I R = {R}; R is a binary relation symbol;

I F = C = ∅;
I L-structures are nonempty sets together with a binary relation.

I If we are interested in partially ordered sets (A,≤), we use the
symbol ≤̇ instead of R and we denote the language by L≤.

I If we are interested in strictly ordered sets (A, <), we use the
symbol <̇ instead of R and we denote the language by L<.

I If we are interested in graphs G = (V ,E), we use the symbol
Ė instead of R and we denote the language by LGraf .

I If we are interested in structures (A,∈), we use the symbol ∈̇
instead of R and we denote the language by L∈.

46

Semantics

Let L be a first-order language and A be an L-structure.

Definition 2.12

An A-assignment or A-evaluation is a function e : V → A.

When the L-structure A is clear from the context, we also write
simply e is an assignment.

In the following, e : V → A is an A-assignment.

Definition 2.13 (Interpretation of terms)

The interpretation tA(e) ∈ A of a term t under the A-assignment
e is defined by induction on terms :

I if t = x ∈ V , then tA(e) := e(x);

I if t = c ∈ C, then tA(e) := cA;

I if t = ft1 . . . tm, then tA(e) := f A(tA1 (e), . . . , tAm (e)).

47

Semantics

The interpretation
ϕA(e) ∈ {0, 1}

of a formula ϕ under the A-assignment e is defined by induction
on formulas.

(s = t)A(e) =

{
1 if sA(e) = tA(e)
0 otherwise.

(Rt1 . . . tm)A(e) =

{
1 if RA(tA1 (e), . . . , tAm (e))
0 otherwise.

48

Semantics

Negation and implication

I (¬ϕ)A(e) = 1− ϕA(e);

I (ϕ→ ψ)A(e) = ϕA(e)→→→ ψA(e), where,

→→→: {0, 1} × {0, 1} → {0, 1},

p q p→→→ q

0 0 1
0 1 1
1 0 0
1 1 1

Hence,

I (¬ϕ)A(e) = 1 iff ϕA(e) = 0.

I (ϕ→ ψ)A(e) = 1 iff
(
ϕA(e) = 0 or ψA(e) = 1

)
.

49

Semantics

Notation

For any variable x ∈ V and any a ∈ A, we define a new
A-assignment ex 7→a : V → A by

ex 7→a(v) =

{
e(v) if v 6= x
a if v = x .

Universal quantifier

(∀xϕ)A(e) =

{
1 if ϕA(ex 7→a) = 1 for all a ∈ A

0 otherwise.

50

Semantics

Let A be an L-structure and e : V → A be an A-assignment.

Definition 2.14

Let ϕ be a formula. We say that:

I e satisfies ϕ in A if ϕA(e) = 1. Notation: A � ϕ[e].

I e does not satisfy ϕ in A if ϕA(e) = 0. Notation: A 6� ϕ[e].

Proposition 2.15

For all formulas ϕ,ψ and any variable x ,

(i) A � ¬ϕ[e] iff A 6� ϕ[e].

(ii) A � (ϕ→ ψ)[e] iff (A � ϕ[e] implies A � ψ[e])
iff (A 6� ϕ[e] or A � ψ[e]).

(iii) A � (∀xϕ)[e] iff for all a ∈ A, A � ϕ[ex 7→a].

51

Semantics

Proposition 2.16

For all formulas ϕ,ψ and any variable x ,

(i) A � (ϕ ∧ ψ)[e] iff (A � ϕ[e] and A � ψ[e]).

(ii) A � (ϕ ∨ ψ)[e] iff (A � ϕ[e] or A � ψ[e]).

(iii) A � (ϕ↔ ψ)[e] iff (A � ϕ[e] iff A � ψ[e]).

(iv) A � (∃xϕ)[e] iff there exists a ∈ A s.t. A � ϕ[ex 7→a].

52

Semantics

Let ϕ be a formula of L.

Definition 2.17

ϕ is satisfiable if there exists an L-structure A and an
A-assignment e such that A � ϕ[e].
We also say that (A, e) is a model of ϕ.

Definition 2.18

ϕ is true in an L-structure A if A � ϕ[e] for all A-assignments e.
We also say that A satisfies ϕ or that A is a model of ϕ.
Notation: A � ϕ

Definition 2.19

ϕ is universally true (or logically valid or, simply, valid) if A � ϕ for
all L-structures A.
Notation: � ϕ

53

Semantics

Let ϕ,ψ be formulas of L.

Definition 2.20

ψ is a logical consequence of ϕ if for all L-structures A and all
A-assignments e,

A � ϕ[e] implies A � ψ[e].
Notation: ϕ � ψ

Definition 2.21

ϕ and ψ are logically equivalent or, simply, equivalent if for all
L-structures A and all A-assignments e,

A � ϕ[e] iff A � ψ[e].
Notation: ϕ ��ψ

Remark
I ϕ � ψ iff � ϕ→ ψ.

I ϕ ��ψ iff (ψ � ϕ and ϕ � ψ) iff � ψ ↔ ϕ.
54

Semantics

For all formulas ϕ, ψ and all variables x , y ,

¬∃xϕ �� ∀x¬ϕ (1)

¬∀xϕ �� ∃x¬ϕ (2)

∀x(ϕ ∧ ψ) �� ∀xϕ ∧ ∀xψ (3)

∀xϕ ∨ ∀xψ � ∀x(ϕ ∨ ψ) (4)

∃x(ϕ ∧ ψ) � ∃xϕ ∧ ∃xψ (5)

∃x(ϕ ∨ ψ) �� ∃xϕ ∨ ∃xψ (6)

∀x(ϕ→ ψ) � ∀xϕ→ ∀xψ (7)

∀x(ϕ→ ψ) � ∃xϕ→ ∃xψ (8)

∀xϕ � ∃xϕ (9)

55

Semantics

ϕ � ∃xϕ (10)

∀xϕ � ϕ (11)

∀x∀yϕ �� ∀y∀xϕ (12)

∃x∃yϕ �� ∃y∃xϕ (13)

∃y∀xϕ � ∀x∃yϕ. (14)

56

Semantics

Proposition 2.22

For all terms s, t, u,

(i) � t = t;

(ii) � s = t → t = s;

(iii) � s = t ∧ t = u → s = u.

Proposition 2.23

For all m ≥ 1, f ∈ Fm,R ∈ Rm and all terms ti , ui , i = 1, . . . ,m,

�(t1 = u1) ∧ . . . ∧ (tm = um)→ ft1 . . . tm = fu1 . . . um

�(t1 = u1) ∧ . . . ∧ (tm = um)→ (Rt1 . . . tm ↔ Ru1 . . . um)

57

Semantics

Proposition 2.24

For any L-structure A and any A-assignments e1, e2,

(i) for any term t,

if e1(v) = e2(v) for all variables v ∈ Var(t), then
tA(e1) = tA(e2).

(ii) for any formula ϕ,

if e1(v) = e2(v) for all variables v ∈ FV (ϕ), then A � ϕ[e1]
iff A � ϕ[e2].

58

Semantics

Definition 2.25

A formula ϕ is called a sentence if FV (ϕ) = ∅, that is ϕ does not
have free variables.
Notation: SentL:= the set of sentences of L.

Proposition 2.26

Let ϕ be a sentence. For all A-assignments e1, e2,

A � ϕ[e1]⇐⇒ A � ϕ[e2]

Definition 2.27

Let ϕ be a sentence. An L-structure A is a model of ϕ if A � ϕ[e]
for an (any) A-assignment e. Notation: A � ϕ

59

Semantics

Let ϕ be a sentence and Γ be a set of sentences of L.

Definition 2.28

An L-structure A is a model of Γ if

A � γ for all γ ∈ Γ.

Notation: A � Γ

Definition 2.29

Γ is satisfiable if Γ has a model.

Definition 2.30

ϕ is a logical consequence of Γ if for all L-structures A,

A � Γ =⇒ A � ϕ.

Notation: Γ � ϕ

60

Examples

For all n ≥ 2, we denote by ∃≥n the following sentence:

∃x1 . . . ∃xn
(
¬(x1 = x2) ∧ ¬(x1 = x3) ∧ . . . ∧ ¬(xn−1 = xn)

)
,

written in a more compact way as follows:

∃≥n = ∃x1 . . . ∃xn

 ∧
1≤i<j≤n

¬(xi = xj)

 .

Proposition 2.31

For any L-structure A and any n ≥ 2,

A � ∃≥n ⇐⇒ A has at least n elements.

Proof: Easy exercise.
61

Examples

Notations

I For uniformity, let ∃≥1 := ∃x(x = x).

I Denote ∃≤n := ¬∃≥n+1 and ∃=n := ∃≤n ∧ ∃≥n

Proposition 2.32

For any L-structure A and any n ≥ 1,

A � ∃≤n ⇐⇒ A has at most n elements
A � ∃=n ⇐⇒ A has exactly n elements.

Proof: Easy exercise.

Proposition 2.33

Let Γ := {∃≥n | n ≥ 1}. Then for any L-structure A,

A � Γ ⇐⇒ A is an infinite set.

Proof: Easy exercise. 62

Substitution

Let x be a variable of L and u be a term of L.

Definition 2.34

For any term t of L, we define
tx(u) := the expression obtained from t by replacing all

occurences of x with u.

Proposition 2.35

For any term t of L, tx(u) is a term of L.

63

Substitution

I We would like to define, similarly, ϕx(u) as the expression
obtained from ϕ by replacing all free occurences of x in ϕ
with u.

I We expect that the following natural properties of substitution
are true:

� ∀xϕ→ ϕx(u) and � ϕx(u)→ ∃xϕ.

As the following example shows, there are problems with this
definition.

Let ϕ := ∃y¬(x = y) and u := y . Then ϕx(u) = ∃y¬(y = y).
Avem

I For any L-structure A with |A| ≥ 2, A � ∀xϕ.

I ϕx(u) is not satisfiable.

64

Substitution

Let x be a variable, u a term and ϕ a formula.

Definition 2.36

We say that x is free for u in ϕ or that u is substitutable for x in ϕ
if for any variable y that occurs in u, no subformula of ϕ of the
form ∀yψ contains free occurences of x .

Remark

x is free for u in ϕ in any of the following cases:

I u does not contain variables;

I ϕ does not contain variables that occur in u;

I no variable from u occurs bound in ϕ;

I x does not occur in ϕ;

I ϕ does not contain free occurences of x .

65

Substitution

Let x be a variable, u a term and ϕ be a formula such that x is
free for u in ϕ.

Definition 2.37

ϕx(u) := the expression obtained from ϕ by replacing all
free occurences of x in ϕ with u.

We say that ϕx(u) is a free substitution.

Proposition 2.38

ϕx(u) is a formula of L.

66

Substitution

Free substitution rules out the problems mentioned above, it
behaves as expected.

Proposition 2.39

Let ϕ be a formula and x be a variable. For any term u
substitutable for x in ϕ,

� ∀xϕ→ ϕx(u) and � ϕx(u)→ ∃xϕ.

67

Prenex normal form

Definition 2.40

A formula that does not contain quantifiers is called quantifier-free.

Definition 2.41

A formula ϕ is in prenex normal form if

ϕ = Q1x1Q2x2 . . .Qnxn ψ,

where n ∈ N, Q1, . . . ,Qn ∈ {∀, ∃}, x1, . . . , xn are variables and ψ is
a quantifier-free formula. Q1x1Q2x2 . . .Qnxn is the prefix of ϕ and
ψ is called the matrix of ϕ.

Any quantifier-free formula is in prenex normal form, as one can
take n = 0 in the above definition.

68

Prenex normal form

Examples of formulas in prenex normal form:

I universal formulas: ϕ = ∀x1∀x2 . . . ∀xn ψ, where ψ is
quantifier-free

I existential formulas: ϕ = ∃x1∃x2 . . . ∃xn ψ, where ψ is
quantifier-free

I ∀∃-formulas: ϕ = ∀x1∀x2 . . . ∀xn∃y1∃y2 . . . ∃ykψ, where ψ is
quantifier-free

I ∀∃∀-formulas: ϕ = ∀x1 . . . ∀xn∃y1 . . . ∃yk∀z1 . . . ∀zpψ, where
ψ is quantifier-free

Theorem 2.42 (Prenex normal form theorem)

For any formula ϕ there exists a formula ϕ∗ in prenex normal form
such that ϕ ��ϕ∗ and FV (ϕ) = FV (ϕ∗).
ϕ∗ is called a prenex normal form of ϕ.

69

Prenex normal form

Proposition 2.43
For all formulas ϕ, ψ and any variable x /∈ FV (ϕ),

∀x(ϕ ∧ ψ) �� ϕ ∧ ∀xψ (15)

∀x(ϕ ∨ ψ) �� ϕ ∨ ∀xψ (16)

∃x(ϕ ∧ ψ) �� ϕ ∧ ∃xψ (17)

∃x(ϕ ∨ ψ) �� ϕ ∨ ∃xψ (18)

∀x(ϕ→ ψ) �� ϕ→ ∀xψ (19)

∃x(ϕ→ ψ) �� ϕ→ ∃xψ (20)

∀x(ψ → ϕ) �� ∃xψ → ϕ (21)

∃x(ψ → ϕ) �� ∀xψ → ϕ (22)

Proposition 2.44
For any formula ϕ, distinct variables x and y such that y does not
occur in ϕ,

∃xϕ ��∃yϕx(y) and ∀xϕ ��∀yϕx(y). 70

Prenex normal form

Let L be a first-order language containing
I two unary relation symbols R,S and two binary relation

symbols P,Q;
I a unary function symbol f and a binary function symbol g ;
I two constant symbols c , d .

Example

Find a prenex normal form of the formula

ϕ := ∃y(g(y , z) = c) ∧ ¬∃x(f (x) = d)

We have that
ϕ �� ∃y

(
g(y , z) = c ∧ ¬∃x(f (x) = d)

)
�� ∃y

(
g(y , z) = c ∧ ∀x¬(f (x) = d)

)
�� ∃y∀x

(
g(y , z) = c ∧ ¬(f (x) = d)

)
Thus, ϕ∗ = ∃y∀x

(
g(y , z) = c ∧ ¬(f (x) = d)

)
is a prenex normal

form of ϕ.
71

Prenex normal form

Example

Find a prenex normal form of the formula

ϕ := ¬∀y(S(y)→ ∃zR(z)) ∧ ∀x(∀yP(x , y)→ f (x) = d).

ϕ �� ∃y¬(S(y)→ ∃zR(z)) ∧ ∀x(∀yP(x , y)→ f (x) = d)

�� ∃y¬∃z(S(y)→ R(z)) ∧ ∀x(∀yP(x , y)→ f (x) = d)

�� ∃y¬∃z(S(y)→ R(z)) ∧ ∀x∃y(P(x , y)→ f (x) = d)

�� ∃y∀z¬(S(y)→ R(z)) ∧ ∀x∃y(P(x , y)→ f (x) = d)

�� ∃y∀z
(
¬(S(y)→ R(z)) ∧ ∀x∃y(P(x , y)→ f (x) = d)

)
�� ∃y∀z∀x

(
¬(S(y)→ R(z)) ∧ ∃y(P(x , y)→ f (x) = d)

)
�� ∃y∀z∀x

(
¬(S(y)→ R(z)) ∧ ∃v(P(x , v)→ f (x) = d)

)
�� ∃y∀z∀x∃v

(
¬(S(y)→ R(z)) ∧ (P(x , v)→ f (x) = d)

)
ϕ∗ = ∃y∀z∀x∃v

(
¬(S(y)→ R(z)) ∧ (P(x , v)→ f (x) = d)

)
is a

prenex normal form of ϕ.
72

Syntax

Definition 2.45

The set LogAxL ⊆ FormL of logical axioms of L consists of:

(i) the axioms of the propositional logic LP.

(ii) formulas of the form

t = t, s = t → t = s, s = t ∧ t = u → s = u,

for any terms s, t, u.

(iii) formulas of the form

t1 = u1 ∧ . . . ∧ tm = um → ft1 . . . tm = fu1 . . . um,

t1 = u1 ∧ . . . ∧ tm = um → (Rt1 . . . tm ↔ Ru1 . . . um),

for any m ≥ 1, f ∈ Fm, R ∈ Rm and any terms si , ti
(i = 1, . . . ,m).

(iv) formulas of the form

ϕx(t)→ ∃xϕ,

where ϕx(t) is a free substitution (∃-axioms).
73

Syntax

Definition 2.46

The deduction rules (or inference rules) are the following: for any
formulas ϕ, ψ,

(i) from ϕ and ϕ→ ψ infer ψ (modus ponens or (MP)):

ϕ, ϕ→ ψ

ψ

(ii) if x /∈ FV (ψ), then from ϕ→ ψ infer ∃xϕ→ ψ
(∃-introduction):

ϕ→ ψ

∃xϕ→ ψ
if x /∈ FV (ψ).

74

Syntax

Let Γ be a set of formulas of L.

Definition 2.47

The Γ-theorems of L are the formulas defined as follows:

(Γ0) Every logical axiom is a Γ-theorem.

(Γ1) Every formula of Γ is a Γ-theorem.

(Γ2) If ϕ and ϕ→ ψ are Γ-theorems, then ψ is a Γ-theorem.

(Γ3) If ϕ→ ψ is a Γ-theorem and x /∈ FV (ψ), then ∃xϕ→ ψ is a
Γ-theorem.

(Γ4) Only the formulas obtained by applying rules (Γ0), (Γ1), (Γ2)
and (Γ3) are Γ-theorems.

If ϕ is a Γ-theorem, then we also say that ϕ is deduced from the
hypotheses Γ.

75

Syntax

Notations

Γ `L ϕ := ϕ is a Γ-theorem

`L ϕ := ∅ `L ϕ

Definition 2.48

A formula ϕ is called a (logical) theorem of L if `L ϕ.

Convention

When L is clear from the context, we write Γ ` ϕ, ` ϕ, etc..

76

Syntax

Definition 2.49

A Γ-proof (or proof from the hypotheses Γ) of L is a sequence of
formulas θ1, . . ., θn such that for all i ∈ {1, . . . , n}, one of the
following holds:

(i) θi is an axiom;

(ii) θi ∈ Γ;

(iii) there exist k , j < i such that θk = θj → θi ;

(iv) there exists j < i such that

θj = ϕ→ ψ and θi = ∃xϕ→ ψ,

where ϕ,ψ are formulas and x /∈ FV (ψ).

A ∅-proof is called simply a proof.

77

Syntax

Definition 2.50

Let ϕ be a formula. A Γ-proof of ϕ or a proof of ϕ from the
hypotheses Γ is a Γ-proof θ1, . . ., θn such that θn = ϕ.

Proposition 2.51

Let Γ be a set of formulas. For any formula ϕ,

Γ ` ϕ iff there exists a Γ-proof of ϕ.

78

Syntax

Proposition 2.52

For any formula ϕ and variable x ,

Γ ` ϕ ⇐⇒ Γ ` ∀xϕ.

Definition 2.53

Let ϕ be a formula with FV (ϕ) = {x1, . . . , xn}. The universal
closure of ϕ is the sentence

∀ϕ := ∀x1 . . . ∀xnϕ.

Notation 2.54

∀Γ := {∀ψ | ψ ∈ Γ}.

Proposition 2.55

For any formula ϕ,

Γ ` ϕ ⇐⇒ Γ ` ∀ϕ ⇐⇒ ∀Γ ` ϕ ⇐⇒ ∀Γ ` ∀ϕ.
79

Completeness Theorem

Theorem 2.56 (Completeness Theorem)

For any set of sentences Γ and any sentence ϕ,

Γ ` ϕ ⇐⇒ Γ � ϕ.

I The Completeness Theorem was proved by Gödel in 1929 in
his PhD thesis.

I Henkin gave in 1949 a simplified proof.

80

Intelligent Agents

Textbook:

Michael Wooldridge, An Introduction to MultiAgent Systems,
Second Edition, John Wiley & Sons, 2009

We also use

Lecture slides/handouts, made available by Michael Wooldridge
here

81

http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/imas/
http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/imas/distrib/

Agents

I The question What is an agent? does not have a definitive
answer.

I Many competing, mutually inconsistent answers have been
offered in the past.

Definition

An agent is a (computer) system that is situated in some
environment, and that is capable of autonomous action in the
environment in order to meet its delegated objectives.

The agent figures out what needs to be done to satisfy design
objectives, rather than constantly being told by its user or owner.

82

Agents

Figure 1: An agent in its environment

I Figure 1 gives an abstract view of an agent in its environment

I The agent takes sensory input from the environment, and
produces, as output, actions that affect it. The interaction is
usually an ongoing, non-terminating one.

83

I Usually, an agent will not have complete control over its
environment.

I It will have at best partial control, in that it can influence it.

I From the point of view of the agent, this means that the same
action performed twice in apparently identical circumstances
might appear to have entirely different effects, and in
particular, it may fail to have the desired effect.

I Thus agents in all but the most trivial of environments must
be prepared for the possibility of failure.

84

Intelligent agents

What is an intelligent agent? is another difficult question. There
are some capabilities that we expect an intelligent agent to have.

Reactivity

I Maintain an ongoing interaction with the environment.

I Respond to changes that occur in it (in time for the response
to be useful).

I Most environments are dynamic.

Proactiveness
I Goal directed behaviour.

I Generate and attempt to achieve goals.

I Take the initiative.

I Recognise opportunities.
85

Intelligent agents

Social ability

I The ability to interact with other agents (and possibly
humans) via cooperation, coordination, and negotiation.

I Cooperation is working together as a team to achieve a shared
goal. It gives a better result.

I Coordination is managing the interdependencies between
activities. For example, if there is a non-sharable resource that
you want to use and I want to use, then we need to
coordinate.

I Negotiation is the ability to reach agreements on matters of
common interest. Typically involves offer and counter-offer,
with compromises made by participants.

86

Abstract architectures for intelligent agents

Make formal the abstract view of agents.

I Assume the environment may be in any of a finite set E of
discrete, instantaneous states:

E = {e ′, e”, . . .}

I An agent is assumed to have a repertoire of possible actions
available:

Ac = {α′, α”, . . .}
I Actions transform the state of the environment.

I We assume that the set Ac of actions contains a special
action null , with the meaning that nothing will be done.

I States are denoted also by e0, e1,

I Actions are denotes also by α0, α1,

87

Abstract architectures for intelligent agents

The basic model of agents interacting with their environments is as
follows:

I The environment starts in some state.

I The agent begins by choosing an action to perform on that
state.

I As a result of this action, the environment can respond with a
number of possible states. However, only one state will
actually result — though, of course, the agent does not know
in advance which it will be.

I On the basis of this second state, the agent again chooses an
action to perform.

I The environment responds with one of a set of possible states.

I The agent then chooses another action; and so on.

88

Abstract architectures for intelligent agents

A run over E and Ac is a finite sequence of interleaved
environment states and actions.

Definition 3.1

A run r over E and Ac is a finite sequence

r = (x0, x1, x2, . . . , xn),

where n ∈ N and for all k ∈ N, x2k ∈ E and x2k+1 ∈ Ac .

Runs are denoted by r , r ′, We write a run r as follows:

r : e0
α0−→ e1

α1−→ e2
α2−→ . . .

αu−2−→ eu−1
αu−1−→ eu

or

r : e0
α0−→ e1

α1−→ e2
α2−→ . . .

αu−2−→ eu−1
αu−1−→

89

Abstract architectures for intelligent agents

Notation 3.2
I R denotes the set of all runs (over E and Ac).

I RAc is the subset of these that end with an action.

I RE is the subset of these that end with an environment state.

90

Abstract architectures for intelligent agents

Definition 3.3

A function τ : RAc → 2E is said to be a state transformer function.

I A state transformer function maps a run r ∈ RAc to a set
τ(r) of possible environment states that could result from
performing the action.

I State transformer functions represent the effect that an
agent’s actions have on an environment.

If τ(r) = ∅, then there are no possible successor states to r . In this
case, we say that the run r has ended or that r is a terminated run.

Recall: For any set A, 2A is the set of all subsets of A:

2A = {B | B ⊆ A}.
91

Abstract architectures for intelligent agents

Definition 3.4

An environment is a triple Env = (E , e0, τ), where E is the set of
environment states, e0 ∈ E is an initial state, and τ is a state
transformer function.

Environments are:

I history dependent. The next state of an environment is not
solely determined by the action performed by the agent and
the current state of the environment. The actions made earlier
by the agent also play a part in determining the current state.

I non-deterministic. There is uncertainty about the result of
performing an action in some state.

92

Abstract architectures for intelligent agents

We introduce a model of the agents that inhabit systems.

Definition 3.5

An agent is a function Ag : RE → Ac mapping runs (assumed to
end with an environment state) to actions.

I An agent makes a decision about what action to perform
based on the history of the system.

I Agents are deterministic.

Definition 3.6

A system is a pair (Ag ,Env) containing an agent Ag and an
environment Env = (E , e0, τ).

93

Abstract architectures for intelligent agents

Definition 3.7

A run in the system (Ag ,Env) is a run r = (x0, x1, x2, . . . , xn) over
E and Ac satisfying the following:

I x0 = e0.

I for all k ≥ 0:

x2k+1 = Ag(x0, . . . , x2k) and x2k+2 ∈ τ(x0, . . . , x2k+1).
I r is terminated in the following sense:

I if xn ∈ E , then Ag(r) = null ;
I if xn ∈ Ac , then τ(r) = ∅.

We also say that r is a run of the agent Ag in the environment
Env .

Notation 3.8

We denote by R(Ag ,Env) the set of all runs in the system
(Ag ,Env).

94

Abstract architectures for intelligent agents

Let r ∈ RAc ,

r = e0
α0−→ e1

α1−→ e2
α2−→ . . .

αu−2−→ eu−1
αu−1−→

Then r ∈ R(Ag ,Env) iff the following are satisfied:

I α0 = Ag(e0).

I For all j = 1, . . . , u − 1,

ej ∈ τ(e0
α0−→ e1

α1−→ e2
α2−→ . . .

αj−2−→ ej−1
αj−1−→)

αj = Ag(e0
α0−→ e1

α1−→ e2
α2−→ . . .

αj−1−→ ej).

I τ(r) = ∅.

95

Abstract architectures for intelligent agents

Let r ∈ RE ,

r = e0
α0−→ e1

α1−→ e2
α2−→ . . .

αu−2−→ eu−1
αu−1−→ eu

Then r ∈ R(Ag ,Env) iff the following are satisfied:

I α0 = Ag(e0).

I For all j = 1, . . . , u,

ej ∈ τ(e0
α0−→ e1

α1−→ e2
α2−→ . . .

αj−2−→ ej−1
αj−1−→)

αj−1 = Ag(e0
α0−→ e1

α1−→ e2
α2−→ . . .

αj−2−→ ej−1).

I Ag(r) = null .

96

Abstract architectures for intelligent agents

Definition 3.9

Two agents Ag1 and Ag2 are said to be

I behaviourally equivalent with respect to environment Env if
and only if R(Ag1,Env) = R(Ag2,Env).

I behaviourally equivalent if they are behaviourally equivalent
with respect to all environments.

97

Purely reactive agents

I Certain types of agents decide what to do without reference
to their history. They base their decision-making entirely on
the present, with no reference at all to the past.

I We call such agents purely reactive, since they simply respond
directly to their environment.

Definition 3.10

A purely reactive agent is a mapping Agpure : E → Ac.

98

Example: Thermostat

A thermostat is a very simple example of a purely reactive agent.

I A thermostat has a sensor for detecting room temperature,
and it produces as output one of two signals:
I one that indicates that the temperature is too low;
I another one which indicates that the temperature is OK.

I Its delegated goal is to maintain room temperature, the
available actions being ‘heating on’ and ‘heating off’.

I The decision-making component of the thermostat
implements the following rules:

temperature is too low → heating on,

temperature is OK → heating off.

99

Example: Thermostat

I Let us denote

e1 := temperature too low, e2 := temperature OK,

α1 := heating on, α2 := heating off.

I Then E := {e1, e2} and Ac := {α1, α2}.

I The thermostat is the purely reactive agent Therm defined as
follows:

Therm : E → Ac , Therm(e) =

{
α1 if e = e1,

α2 if e = e2.

100

Intelligent agents

This view of agents is too abstract. It does not help us to
construct them, since it gives us no clues about how to design the
decision function action.

I We refine our abstract model of agents, by breaking it down
into subsystems.

I We make design choices on these subsystems — what data
and control structures will be present.

I An agent architecture is essentially a map of the internals of
an agent — its data structures, the operations that may be
performed on these data structures, and the control flow
between these data structures.

I There are different types of agent architectures, with very
different views on the data structures and algorithms that will
be present within an agent.

101

Perception

One high-level design decision is the separation of an agent’s
decision function into perception and action subsystems.

102

Perception

I The perception function see captures the agent’s ability to
observe its environment. Example: a video camera or an
infra-red sensor on a mobile robot.

I The output of the see function is a percept — a perceptual
input.

I The action function represents the agent’s decision making
process.

Let Per be a nonempty set of percepts.

Definition 3.11

The see and action functions are defined as follows:

see : E → Per and action : Per∗ → Ac.

Recall: For any set A, A∗ is the set of all finite sequences of
elements of A:

A∗ = {a1a2 . . . an | n ∈ N and ai ∈ A for all i = 1, . . . , n}. 103

Perception

These simple definitions allow us to explore some interesting
properties of agents and perception.

Suppose that we have two environment states e1, e2 ∈ E such that
e1 6= e2, but see(e1) = see(e2). Then e1 and e2 are mapped to the
same percept, and the agent receives the same perceptual
information from each of them. As far as the agent is concerned,
e1 and e2 are indistinguishable.

Definition 3.12

The relation ≡ on E is defined as follows: for every e1, e2 ∈ E ,

e1 ≡ e2 iff see(e1) = see(e2).

Remark 3.13

≡ is an equivalence relation on E .
104

Perception

I ≡ partitions E into mutually indistinguishable sets of states,
namely the different equivalence classes [e], were e ∈ E .

I If [e] = {e} for every e ∈ E , then see(e1) 6= see(e2) for every
states e1 6= e2. The agent can distinguish every state — the
agent has perfect perception in the environment.

I If [e] = E for every e ∈ E , then see(e1) = see(e2) for every
states e1, e2. The agent’s perceptual ability is non-existent, it
cannot distinguish between any different states. As far as the
agent is concerned, all environment states are identical.

105

Example

I Let us consider the statements

x := “the room temperature is OK”

y := “Angela Merkel is the German Chancellor”
I Assume that these are the only two facts about our

environment that we are concerned with. Then

E = {e1 := {x , y}, e2 := {x ,¬y}, e3 := {¬x , y}, e4 := {¬x ,¬y}}
I In state e1 the room temperature is OK and Angela Merkel is

the German Chancellor; in state e2 the room temperature is
OK and Angela Merkel is not the German Chancellor; and so
on.

I The thermostat is sensitive only to temperatures in the room.
I The room temperature is not casually related to whether or

not Angela Merkel is the German Chancellor.
I The states where Angela Merkel is and is not the German

Chancellor are indistinguishable to the thermostat.
106

Perception - an example

The set of percepts is Per = {p1, p2}, where

p1:=temperature OK, p2:= temperature too low.

The perception function see is defined as follows:

see : E → Per , see(e) =

{
p1 if e = e1 or e = e2,

p2 if e = e3 or e = e4.

I [e1] = [e2] = {e1, e2}
I [e3] = [e4] = {e3, e4}

107

Agents with state

We now consider agents that maintain state.

These agents have some internal data structure, which is typically
used to record information about the environment state and
history.

108

Agents with state

Let I be the set of all internal states of the agent.

Definition 3.14

The see and action functions are defined as follows:

see : E → Per and action : I → Ac.

The perception function see is unchanged. The action-selection
function action takes as inputs internal states.

Definition 3.15

The function next is defined as follows:

next : I × Per → I .

109

Agents with state

The behaviour of a state-based agent:

I The agent starts in some initial internal state i0.

I It then observes its environment state e, and generates a
percept see(e).

I The internal state of the agent is then updated to
i1 := next(i0, see(e)).

I The action selected by the agent is α := action(i1).

I The agents performs action α.

I The agent enters another cycle: perceives the world via see,
updates its state via next, and chooses an action to perform
via action.

110

Tasks for agents

I We build agents in order to carry out tasks for us.

I The tasks to be carried out must be specified by us in some
way

I How to specify these tasks? How to tell the agent what to do?

One way to to do this: write a program for the agent to execute.

I Advantage: no uncertainty about what the agent will do; it
will do exactly what we told it to, and no more.

I Disadvantage: we have to think about exactly how the task
will be carried out ourselves; if unforeseen circumstances arise,
the agent executing the task will be unable to respond
accordingly.

111

Tasks for agents

I We want to tell our agent what to do without telling it how to
do it.

I One way of doing this is to define tasks indirectly, via some
kind of performance measure.

I One possibility: associate utilities with states of the
environment.

I A utility is a numeric value representing how ‘good’ a state is:
the higher the utility, the better.

I The task of the agent is then to bring about states that
maximize utility.

I We do not specify to the agent how this is to be done.

112

Utility functions

Definition 3.16

A utility function (or task specification) is a function u : E → R.

What is the overall utility of a run?

I minimum utility of a state on run?

I maximum utility of a state on run?

I sum of utilities of all states on run?

I average utility of all states on run?

Main disadvantage:

I assigns utilities to local states.

I difficult to specify a long-term view when assigning utilities to
individual states.

113

Utility functions

Idea: assign a utility not to individual states, but to runs.

Definition 3.17

A utility function (or task specification) is a function u : R → R.

I If we are concerned with agents that must operate
independently over long periods of time, then this approach is
appropriate.

I The utility-based approach works well in certain scenarios.
I Problems:

I Sometimes it is difficult to define a utility function.
I People don’t think in terms of utilities. It is hard for people to

specify tasks in these terms.

114

Tileworld

Tileworld was proposed as an experimental environment for
evaluating agent architectures in
Martha E. Pollock, Marc Ringuette, Introducing the Tileworld:
Experimentally Evaluating Agent Architectures, AAAI-90
Proceedings, 1990

I Simulated two dimensional grid environment on which there
are agents, tiles, obstacles, and holes.

I An agent can move in four directions, up, down, left, or right,
and if it is located next to a tile, it can push it.

I An obstacle is a group of immovable grid cells.

I Holes have to be filled up with tiles by the agent.

I An agent scores points by filling holes with tiles, the aim
being to fill as many holes as possible.

115

Tileworld

I Holes appear randomly and exist for as long as their life
expectancy, unless they disappear because of the agent’s
actions. The interval between the appearance of successive
holes is called the hole gestation time.

I Tileworld is an example of a dynamic environment: starting in
some randomly generated world state, based on parameters
set by the experimenter, it changes over time in discrete steps,
with the random appearance and disappearance of holes.

I The performance of an agent in the Tileworld is measured by
running the Tileworld testbed for a predetermined number of
time steps, and measuring the number of holes that the agent
succeeds in filling.

I Experimental error is eliminated by running the agent in the
environment a number of times, and computing the average
of the performance.

116

Tileworld

Definition 3.18

The utility function is defined as follows:

u : R → R, u(r) =
number of holes filled in r

number of holes that appeared in r

I u is normalized: u(r) ∈ [0, 1] for every run r

I u(r) = 1: agent filled every hole that appeared in r

I u(r) = 0: agent did not fill any hole that appeared in r

117

Tileworld

I Despite its simplicity, Tileworld allows us to examine several
important capabilities of agents.

I Examples of abilities of agents:
I to react to changes in the environment
I to exploit opportunities when they arise.

118

Tileworld

Figure 2: Tileworld example Figure 3: Tileworld example

Example 3.19

Suppose an agent is pushing a tile to a hole (Figure 2), when
this hole disappears (Figure 3).
The agent should recognize this change in the environment, and
modify its behaviour appropriately.

119

Tileworld

Figure 4: Tileworld example Figure 5: Tileworld example

Example 3.20

Suppose an agent is pushing a tile to a hole (Figure 4), when a
hole appears to the right of the agent (Figure 5).
It would do better to push the tile to the right, than to continue
to head north, for the simple reason that it only has to push the
tile one step, rather than three.

Example 3.21

The agent is more likely to be able to fill this hole than its
originally planned one, for the simple reason that it only has to
push the tile one step, rather than three. All other things being
equal, the chances of the hole on the right still being there when
the agent arrives are therefore greater.

120

Expected utility

Let us denote P(r | Ag ,Env) the probability that run r occurs
when agent Ag is placed in environment Env .

Obviously,
∑

r∈R(Ag ,Env)

P(r | Ag ,Env) = 1.

Definition 3.22

The expected utility of agent Ag in environment Env (given P, u)
is defined as follows:

EU(Ag ,Env) =
∑

r∈R(Ag ,Env)

u(r)P(r | Ag ,Env).

121

Expected utility - an example

Consider the environment (E , e0, τ) defined as follows:

I E = {e0, e1, e2, e3, e4, e5} and Ac = {α0, α1, null}.
I Define

τ : RAc → 2E , τ(r) =

{e1, e2} if r = e0

α0−→,
{e3, e4, e5} if r = e0

α1−→,
∅ otherwise.

We consider the following two agents in this environment:

Ag1 : RE → Ac, Ag1(r) =

{
α0 if r = e0

null otherwise

Ag2 : RE → Ac, Ag2(r) =

{
α1 if r = e0

null otherwise

122

Expected utility - an example

Runs of Ag1 and Ag2 in the environment Env

R(Ag1,Env) = {r1 := e0
α0−→ e1, r2 := e0

α0−→ e2},

R(Ag2,Env) = {r3 := e0
α1−→ e3, r4 := e0

α1−→ e4, r5 := e0
α1−→ e5}.

The probabilities of the various runs are defined as follows:

I for the agent Ag1:

P(r1 | Ag1,Env) = 0.4, P(r2 | Ag1,Env) = 0.6.

I for the agent Ag2:

P(r3 | Ag2,Env) = 0.1, P(r4 | Ag2,Env) = 0.2,

P(r5 | Ag2,Env) = 0.7.

123

Expected utility - an example

Assume the utility function u is defined as follows:

u(r1) = 8, u(r2) = 11,

u(r3) = 70, u(r4) = 9, u(r5) = 10.

What are the expected utilities of the agents for this utility
function?

EU(Ag1,Env) = u(r1)P(r1 | Ag1,Env) + u(r2)P(r2 | Ag1,Env)

= 8× 0.4 + 11× 0.6 = 9.6

EU(Ag2,Env) = u(r3)P(r3 | Ag2,Env) + u(r4)P(r4 | Ag2,Env)

+u(r5)P(r5 | Ag2,Env)

= 70× 0.1 + 9× 0.2 + 10× 0.7 = 15.7
124

Optimal agents

Notation 3.23

Let AG denote the finite set of all agents acting in some
environment.

Definition 3.24
An optimal agent in an environment Env is an agent Agopt that
maximizes the expected utility:

Agopt = arg max
Ag∈AG

EU(Ag ,Env).

I The fact that an agent is optimal does not mean that it will
be best; only that on average, we can expect it to do best.

I The definition does not not give us any clues about how to
implement this agent.

I There are agents that cannot be implemented on a real
computer.

125

Bounded optimal agents

Suppose m is a particular computer.

Notation 3.25

AGm denotes the set of agents that can be implemented on m:

AGm = {Ag | Ag ∈ AG and Ag can be implemented on m}.

Definition 3.26

A bounded optimal agent in an environment Env , with respect to
m, is an agent Agbopt ∈ AGm that maximizes the expected utility:

Agbopt = arg max
Ag∈AGm

EU(Ag ,Env).

I We consider only the agents that can actually be implemented
on the machine that we have for the task.

126

Predicate task specifications

I A predicate task specification is one where the utility function
acts as a predicate over runs.

I A utility function u : R → R is a predicate if the range of u is
the set {0, 1}, that is if u assigns a run either 1 (true) or 0
(false).

I If u(r) = 1, we say that the run r satisfies the specification;
the agent succeeds on the run r .

I If u(r) = 0, we say that the run r fails to satisfy the
specification; the agent fails on the run r .

Definition 3.27

A predicate task specification is a mapping Ψ : R → {0, 1}.

127

Task environment

Definition 3.28

A task environment is a pair (Env ,Ψ), where Env is an
environment, and Ψ is a predicate task specification.

Notation 3.29

TE denotes the set of all task environments.

A task environment specifies:

I the properties of the system the agent will inhabit (i.e. the
environment Env);

I the criteria by which an agent will be judged to have either
failed or succeeded (i.e. the specification Ψ).

128

Task environment

Notation 3.30

RΨ(Ag ,Env) denotes the set of all runs of agent Ag that satisfy
Ψ:

RΨ(Ag ,Env) = {r | r ∈ R(Ag ,Env) and Ψ(r) = 1}.

There are more possibilities to define the success of an agent in a
task environment.

The pessimistic definition:

We say that an agent Ag succeeds in task environment (Env ,Ψ) if
RΨ(Ag ,Env) = R(Ag ,Env).

Thus, the agent succeeds iff every possible run of the agent in the
environment satisfies the predicate task specification.

129

Task environment

The optimistic definition:

We say that an agent Ag succeeds in task environment (Env ,Ψ) if
RΨ(Ag ,Env) 6= ∅.
Thus, the agent succeeds iff at least one run of the agent in the
environment satisfies the predicate task specification.

The probabilistic definition:

The success of an agent Ag in task environment (Env ,Ψ) is
defined as the probability P(Ψ|Ag ,Env) that the predicate task
specification Ψ is satisfied by the agent in the environment Env .

Remark 3.31

P(Ψ|Ag ,Env) =
∑

r∈RΨ(Ag ,Env) P(r |Ag ,Env).

130

Achievement and maintenance tasks

I The notion of a predicate task specification may seem rather
abstract.

I It is a generalization of certain very common forms of tasks.

Two most common types of tasks are achievement tasks and
maintenance tasks:

I Achievement tasks are those of the form achieve state of
affairs ϕ.

I Maintenance tasks are those of the form maintain state of
affairs ϕ.

131

Achievement tasks

Definition 3.32

The task environment (Env ,Ψ) specifies an achievement task if
there exists some set of states G ⊆ E such that for all
r ∈ R(Ag ,Env),

Ψ(r) = 1 iff there exists some state e ∈ G such that e occurs in r .

We also say that (Env ,Ψ) is an achievement task environment.

The elements of G are the goal states of the task.

Notation 3.33

We use (Env ,G) to denote an achievement task environment with
goal states G and environment Env .

An agent is successful if is guaranteed to bring about one of the
goal states (we do not care which one — all are considered equally
good).

132

Achievement tasks

A useful way to think about achievement tasks is as the agent
playing a game against the environment:

I The environment and agent both begin in some state.

I The agent executes an action, and the environment responds
with some state.

I The agent then executes another action, and so on.

I The agent wins if it can force the environment into one of the
goal states.

133

Maintenance tasks

I Many other tasks can be classified as problems where the
agent is required to avoid some state of affairs.

I We refer to such tasks as maintenance tasks.

Definition 3.34

The task environment (Env ,Ψ) specifies a maintenance task if
there exists some set of states B ⊆ E such that for all
r ∈ R(Ag ,Env),

Ψ(r) = 1 iff for any state e ∈ B, e does not occur in r .

We also say that (Env ,Ψ) is a maintenance task environment.

The elements of B are the bad states of the task.

Notation 3.35

We use (Env ,B) to denote a maintenance task environment with
bad states B and environment Env .

134

Maintenance tasks

It is again useful to think of maintenance tasks as games:

I The agent wins if it manages to avoid all the bad states.

I The environment, in the role of opponent, is attempting to
force the agent into B.

I The agent is successful if it has a winning strategy for
avoiding B.

135

Achievement and maintenance tasks

I More complex tasks might be specified by combinations of
achievement and maintenance tasks.

I A simple combination:

achieve any one of states G while avoiding all states B.

136

Agent synthesis

I Knowing that there exists an agent which will succeed in a
given task environment is helpful.

I However, it would be more helpful if, knowing this, we obtain
such an agent, we implement it.

I How do we do this?

I An obvious answer is: ‘manually’ implement the agent from
the specification.

There is at least one other possibility:

develop an algorithm that will automatically synthesize such agents
for us from task environment specifications.

137

Agent synthesis

Agent synthesis is automatic programming: the goal is to have a
program that will take as input a task environment, and from this
task environment automatically generate an agent that succeeds in
this environment.

Definition 3.36

An agent synthesis algorithm is a function

syn : TE → AG ∪ {⊥}.

A synthesis algorithm is

I sound if, whenever it returns an agent, this agent succeeds in
the task environment that is passed as input, and

I complete if it is guaranteed to return an agent whenever there
exists an agent that will succeed in the task environment
given as input.

138

Agent synthesis

Definition 3.37

An agent synthesis algorithm syn is

I sound if for any task environment (Env ,Ψ) ∈ TE ,

syn((Env ,Ψ)) = Ag implies R(Ag ,Env) = RΨ(Ag ,Env).

I complete if for any (Env ,Ψ) ∈ TE ,(
there exists an agent Ag s.t. R(Ag ,Env) = RΨ(Ag ,Env)

)
implies syn((Env ,Ψ)) 6= ⊥.

I Soundness ensures that a synthesis algorithm always delivers
agents that do their job correctly, but may not always deliver
agents, even where such agents are in principle possible.

I Completeness ensures that an agent will always be delivered
where such an agent is possible, but does not guarantee that
these agents will do their job correctly.

139

Agent synthesis

I Soundness and completeness ensure that a synthesis algorithm
will output ⊥ iff there is no agent that does the job correctly.

I Ideally, we seek synthesis algorithms that are both sound and
complete.

I Of the two conditions, soundness is probably the more
important.

I There is not much point in complete synthesis algorithms that
deliver ‘buggy’ agents.

140

Agent architectures

Textbook:

Michael Wooldridge, An Introduction to MultiAgent Systems,
Second Edition, John Wiley & Sons, 2009

141

http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/imas/

Agent architectures

I An agent architecture is a software design for an agent.

I We have already seen a top-level decomposition into:

perception – state – decision – action
I An agent architecture defines:

I key data structures;
I operations on data structures;
I control flow between operations.

142

Agent architectures

Some types of agents:

I logic-based or deductive reasoning or symbolic reasoning
agents - decision making is realised through logical deduction;

I practical reasoning agents - reasoning directed towards
actions, the process of figuring out what to do; action
selection through deliberation and means-end reasoning;

I reactive agents - reacting to an environment, without
reasoning about it; no representation, direct link from
perceptual input to action;

I hybrid agents - combine reactive and deliberative reasoning,
usually in layered architecture.

143

Logic-based agents

The logic-based approach is the classical approach to building
agents.

Key ideas:

I give a symbolic representation of the environment - logical
formulas.

I manipulate syntactically this representation - logical deduction
or theorem proving.

Problems to be solved:
I Transduction problem: the problem of translating the real

world into an accurate, adequate symbolic description of the
world, in time for that description to be useful.

I Representation/reasoning problem: the problem of
representing information symbolically, and getting agents to
manipulate/reason with it, in time for the results to be useful.

144

Agents as theorem provers

Deliberate agents are a simple model of logic-based agents.

I An internal state of such an agent is a database of formulas of
first-order logic.

I The agent’s database might contain formulas such as

Open(valve1), Temperature(reactor6, 32), Pressure(tank6, 28).

I The database is the information that the agent has about its
environment.

I An agent’s database plays a somewhat analogous role to that
of belief in humans.

I Some facts from the database could be wrong - agent’s
sensors may be faulty, its reasoning may be faulty, the
information may be out of date.

I Thus, the fact that Open(valve1) is in the database does not
mean that valve1 is open; it could be closed.

145

Agents as theorem provers

We use the model of agents with state.
Let L be a first-order language and FormL be the set of its
formulas.

We assume that L contains:

I a unary relation symbol Do;

I a constant symbol cα for every action α ∈ Ac . For simplicity,
we write α instead of cα.

I A database is a set of formulas of L.

I Let D be the set of all databases. Thus, D = 2FormL .

I We write DB,DB1, . . . for members of D.

I An internal state of the agent is a database. Thus, I = D.

146

Agents as theorem provers

I We fix a set Σ ⊆ FormL of formulas of L, whose elements are
called deduction formulas.

I We use the notation DB `Σ ϕ for DB ∪ Σ ` ϕ.

I The idea is that

if DB `Σ Do(α), then α is the action to be performed by the
agent.

I The agent’s behaviour is determined by its deduction
formulas (its program) and its current database.

An agent’s action selection function

action : D → Ac

is defined in terms of its deduction formulas. The pseudo-code
definition of this function is given in Figure 6.

147

Agents as theorem provers

1. function action(DB : D) returns an action Ac
2. begin

3. for each α ∈ Ac do
4. if DB `Σ Do(α) then
5. return α
6. end-if
7. end-for
8. for each α ∈ Ac do
9. if DB 6`Σ ¬Do(α) then
10. return α
11. end-if
12. end-for
13. return null
14. end function action

Figure 6: Agent selection as theorem proving.

148

Agents as theorem provers

I In lines 3-7, the agent takes each of its possible actions α in
turn, and attempts to prove the formula Do(α) from its
database DB (passed as a parameter to the function) using its
set Σ of deduction formulas. If the agent succeeds in proving
Do(α), then α is returned as the action to be performed.

I If the agent fails to prove Do(α), for all actions α ∈ Ac , then
it tries to find an action that is consistent with the deduction
formulas and the database, that is not explicitly forbidden.

I In lines 8-12, the agent attempts to find an action α ∈ Ac
such that ¬Do(α) cannot be derived from its database using
its deduction formulas. If it can find such an action, then this
is returned as the action to be performed.

I If, however, the agent fails to find an action that is at least
consistent, then it returns the special action null , indicating
that no action has been selected.

149

Agents as theorem provers

The perception function see remains unchanged:

see : E → Per ,

where Per is the set of percepts.

The next function has the form:

next : D × Per → D.

It maps a database and a percept to a new database.

150

Agents as theorem provers - example

We consider an example: vacuum cleaning world

I We have a small robotic agent that will clean up a house.

I The robot is equipped with a sensor that will tell it whether it
is over any dirt, and a vacuum cleaner that can be used to
suck up dirt.

I The robot always has a definite orientation (one of north,
south, east, or west).

I In addition to being able to suck up dirt, the agent can move
forward one ’step’ or turn right 90 degrees.

I The agent moves around a room, which is divided grid-like
into a number of equally sized squares.

I Our agent does nothing but clean — it never leaves the room.

I Assume, for simplicity, that the room is a 3× 3 grid, and the
agent always starts in grid square (0, 0) facing north.

151

Agents as theorem provers - example

152

Agents as theorem provers - example

I The set Per of percepts is defined as

Per = {dirt, nothing},
where dirt signifies that there is dirt beneath it, and nothing
indicates no special information.

I The set Ac of actions is defined as

Ac = {forward , suck , turn},
where forward means ‘go forward’, suck means ‘suck up dirt’,
and turn means ‘turn right 90 degrees’.

I The goal is to traverse the room continually searching for and
removing dirt.

153

Agents as theorem provers - example

We use three simple domain predicates:

In(i , j) agent is at (i , j),

Dirt(i , j) there is dirt at (i , j),

Facing(d) the agent is facing direction d ,

where i , j ∈ {0, 1, 2} and d ∈ {north, south, east,west}.

This means that the first-order language L contains:

I two binary relation symbols In and Dirt;

I a unary relation symbol Facing ;

I constant symbols north, south, east, west;

I constant symbols (i , j) for every i , j ∈ {0, 1, 2}.
154

Agents as theorem provers - example

I The next function looks at the perceptual information
obtained from the environment and at the actual database,
and generates a new database which includes this information.

I It removes old or irrelevant information, and also, it tries to
figure out the new location and orientation of the agent.

I We specify the next function in several parts.

Let old(DB) denote the set of ’old’ information in a database,
which we want the update function next to remove.

old(DB) =DB ∩∆,

where

∆ ={In(i , j) | i , j ∈ {0, 1, 2}} ∪ {Dirt(i , j) | i , j ∈ {0, 1, 2}}
∪ {Facing(d) | d ∈ {north, south, east,west}}.

155

Agents as theorem provers - example

I We require a function new, which gives the set of new
formulas to add to the database:

new : D × Per → D.

I It must generate formulas
I In(. . .), describing the new position of the agent;
I Facing(. . .) describing the orientation of the agent;
I Dirt(. . .) if dirt has been detected at the new position.

The next function is defined as follows:

next : D×Per → D, next(DB, p) = (DB−old(DB))∪ new(DB, p)

156

Agents as theorem provers - example

The deduction formulas have the general form

ϕ→ ψ, where ϕ, ψ are formulas of L

Cleaning

In(x , y) ∧ Dirt(x , y)→ Do(suck) x , y are variables

I If the agent is at location (x , y) and it perceives dirt, then the
prescribed action will be to suck up dirt.

I It takes priority over all other possible behaviours of the agent
(such as navigation).

157

Agents as theorem provers - example

Traversal
I The basic action of the agent is to traverse the world.

I For simplicity, we assume that the robot will always move
from (0, 0) to (0, 1) to (0, 2) and then to (1, 2), (1, 1) and so
on. Once the agent reaches (2, 2), it must head back to (0, 0).

I The deduction formulas dealing with the traversal up to
(0, 2):

In(0, 0) ∧ Facing(north) ∧ ¬Dirt(0, 0) → Do(forward)

In(0, 1) ∧ Facing(north) ∧ ¬Dirt(0, 1) → Do(forward)

In(0, 2) ∧ Facing(north) ∧ ¬Dirt(0, 2) → Do(turn)

In(0, 2) ∧ Facing(east) → Do(forward)

I Similar formulas can be easily generated that will get the
agent to (2, 2) and back to (0, 0).

158

Logic-based agents

Decision making is viewed as deduction, an agent’s program is
encoded as a logical theory, and actions selection reduces to a
problem of proof.

Advantages:

I elegance and a clean (logical) semantics.

Disadvantages:

I inherent computational complexity of theorem proving;
I based on the assumption of calculative rationality:

I world will not change in any significant way while the agent is
deciding what to do;

I an action which is rational when decision-making begins will
be rational when it concludes.

I transduction and representation/reasoning problems
essentially unsolved.

159

Modal Logics

Textbook:

P. Blackburn, M. de Rijke, Y. Venema, Modal logic, Cambridge
Tracts in Theoretical Computer Science 53, Cambridge University
Press, 2001

160

Basic modal language

Definition 4.1

The basic modal language ML0 consists of:

I a set PROP of atomic propositions (denoted p, q, r , v , . . .);

I the propositional connectives: ¬, →;

I parentheses: (,);

I the modal operator � (box).

The set Sym(ML0) of symbols of ML0 is

Sym(ML0) := PROP ∪ {¬,→, (,),�}.

The expressions of ML0 are the finite sequences of symbols of ML0.

161

Basic modal language

Definition 4.2

The formulas of the basic modal language ML0 are the expressions
inductively defined as follows:

(F0) Every atomic proposition is a formula.

(F2) If ϕ is a formula, then (¬ϕ) is a formula.

(F3) If ϕ and ψ are formulas, then (ϕ→ ψ) is a formula.

(F4) If ϕ is a formula, then (�ϕ) is a formula.

(F5) Only the expressions obtained by applying rules (F0), (F1),
(F2), (F3), (F4) are formulas.

Notation: The set of formulas is denoted by Form(ML0).

162

Basic modal language

Formulas of ML0 are defined, using the Backus-Naur notation, as
follows:

ϕ ::= p | (¬ϕ) | (ϕ→ ψ) | (�ϕ), where p ∈ PROP.

Derived connectives
Connectives ∨, ∧, ↔ and the constants > (true), ⊥ (false) are
introduced as in classical propositional logic:

ϕ ∨ ψ := ((¬ϕ)→ ψ) ϕ ∧ ψ := ¬(ϕ→ (¬ψ))

ϕ↔ ψ := ((ϕ→ ψ) ∧ (ψ → ϕ))

> := p → p, where p ∈ PROP, ⊥ := ¬>

Dual modal operator
The dual of � is denoted by ♦ (diamond) and is defined as:

♦ϕ := (¬(�(¬ϕ)))

for every formula ϕ.
163

Basic modal language

Usually the external parantheses are omitted, we write them only
when necessary. We write ¬ϕ,ϕ→ ψ, �ϕ.

To reduce the use of parentheses, we assume that

I modal operators ♦ and � have higher precedence than the
other connectives.

I ¬ has higher precedence than →,∧,∨,↔;

I ∧,∨ have higher precedence than →,↔.

164

Basic modal language

Classical modal logic

In classical modal logic,

I �ϕ is read as is necessarily ϕ.

I ♦ϕ means it is not necessary that not ϕ, that is it is possible
the case that ϕ.

Examples of formulas we would probably regard as correct
principles
I �ϕ→ ♦ϕ (whatever is necessary is possible)
I ϕ→ ♦ϕ (whatever is, is possible).

The status of other formulas is harder to decide. What can we say
about ϕ→ �♦ϕ (whatever is, is necessarily possible) or
♦ϕ→ �♦ϕ (whatever is possible, is necessarily possible)? Can we
consider them as general truths? In order to give an answer to
such questions, one has to define a semantics for the classical
modal logic.

165

Relational structures

Definition 4.3

A relational structure is a tuple F consisting of:

I a nonempty set W , called the universe (or domain) of F , and

I a set of relations on W .

We assume that every relational structure contains at least one
relation. The elements of W are called points, nodes, states,
worlds, times, instances or situations.

Example 4.4

A partially ordered set F = (W ,R), where R is a partial order
relation on W .

166

Relational structures

Labeled Transition Systems (LTSs), or more simply, transition
systems, are very simple relational structures widely used in
computer science.

Definition 4.5

An LTS is a pair (W , {Ra | a ∈ A}), where W is a nonempty set of
states, A is a nonempty set of labels and, for every a ∈ A,

Ra ⊆W ×W

is a binary relation on W .

LTSs can be viewed as an abstract model of computation: the
states are the possible states of a computer, the labels stand for
programs, and (u, v) ∈ Ra means that there is an execution of the
program a starting in state u and terminating in state v .

167

Relational structures

Let W be a nonempty set and R ⊆W ×W be a binary relation.

We write usually Rwv instead of (w , v) ∈ R. If Rwv , then we say
that v is R-accessible from w .

The inverse of R, denoted by R−1, is defined as follows:

R−1vw iff Rwv .

We define Rn(n ≥ 0) inductively:

R0 = {(w ,w) | w ∈ R}, R1 = R, Rn+1 = R ◦ Rn.

Thus, for any n ≥ 2, we have that Rnwv iff there exists
u1, . . . , un−1 such that Rwu1,Ru1u2, . . . ,Run−1v .

168

Frames and models

In the sequel we give the semantics of the basic modal language
ML0.

We will do this in two distinct ways:

I at the level of models, where the fundamental notion of
satisfaction (or truth) is defined.

I at the level of frames, where the key notion of validity is
defined.

169

Frames and models

Definition 4.6

A frame for ML0 is a pair F = (W ,R) such that

I W is a nonempty set;

I R is a binary relation on W .

That is, a frame for the basic modal language is simply a relational
structure with a single binary relation.

Interpretation using agents

Rwv holds iff the agent considers the world v possible according to
the informations available in the world w . We think of R as a
possibility relation, as R defines worlds that are considered possible
by the agent.

170

Frames and models

Definition 4.7

A model for ML0 is a pair M = (F ,V), where

I F = (W ,R) is a frame for ML0;

I V : PROP → 2W is a function called valuation.

Thus, V assigns to each atomic proposition p ∈ PROP a subset
V (p) of W . Informally, we think of V (p) as the set of points in
the model M where p is true.
Note that models for ML0 can also be viewed as relational
structures in a natural way:

M = (W ,R, {V (p) | p ∈ PROP}).
Thus, a model is a relational structure consisting of a domain, a
single binary relation R and the unary relations V (p), p ∈ PROP.
A frame F and a model M are two relational structures based on
the same universe. However, as we shall see, frames and models
are used very differently.

171

Frames and models

Let F = (W ,R) be a frame and M = (F ,V) be a model. We
also write M = (W ,R,V).

We say that the model M = (F ,V) is based on the frame
F = (W ,R) or that F is the frame underlying M. Elements of W
are called states in F or in M. We often write w ∈ F or w ∈M.

Remark

Elements of W are also called worlds or possible worlds, having as
inspiration Leibniz’s philosophy and the reading of basic modal
language in which

�ϕ means necessarily ϕ and ♦ϕ means possibly ϕ.

In Leibniz’s view, necessity means truth in all possible worlds and
possibility means truth in some possible world.

172

Frames and models

We define now the notion of satisfaction.

Definition 4.8

Let M = (W ,R,V) be a model and w a state in M. We define
inductively the notion

formula ϕ is satisfied (or true) in M at state w ,
Notation M,w ϕ

M,w p iff w ∈ V (p), where p ∈ PROP

M,w ¬ϕ iff it is not true that M,w ϕ

M,w ϕ→ ψ iff M,w ϕ implies M,w ψ

M,w �ϕ iff for every v ∈W ,Rwv implies M, v ϕ.

173

Frames and models

Let M = (W ,R,V) be a model.

Notation

If M does not satisfy ϕ at w , we write M,w 6 ϕ and we say that
ϕ is false in M at state w .

It follows from Definition 4.8 that for every state w ∈W ,

I M,w ¬ϕ iff M,w 6 ϕ.

Notation

We can extend the valuation V from atomic propositions to
arbitrary formulas ϕ so that V (ϕ) is the set of all states in M at
which ϕ is true:

V (ϕ) = {w | M,w ϕ}.

174

Frames and models

Let M = (W ,R,V) be a model and w a state in M.

Proposition 4.9

For every formulas ϕ, ψ,

M,w ϕ ∨ ψ iff M,w ϕ or M,w ψ

M,w ϕ ∧ ψ iff M,w ϕ and M,w ψ

Proposition 4.10

For every formula ϕ,

M,w ♦ϕ iff there exists v ∈W such that Rwv and M, v ϕ.

175

Frames and models

Let M = (W ,R,V) be a model and w a state in M.

Proposition 4.11

For every n ≥ 1 and every formula ϕ, define

♦nϕ := ♦♦ . . .♦︸ ︷︷ ︸
n times

ϕ, �nϕ := �� . . .�︸ ︷︷ ︸
n times

ϕ.

Then

M,w ♦nϕ iff there exists v ∈W s.t. Rnwv and M, v ϕ

M,w �nϕ iff for every v ∈W ,Rnwv implies M, v ϕ.

176

Frames and models

Let M = (W ,R,V) be a model.

Definition 4.12
I A formula ϕ is globally true or simply true in M if M,w ϕ

for every w ∈W . Notation: M ϕ
I A formula ϕ is satisfiable in M if there exists a state w ∈W

such that M,w ϕ.

Definition 4.13

Let Σ be a set of formulas.

I Σ is true at state w in M if M,w ϕ for every ϕ ∈ Σ.
Notation: M,w Σ

I Σ is globally true or simply true in M if M,w Σ for every
state w in M. Notation: M Σ

I Σ is satisfiable in M if there exists a state w ∈W such that
M,w Σ.

177

Frames and models

A model M = (W ,R,V) is represented as a labeled directed
graph:

I the nodes of the graph are the states of the model;

I the label of each node w ∈W describes which atomic
propositions are true at state w ;

I there exists an edge from node w to node v iff Rwv holds.

Example

q

w1

p, q

w2

p, q

w3

q

w4

q

w5

We know that PROP = {p, q, r}. Then M = (W ,R,V), where
W = {w1,w2,w3,w4,w5}; Rwiwj iff j = i + 1; V (p) = {w2,w3},
V (q) = {w1,w2,w3,w4,w5} and V (r) = ∅.

178

Frames and models

Example

Let M = (W ,R,V) be the model represented by:

q

w1

p, q

w2

p, q

w3

q

w4

q

w5

(i) M,w1 ♦�p.
(ii) M,w1 6 ♦�p → p.
(iii) M,w2 ♦(p ∧ ¬r).
(iv) M,w1 q ∧ ♦(q ∧ ♦(q ∧ ♦(q ∧ ♦q))).
(v) M �q.

Proof: (i) M,w1 ♦�p iff there exists v ∈W such that Rw1v
and M, v �p. Take v := w2. As Rw1w2, it remains to prove
that M,w2 �p. We have that M,w2 �p ⇐⇒ for all
u ∈W , Rw2u implies M, u p ⇐⇒ M,w3 p (as w3 is the
unique u ∈W s.t. Rw2u) ⇐⇒ w3 ∈ V (p), which is true. 179

Frames and models

Example

Let M = (W ,R,V) be the model represented by:

q

w1

p, q

w2

p, q

w3

q

w4

q

w5

Proof: (ii) We have that M,w1 6 ♦�p → p ⇐⇒ M,w1 ♦�p
and M,w1 6 p. Apply (i) and the fact that w1 6∈ V (p).
(iii), (iv) Exercise.
(v) Let w ∈W be arbitray. Then M,w �q ⇐⇒ for all v ∈W ,
Rwv implies M, v q ⇐⇒ for all v ∈W , Rwv implies
v ∈ V (q), which is true, as V (q) = W .

180

Frames and models

The notion of satisfaction is internal and local. We evaluate
formulas inside models, at some particular state w (the current
state). Modal operators ♦,� work locally: we verify the truth of ϕ
only in the states that are R-accesibile from the current one.

At first sight this may seem a weakness of the satisfaction
definition. In fact, it is its greatest source of strength, as it gives
us great flexibility.
For example, if we take R = W ×W , then all states are accessible
from the current state; this corresponds to the Leibnizian idea in
its purest form.
Going to the other extreme, if we take R = {(v , v) | v ∈W }, then
no state has access to any other.
Between these extremes there is a wide range of options to explore.

181

Frames and models

We can ask ourselves the following natural questions:

I What happens if we impose some conditions on R (for
example, reflexivity, symmetry, transitivity, etc.)?

I What is the impact of these conditions on the notions of
necessity and possibility?

I What principles or rules are justified by these conditions?

182

Frames and validity

Validity in a frame is one of the key concepts in modal logic.

Definition 4.14

Let F be a frame and ϕ be a formula.

I ϕ is valid at a state w in F if ϕ is true at w in every model
M = (F ,V) based on F .

I ϕ is valid in F if it is valid at every state w in F .
Notation: F ϕ

Hence, a formula is valid in a frame if it is true at every state in
every model based on the frame.

183

Frames and validity

Validity in a frame differs in an essential way from the truth in a
model. Let us give a simple example.

Example 4.15

If ϕ∨ψ is true in a model M at w , then ϕ is true in M at w or
ψ is true in M at w (by Proposition 4.9).

On the other hand, if ϕ ∨ ψ is valid in a frame F at w , it does
not follow that ϕ is valid in F at w or ψ is valid in F at w
(p ∨ ¬p is a counterexample).

184

Frames and validity

Definition 4.16

Let M be a class of models, F be a class of frames and ϕ be a
formula. We say that

I ϕ is true in M if it is true in every model in M .
Notation: M ϕ

I ϕ is valid in F if it is valid in every frame in F .
Notation: F ϕ

Definition 4.17

The set of all formulas of ML0 that are valid in a class of frames F
is called the logic of F and is denoted by ΛF .

185

Frames and validity

Example 4.18

Formulas ♦(p ∨ q)→ (♦p ∨ ♦q) and �(p → q)→ (�p → �q)
are valid in the class of all frames.

Proof: Let F = (W ,R) be an arbitrary frame, w a state in F and
M = (F ,V) be a model based on F . We have to show that

M,w ♦(p ∨ q)→ (♦p ∨ ♦q).

Suppose that M,w ♦(p ∨ q). Then there exists v ∈W such
that Rwv and M, v p ∨ q. We have two cases:

I M, v p. Then M,w ♦p, so M,w ♦p ∨ ♦q.

I M, v q. Then M,w ♦q, so M,w ♦p ∨ ♦q.

We let as an exercise to prove that �(p → q)→ (�p → �q) is
valid in the class of all frames.

186

Frames and validity

Example 4.19

Formula �p → ��p is not valid in the class of all frames.

Proof: We have to find a frame F = (W ,R), a state w in F and
a model M = (F ,V) such that

M,w 6 �p → ��p.

Consider the following frame: F = (W ,R), where

W = {0, 1, 2}, R = {(0, 1), (1, 2)}

and take a valuation V such that V (p) = {1}. Then M, 0 �p,
since 1 is the only state R-accesible from 0 and M, 1 p, as
1 ∈ V (p).
On the other hand, M, 0 6 ��p, since R202 and M, 2 6 p, as
2 /∈ V (p).

187

Frames and validity

Definition 4.20

We say that a frame F = (W ,R) is transitive if R is transitive.

Example 4.21

Formula �p → ��p is valid in the class of all transitive frames.

Proof: Let F = (W ,R) be a transitive frame, w a state in F and
M = (F ,V) be a model based on F . Assume that M,w �p.
Then for all v ∈W ,

(*) Rwv implies M, v p.

Let us prove that M,w ��p. Let u, u′ ∈W be such that Rwu′

and Ru′u. We have to prove that M, u p. Since R is transitive,
it follows that Rwu. Applying (*) with v := u we get that
M, u p.

188

Modal consequence

We introduce the consequence relation.

The basic ideas are the following;

I A relation of semantic consequence holds when the truth of
the premises guarantees the truth of the conclusion.

I The inferences depend on the class of structures we are
working with. (For example, inferences for transitive frames
must be different than the ones for intransitive frames.)

Thus, the definition of the consequence relation must make
reference to a class of structures S .

189

Modal consequence

Let S be a class of structures (frames or models) for ML0.
If S is a class of models, then a model from S is simply an element
M of S . If S is a class of frames, then a model from S is a model
based on a frame in S .

Definition 4.22

Let Σ be a set of formulas and ϕ be a formula. We say that ϕ is a
semantic consequence of Σ over S if for all models M from S and
all states w in M,

M,w Σ implies M,w ϕ.

Notation: Σ S ϕ

Thus, if Σ is true at a state of the model, then ϕ must be true at
the same state.

190

Modal consequence

Remark 4.23

{ψ} S ϕ iff S ψ → ϕ.

Example 4.24

Let Tran be the class of transitive frames. Then

{�ϕ} Tran ��ϕ.

But ��ϕ is NOT a semantic consequence of �ϕ over the class
of all frames.

191

Normal modal logics

Definition 4.25

A normal modal logic is a set Λ of formulas of ML0 satisfying the
following properties:

I Λ contains the following axioms:

(Taut) all propositional tautologies,

(K) �(ϕ→ ψ)→ (�ϕ→ �ψ),

where ϕ,ψ are formulas of ML0.
I Λ is closed under the following deduction rules:

I modus ponens (MP):
ϕ, ϕ→ ψ

ψ
.

Hence, if ϕ ∈ Λ and ϕ→ ψ ∈ Λ, then ψ ∈ Λ.

I generalization or necessitation (GEN):
ϕ

�ϕ
.

Hence, if ϕ ∈ Λ, then �ϕ ∈ Λ.
192

Normal modal logics - tautologies

We add all propositional tautologies as axioms for simplicity, it is
not necessary. We could add a small number of tautologies, which
generates all of them. For example,

(A1) ϕ→ (ψ → ϕ)
(A2) (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))
(A3) (¬ψ → ¬ϕ)→ (ϕ→ ψ).

Proposition 4.26

Any propositional tautology is valid in the class of all frames for
ML0.

Remark 4.27

Tautologies may contain modalities, too. For example, ♦ψ ∨ ¬♦ψ
is a tautology, since it has the same form as ϕ ∨ ¬ϕ.

193

Normal modal logics - axiom (K)

Axiom (K) is sometimes called the distribution axiom and it is
important because it allows us to transform �(ϕ→ ψ) (a boxed
formula) in an implication �ϕ→ �ψ, enabling further pure
propositional reasoning to take place.
For example, assume that we want to prove �ψ and we already
have a proof that contains both �(ϕ→ ψ) and �ϕ. Applying (K)
and modus ponens, we get �ϕ→ �ψ. Applying again modus
ponens, we obtain �ψ.

By Example 4.18,

Proposition 4.28

(K) is valid in the class of all frames for ML0.

194

Normal modal logics

Theorem 4.29

For any class F of frames, ΛF , the logic of F , is a normal modal
logic.

Lemma 4.30
I The collection of all formulas is a normal modal logic, called

the inconsistent logic.

I If {Λi | i ∈ I} is a collection of normal modal logics, then⋂
i∈I Λi is a normal modal logic.

Definition 4.31
K is the intersection of all normal modal logics.

Hence, K is the smallest normal modal logic.
195

K

Definition 4.32

A K -proof is a sequence of formulas θ1, . . ., θn such that for any
i ∈ {1, . . . , n}, one of the following conditions is satisfied:

I θi is an axiom (that is, a tautology or (K));

I θi is obtained from previous formulas by applying modus
ponens or generalization.

Definition 4.33

Let ϕ be a formula. A K -proof of ϕ is a K -proof θ1, . . ., θn such
that θn = ϕ.
If ϕ has a K -proof, we say that ϕ is K -provable.
Notation: `K ϕ.

Theorem 4.34

K = {ϕ | `K ϕ}.
196

K

Definition 4.35

Let ϕ,ψ1, . . . , ψn (n ≥ 1) be formulas. We say that ϕ is deducible
in propositional logic from ψ1, . . . , ψn if

ψ1 ∧ . . . ∧ ψn → ϕ is a tautology.

Lemma 4.36

Let ϕ,ψ1, . . . , ψn (n ≥ 1) be formulas. The following are
equivalent:

I ϕ is deducible in propositional logic from ψ1, . . . , ψn.

I ψ1 → (ψ2 → . . .→ (ψn → ϕ)) is a tautology.

Proof: Use the fact that(
ψ1 ∧ . . . ∧ ψn → ϕ

)
↔
(
ψ1 → (ψ2 → . . .→ (ψn → ϕ))

)
is a tautology.

197

K

Proposition 4.37

K is closed under propositional deduction: if ϕ is deducible in
propositional logic from assumptions ψ1, . . . , ψn, then

`K ψ1, . . . ,`K ψn implies `K ϕ.

Proof:
(1) `K ψ1 hypothesis

...
(n) `K ψn hypothesis
(n+1) `K ψ1 → (ψ2 → . . .→ (ψn → ϕ)) (Taut)
(n+2) `K ψ2 → . . .→ (ψn−1 → (ψn → ϕ)) (MP): (1), (n+1)

...
(2n-1) `K ψn−1 → (ψn → ϕ) (MP): (n-2), (2n-2)
(2n) `K ψn → ϕ (MP): (n-1), (2n-1)
(2n+1) `K ϕ (MP): (n), (2n)

198

K

Example 4.38

`KKK ϕ→ ψ implies `KKK �ϕ→ �ψ.

Proof: We give the following K -proof:
(1) `KKK ϕ→ ψ hypothesis

(2) `KKK �(ϕ→ ψ) (GEN): (1)

(3) `KKK �(ϕ→ ψ)→ (�ϕ→ �ψ) (K)

(4) `KKK �ϕ→ �ψ (MP): (2), (3).

199

K

Example 4.39

`KKK ϕ→ ψ implies `KKK ♦ϕ→ ♦ψ.

Proof: We give the following K -proof:
(1) `KKK ϕ→ ψ hypothesis

(2) `KKK (ϕ→ ψ)→ (¬ψ → ¬ϕ) (Taut)

(3) `KKK ¬ψ → ¬ϕ (MP): (1), (2)

(4) `KKK �¬ψ → �¬ϕ Example 4.38: (3)
(5) `KKK (�¬ψ → �¬ϕ)→ (¬�¬ϕ→ ¬�¬ψ) (Taut)

(6) `KKK ¬�¬ϕ→ ¬�¬ψ (MP): (4), (5)

(7) `KKK ♦ϕ→ ♦ψ definition of ♦

200

K

Example 4.40

`KKK �(ϕ ∧ ψ)→ �ϕ ∧�ψ.

Proof: We give the following K -proof:
(1) `KKK ϕ ∧ ψ → ϕ (Taut)
(2) `KKK �(ϕ ∧ ψ)→ �ϕ Example 4.38: (1)
(3) `KKK ϕ ∧ ψ → ψ (Taut)
(4) `KKK �(ϕ ∧ ψ)→ �ψ Example 4.38: (3)
(5) `KKK �(ϕ ∧ ψ)→ �ϕ ∧�ψ Proposition 4.37, (2) and (4)

(5) is obtained as an application of Proposition 4.37 with

ψ1 = σ1 → σ2, ψ2 = σ1 → σ3, ϕ = σ1 → σ2 ∧ σ3,

where

σ1 = �(ϕ ∧ ψ), σ2 = �ϕ, σ3 = �ψ.

201

K

Example 4.41
`KKK �ϕ ∧�ψ → �(ϕ ∧ ψ).

Proof: We give the following K -proof:
(1) `KKK ϕ→ (ψ → (ϕ ∧ ψ)) (Taut)
(2) `KKK �ϕ→ �(ψ → (ϕ ∧ ψ)) Ex. 4.38: (1)
(3) `KKK �(ψ → (ϕ ∧ ψ))→ (�ψ → �(ϕ ∧ ψ)) (K)
(4) `KKK �ϕ→ (�ψ → �(ϕ ∧ ψ)) Prop. 4.37, (2), (3)
(5) `KKK �ϕ ∧�ψ → �(ϕ ∧ ψ) Prop. 4.37, (4)

(4) is obtained as an application of Proposition 4.37 with

ψ1 = σ1 → σ2, ψ2 = σ2 → σ3, ϕ = σ1 → σ3,

where

σ1 = �ϕ, σ2 = �(ψ → (ϕ ∧ ψ)), σ3 = �ψ → �(ϕ ∧ ψ).

(5) is obtained as an application of Proposition 4.37 with

ψ1 = σ1 → (σ2 → σ3), ϕ = (σ1 ∧ σ2)→ σ3,

where σ1 = �ϕ, σ2 = �ψ, σ3 = �(ϕ ∧ ψ).
202

K

Example 4.42

`KKK �ϕ ∧�ψ ↔ �(ϕ ∧ ψ).

Proof: We give the following K -proof:

(1) `KKK �ϕ ∧�ψ → �(ϕ ∧ ψ) Example 4.41

(2) `KKK �(ϕ ∧ ψ)→ �ϕ ∧�ψ Example 4.40

(3) `KKK �ϕ ∧�ψ ↔ �(ϕ ∧ ψ)

(3) is obtained as an application of Proposition 4.37 with

ψ1 = �ϕ ∧�ψ → �(ϕ ∧ ψ), ψ2 = �(ϕ ∧ ψ)→ �ϕ ∧�ψ

and

ϕ = �ϕ ∧�ψ ↔ �(ϕ ∧ ψ).

203

K

The logic K is very weak. If we are interested in transitive frames,
we would like a proof system which reflects this. For example, we
know that �ϕ→ ��ϕ is valid in the class of all transitive frames,
so we would want a proof system that generates this formula.
K does not do this, since �ϕ→ ��ϕ is not valid in the class of
all frames.

The idea is to extend K with additional axioms.

204

KΓ

By Lemma 4.30, for any set Γ of formulas, there exists the smallest
normal modal logic that contains Γ.

Definition 4.43

KΓ is the smallest normal modal logic that contains Γ. We say
that KΓ is generated by Γ or axiomatized by Γ.

Definition 4.44

A KΓ-proof is a sequence of formulas θ1, . . ., θn such that for any
i ∈ {1, . . . , n}, one of the following conditions is satisfied:

I θi is an axiom (that is, a tautology or (K));

I θi ∈ Γ;

I θi is obtained from previous formulas by applying modus
ponens or generalization.

205

KΓ

Definition 4.45

Let ϕ be a formula. A KΓ-proof of ϕ is a KΓ-proof θ1, . . . , θn
such that θn = ϕ.
If ϕ has a KΓ-proof, we say that ϕ is KΓ-provable.
Notation: `KΓ ϕ.

Theorem 4.46

KΓ = {ϕ | `KΓ ϕ}.

206

Normal modal logics

Let Λ be a normal modal logic.

Definition 4.47

If ϕ ∈ Λ, we also say that ϕ is a Λ-theorem or a theorem of Λ and
write `Λ ϕ. If ϕ 6∈ Λ, we write 6`Λ ϕ.

With these notations, the conditions from the definition of a
normal modal logic are written as follows:

For any formulas ϕ, ψ, the following hold:

(i) If ϕ is a tautology, then `Λ ϕ.

(ii) `Λ (K).

(iii) If `Λ ϕ and `Λ ϕ→ ψ, then `Λ ψ.

(iv) If `Λ ϕ, then `Λ �ϕ.

207

Normal modal logics

Remark 4.48
I `K ϕ implies `Λ ϕ.

I If Γ ⊆ Λ, then `KΓ ϕ implies `Λ ϕ.

Proposition 4.49

Λ is closed under propositional deduction: if ϕ is deducible in
propositional logic from assumptions ψ1, . . . , ψn, then

`Λ ψ1, . . . ,`Λ ψn implies `Λ ϕ.

Proof: Exercise.

208

Normal modal logics

Definition 4.50

Let Γ ∪ {ϕ} be a set of formulas. We say that ϕ is deducible in Λ
from Γ or that ϕ is Λ-deducible from Γ if there exist formulas
ψ1, . . . , ψn ∈ Γ (n ≥ 0) such that

`Λ (ψ1 ∧ . . . ∧ ψn)→ ϕ.

(When n = 0, this means that `Λ ϕ).
Notation: Γ `Λ ϕ We write Γ 6`Λ ϕ if ϕ is not Λ-deducible from Γ.

Remark 4.51

The following are equivalent:

(i) Γ `Λ ϕ.

(ii) There exist formulas ψ1, . . . , ψn ∈ Γ (n ≥ 0) such that

`Λ ψ1 → (ψ2 → . . .→ (ψn → ϕ)).

209

Normal modal logics

Proposition 4.52 (Basic properties)

Let ϕ be a formula and Γ,∆ be sets of formulas.

(i) ∅ `Λ ϕ iff `Λ ϕ.

(ii) `Λ ϕ implies Γ `Λ ϕ.

(iii) ϕ ∈ Γ implies Γ `Λ ϕ.

(iv) If Γ `Λ ϕ and Γ ⊆ ∆, then ∆ `Λ ϕ.

Proof: Exercise.

210

Normal modal logics

Let ϕ,ψ be formulas and Γ be a set of formulas,

Proposition 4.53

Γ `Λ ϕ iff there exists a finite subset Σ of Γ such that Σ `Λ ϕ.

Proposition 4.54

(i) If Γ `Λ ϕ and ψ is deducible in propositional logic from ϕ,
then Γ `Λ ψ.

(ii) If Γ `Λ ϕ and Γ `Λ ϕ→ ψ, then Γ `Λ ψ.

(iii) If Γ `Λ ϕ and {ϕ} `Λ ψ, then Γ `Λ ψ.

Proposition 4.55 (Deduction Theorem)

For any set of formulas Γ and any formulas ϕ,ψ,

Γ `Λ ϕ→ ψ iff Γ ∪ {ϕ} `Λ ψ.

211

Consistent sets

Definition 4.56

A set Γ of formulas is Λ-consistent if Γ `Λ ϕ for any formula ϕ.
If Γ is not Λ-consistent, we say that Γ is Λ-inconsistent.
A formula ϕ is Λ-consistent if {ϕ} is; otherwise, it is called
Λ-inconsistent.

Proposition 4.57

Let Γ be a set of formulas. The following are equivalent:

(i) Γ is Λ-inconsistent.

(ii) There exists a formula ψ such that Γ `Λ ψ and Γ `Λ ¬ψ.

(iii) Γ `Λ ⊥.

Proposition 4.58

Γ is Λ-consistent iff any finite subset of Γ is Λ-consistent.

212

Normal logics - soundness

In the following, we say “normal logic ” instead of “normal modal
logic”.

Let S be a class of structures (frames or models) for ML0.

Notation:

ΛS := {ϕ | S ϕ for any structure S from S}.

Definition 4.59

A normal logic Λ is sound with respect to S if Λ ⊆ ΛS .

Thus, Λ is sound with respect to S iff for any formula ϕ and for
any structure S in S ,

`Λ ϕ implies S ϕ.
If Λ is sound with respect to S , we say also that S is a class of
frames (or models) for Λ.

213

Normal logics - soundness

Theorem 4.60 (Soundness theorem for K)

K is sound with respect to the class of all frames.

Proof: We apply Theorem 4.29 and the fact that K is the least
normal logic.

214

Normal logics - completeness

Definition 4.61

A normal logic Λ is

(i) strongly complete with respect to S if for any set of formulas
Γ ∪ {ϕ},

Γ S ϕ implies Γ `Λ ϕ.

(ii) weakly complete with respect to S if for any formula ϕ,

S ϕ implies `Λ ϕ.

Obviously, weak completeness is a particular case of strong
completeness; just take Γ = ∅ in Definition 4.61.(i).

215

Normal logics - completeness

Remark 4.62

Λ is weakly complete with respect to S iff ΛS ⊆ Λ.

If a normal logic Λ is both sound and weakly complete with respect
to a class of structures S , then there is a perfect match between
the syntactic and semantic perspectives: Λ = ΛS .

Given a semantically specified normal logic ΛS (that is, the logic of
some class of structures of interest), a very important problem is
to find a simple set of formulas Γ such that ΛS is the logic
generated by Γ; we say that Γ axiomatizes S .

216

Completeness theorem for K

Theorem 4.63

K is sound and strongly complete with respect to the class of all
frames for ML0.

217

Logic K4

Let

(4) �ϕ→ ��ϕ

We use the notation K4 for the normal logic generated by (4).
Thus, K4 is the smallest normal logic that contains (4).

Theorem 4.64

K4 is sound and strongly complete with respect to the class of
transitive frames.

218

Logic T

Let

(T) �ϕ→ ϕ

We use the notation T for the normal logic generated by (T).

Definition 4.65

We say that a frame F = (W ,R) is reflexive if R is reflexive.

Theorem 4.66

T is sound and strongly complete with respect to the class of
reflexive frames.

219

Logic B

Let

(B) ϕ→ �♦ϕ

We use the notation B for the normal logic KB generated by (B).

Definition 4.67

We say that a frame F = (W ,R) is symmetric if R is symmetric.

Theorem 4.68

B is sound and strongly complete with respect to the class of
symmetric frames.

220

Logic KD

Let

(D) �ϕ→ ♦ϕ
(D ′) ¬�(ϕ ∧ ¬ϕ)

One can prove that `K (D)↔ (D ′) (exercise).

Let KD be the normal logic generated by (D) (or, equivalently, by
(D ′)).

Definition 4.69

We say that a frame F = (W ,R) is serial if for all w ∈W there
exists v ∈W such that Rwv .

Theorem 4.70

KD is sound and strongly complete with respect to the class of
serial frames. 221

Logic K5

Let
(5) ♦ϕ→ �♦ϕ

(5′) ¬�ϕ→ �¬�ϕ

One can prove that `K (5)↔ (5′) (exercise).

Let K5 be the normal logic generated by (5) (or, equivalently, by
(5′)).

Definition 4.71
We say that a frame F = (W ,R) is Euclidean if for all
w , v , u ∈W ,

if Rwv and Rwu, then Rvu.

Theorem 4.72

K5 is sound and strongly complete with respect to the class of
Euclidean frames.

222

Logic S4

We use the notation S4 for the normal logic KT4 generated by
(T) and (4).

Theorem 4.73

S4 is sound and strongly complete with respect to the class of
reflexive and transitive frames.

223

Logic S5

We use the notation S5 for the normal logic KT4B generated by
(T), (4) and (B).

Proposition 4.74

S5 = KDB4 = KDB5 = KT5.

Theorem 4.75

S5 is sound and strongly complete with respect to the class of
frames whose relation is an equivalence relation.

224

Multimodal logics

The whole theory presented so far adapts easily to languages with
more modal operators.

Let I be a nonempty set.

I The multimodal language MLI consists of: a set PROP of
atomic propositions, ¬, →, the parentheses (,) and a set of
modal operators {�i | i ∈ I}.

I Formulas of MLI are defined, using the Backus-Naur notation,
as follows:

ϕ ::= p | (¬ϕ) | (ϕ→ ϕ) | (�iϕ),

where p ∈ PROP and i ∈ I .

I The dual of �i is denoted by ♦i and is defined as:

♦iϕ := ¬�i¬ϕ
225

Multimodal logics

I A frame for MLI is a relational structure
F = (W , {Ri | i ∈ I}), where Ri is a binary relation on W for
every i ∈ I .

I A model for MLI is, as previously, a pair M = (F ,V), where
F is a frame and V : PROP → 2W is a valuation.

I The last clause from the definition of the satisfaction relation
M,w ϕ is changed to: for all i ∈ I ,

M,w �iϕ iff for every v ∈W ,Riwv implies M, v ϕ.

I It follows that

M,w ♦iϕ iff there exists v ∈W s.t. Riwv and M, v ϕ.

I The definitions of truth in a model (M ϕ), of validity in a
frame (F ϕ) and of the consequence relation are
unchanged.

226

Multimodal logics

Definition 4.76
A normal multimodal logic is a set Λ of formulas of MLI satisfying
the following properties:

I Λ contains all propositional tautologies and is closed under
modus ponens.

I Λ contains all formulas

(Ki) �i (ϕ→ ψ)→ (�iϕ→ �iψ),

where ϕ,ψ are formulas and i ∈ I .

I Λ is closed under generalization: for any formula ϕ and all
i ∈ I , ϕ

�iϕ
.

227

Multimodal logics

I We use the same notation, K , for the smallest normal
multimodal logic.

I We define similarly K -proofs and we also have that
K = {ϕ | `K ϕ}.

I The multimodal logic generated by a set of formulas Γ is also
denoted by KΓ. Furthermore, KΓ = {ϕ | `KΓ ϕ}.

I The definitions of Λ-deducibility, Λ-consistence, soundness
and weak and strong completeness are unchanged.

228

Epistemic Logics

Textbook:

R. Fagin, J.Y. Halpern, Y. Moses, M. Vardi, Reasoning About
Knowledge, MIT Press, 2004

229

https://www.cs.rice.edu/~vardi/papers/book.pdf
https://www.cs.rice.edu/~vardi/papers/book.pdf

Reasoning about knowledge

I Consider a multiagent system, in which multiple agents
autonomously perform some joint action.

I The agents need to communicate with one another.

I Problems appear when the communication is error-prone.
I One could have scenarios like the following:

I Agent A sent the message to agent B.
I The message may not arrive, and agent A knows this.
I Furthemore, this is common knowledge, so agent A knows that

agent B knows that A knows that if a message was sent it may
not arrive.

Multiagent system = distributed system; agent = processor; action
= computation

We use epistemic logic to make such reasoning precise.

230

Epistemic logics

In epistemic logics, the multimodal language is used to reason
about knowledge. Let n ≥ 1 and AG = {1, . . . , n} be the set of
agents.

I We consider the multimodal language MLAg .

I We write, for every i = 1, . . . , n, Kiϕ instead of �iϕ.

I Kiϕ is read as the agent i knows (that) ϕ.

I We denote by K̂i the dual operator: K̂iϕ = ¬Ki¬ϕ.

I Then K̂iϕ is read as the agent i considers possible (that) ϕ.

231

Epistemic logics

Definition 5.1
An epistemic logic is a set Λ of formulas of MLAg satisfying the
following properties:

I Λ contains all propositional tautologies and is closed under
modus ponens.

I Λ contains all formulas

Ki (ϕ→ ψ)→ (Kiϕ→ Kiψ),

where ϕ,ψ are formulas and i ∈ Ag .

I Λ is closed under generalization: for any formula ϕ and all
i ∈ Ag , ϕ

Kiϕ
.

We denote by K the smallest epistemic logic.

232

Epistemic logics

Recall the following axioms:

(T) Kiϕ→ ϕ

(D ′) ¬Ki (ϕ ∧ ¬ϕ)

(B) ϕ→ Ki¬Ki¬ϕ

Properties of knowledge

I Axiom (T) is called the veridity or knowledge axiom: If an
agent knows ϕ, then ϕ must hold. What is known is true.
This is often taken to be the property that distinguishes
knowledge from other informational attitudes, such as belief.

I Axiom (D ′) is the consistency axiom: an agent does not know
both ϕ and ¬ϕ. An agent cannot know a contradiction.

I Axiom (B) says that if ϕ holds, then an agent knows that it
does not know ¬ϕ.

233

Epistemic logics

Recall the following axioms:

(4) Kiϕ→ KiKiϕ

(5′) ¬Kiϕ→ Ki¬Kiϕ

Properties of knowledge

I Axiom (4) is positive introspection: if an agent knows ϕ, it
knows that it knows ϕ. An agent knows what it knows.

I Axiom (5′) is negative introspection: if an agent does not
know ϕ, it knows that it does not know ϕ. An agent is aware
of what it doesn’t know.

I Positive and negative introspection together imply that an
agent has perfect knowledge about what it does and does not
know.

234

Epistemic logics

Let S5 = KD′B4 = KD′B5′ = KT5′. S5 is considered as the
logic of idealised knowledge.

Theorem 5.2

S5 is sound and strongly complete with respect to the class of
frames whose relations are equivalence relations.

235

Models for epistemic logics

A model M = (W ,K1, . . . ,Kn,V) is represented as a labeled
directed graph:

I the nodes of the graph are the states of the model;

I the label of each node w ∈W describes which atomic
propositions are true at state w ;

I we label edges by sets of agents; the label of the edge from
node w to node v includes i iff Kiwv holds.

236

Models for epistemic logics

Example

t

s
p

u
p

1 2

1,2

1,2

1,2

We have that Ag = {1, 2}, PROP = {p} and
M = (W ,K1,K2,V), where
I W = {s, t, u}.
I K1 = {(s, s), (t, t), (u, u), (s, t), (t, s)}.
I K2 = {(s, s), (t, t), (u, u), (s, u), (u, s)}.
I V (p) = {s, u}.

237

Models for epistemic logics

Example

t

s
p

u
p

1 2

1,2

1,2

1,2

I M, s p ∧ ¬K1p.

Proof: We have that s ∈ V (p), hence M, s p. Since K1st and
M, t 6 p, it follows that M, s 6 K1p, hence M, s ¬K1p. Thus,
M, s p ∧ ¬K1p.
In state s, p is true, but agent 1 does not know it, since in state s
it considers both s and t possible. We say that agent 1 cannot
distinguish s from t. Agent 1’s information is insufficient to enable
it to distinguish whether the actual state is s or t. 238

Models for epistemic logics

Example

t

s
p

u
p

1 2

1,2

1,2

1,2

I M, s K2p.

Proof: We have that M, s K2p iff for all v ∈W , K2sv implies
M, v p iff M, s p and M, u p (as K2ss, K2su, but we
don’t have that K2st), which is true.
In state s, agent 2 knows that p is true, since p is true in both
states that agent 2 considers possible at s (namely s and u).

239

Epistemic logic S5

Example

t

s
p

u
p

1 2

1,2

1,2

1,2

I M, s ¬K2¬K1p.

Proof: We have that M, s ¬K2¬K1p iff M, s 6 K2¬K1p iff
there exists v ∈W such that K2sv and M, v 6 ¬K1p iff there
exists v ∈W such that K2sv andM, v K1p. Take v := u. Then
K2su and M, u K1p, since M, u p and K1uw iff w = u.

240

Models for epistemic logics

Example

t

s
p

u
p

1 2

1,2

1,2

1,2

I M, s ¬K2¬K1p.

Although agent 2 knows that p is true in s, it does not know that
agent 1 does not know this fact. Why? Because in a state that
agent 2 considers possible, namely u, agent 1 does know that p is
true, while in another state agent 2 considers possible, namely s,
agent 1 does not know this fact.

241

A simple card game

Ag = {1, 2}

I Suppose that we have a deck consisting of three cards labeled
A, B, and C . Agents 1 and 2 each get one of these cards; the
third card is left face down.

I A possible world is characterized by describing the cards held
by each agent. For example, in the world (A,B), agent 1 holds
card A and agent 2 holds card B (while card C is face down).

I The set of possible worlds is

W = {(A,B), (A,C), (B,A), (B,C), (C ,A), (C ,B)}.
I In a world such as (A,B), agent 1 thinks two worlds are

possible: (A,B) and (A,C). Agent 1 knows that he has card
A, but considers it possible that agent 2 could hold either card
B or card C .

242

A simple card game

I Similarly, in world (A,B), agent 2 also considers two worlds
are possible: (A,B) and (C ,B).

I In general, in a world (X ,Y), agent 1 considers (X ,Y) and
(X ,Z) possible, while agent 2 considers (X ,Y) and (Z ,Y)
possible, where Z is different from both X and Y .

I We can easily construct the K1 and K2 relations.

I It is easy to check that they are indeed equivalence relations.

I This is because an agent’s possibility relation is determined by
the information he has, namely, the card he is holding.

243

A simple card game

We describe the frame Fc = (W ,K1,K2) for the card game as a
labeled graph. Since the relations are equivalence relations, we
omit the self loops and the arrows on edges for simplicity (if there
is an edge from state w to state v , there must be an edge from v
to w as well, by symmetry).

Figure 7: Frame describing a simple card game
244

A simple card game

I In the world (A,B), agent 1 knows that the world (B,C)
cannot be the case. This is captured by the fact that there is
no edge from (A,B) to (B,C) labeled 1.

I Nevertheless, agent 1 considers it possible that agent 2
considers it possible that (B,C) is the case. This is captured
by the fact that there is an edge labeled 1 from (A,B) to
(A,C), from which there is an edge labeled 2 to (B,C). 245

A simple card game

We still have not defined the model to be used in this example.

Define the set PROP of atomic propositions as

PROP = {iX | i ∈ {1, 2},X ∈ {A,B,C}}.

iX will be interpreted as agent i holds card X . Given this
interpretation, we define the valuation V in the obvious way:

V (iX) =

{
{(X ,Z) | Z ∈ {A,B,C} \ {X}} if i = 1

{(Z ,X) | Z ∈ {A,B,C} \ {X}} if i = 2.

246

A simple card game

Let Mc = (Fc ,V) be the model describing this card game.

Examples

I Mc , (A,B) � 1A ∧ 2B.

I Mc , (A,B) � K1(2B ∨∨∨ 2C): agent 1 knows that agent 2 holds
either B or C .

I Mc , (A,B) � K1¬2A: agent 1 knows that agent 2 does not
hold an A.

I Mc , (A,B) � K1¬K21A: agent 1 knows that agent 2 does not
know that agent 1 holds an A.

247

Common and distributed knowledge

We need to reason about knowledge in a group and using this
understanding to help us analyze multiagent systems.

I An agent in a group must take into account not only facts
that are true about the world, but also the knowledge of other
agents in the group.

I For example, in a bargaining situation, the seller of a car must
consider what the potential buyer knows about the car’s
value. The buyer must also consider what the seller knows
about what the buyer knows about the car’s value, and so on.

I Such reasoning can get rather convoluted. Example: “Dean
doesn’t know whether Nixon knows that Dean knows that
Nixon knows that McCord burgled O’Brien’s office at
Watergate.”

I But this is precisely the type of reasoning that is needed when
analyzing the knowledge of agents in a group.

248

Common and distributed knowledge

We are often interested in situations in which everyone in the
group knows a fact.

Example

A society certainly wants all drivers to know that a red light means
stop and a green light means go. Suppose we assume that every
driver in the society knows this fact and follows the rules. A driver
does nor feel safe, unless she also knows that everyone else knows
and is following the rules. Otherwise, a driver may consider it
possible that, although she knows the rules, some other driver does
not, and that driver may run a red light.

249

Common and distributed knowledge

I In some cases we also need to consider the state in which
simultaneously everyone knows a fact ϕ, everyone knows that
everyone knows ϕ, everyone knows that everyone knows that
everyone knows ϕ, and so on. We say that the group has
common knowledge of ϕ.

I The notion of common knowledge was first studied by the
philosopher David Lewis in the context of conventions: in
order for something to be a convention, it must be common
knowledge among the members of a group.

I John McCarthy, in the context of studying common-sense
reasoning, characterized common knowledge as what any fool
knows.

Example

The convention that green means go and red means stop is
presumably common knowledge among the drivers in our society. 250

Common and distributed knowledge

I Common knowledge also arises in discourse understanding.

I Suppose that Ann asks Bob “What did you think of the
movie?”” referring to the movie Star Wars they have just
seen. Ann and Bob must both know that the movie refers to
Star Wars, Ann must know that Bob knows (so that she can
be sure that Bob will give a reasonable answer to her
question), Bob must know that Ann knows that Bob knows
(so that Bob knows that Ann will respond appropriately to his
answer), and so on.

I There must be common knowledge of what movie is meant in
order for Bob to answer the question appropriately.

I Common knowledge also turns out to be a prerequisite for
achieving agreement.

I That is why common knowledge is a crucial notion in the
analysis of interacting groups of agents.

251

Common and distributed knowledge

A group has distributed knowledge of a fact ϕ if the knowledge of
ϕ is distributed among its members, so that by using their
knowledge together the members of the group can deduce ϕ, even
though it may be the case that no member of the group
individually knows ϕ.

Example

Assume that Alice knows that Bob is in love with either Carol or
Susan, and Charlie knows that Bob is not in love with Carol. Then
together Alice and Charlie have distributed knowledge of the fact
that Bob is in love with Susan, although neither Alice nor Charlie
individually has this knowledge.

252

Common and distributed knowledge

Let ∅ 6= G ⊆ Ag be a group of agents.

I Define, for every ϕ,

EGϕ =
∧
i∈G

Kiϕ.

I EGϕ is read as everyone in the group G knows ϕ.

I For every model M and every w ∈M,

M,w EGϕ iff M,w Kiϕ for all i ∈ G .

253

Common and distributed knowledge

The language MLAg does not allow us to express the notions of
common knowledge and distributed knowledge.

Let MLCDAg be the language obtained by adding to MLAg the
following modal operators for any ∅ 6= G ⊆ Ag :

I CG , read as it is common knowledge among the agents in G ;

I DG , read as it is distributed knowledge among the agents in
G .

Formulas of MLCDAg are defined as follows:

ϕ ::= p | ¬ϕ | ϕ→ ϕ | Kiϕ | CGϕ | DGϕ,

where p ∈ PROP, i ∈ Ag and ∅ 6= G ⊆ Ag .

We omit the subscript G when G is the set of all agents.
254

Common and distributed knowledge

Let ∅ 6= G ⊆ Ag be a group of agents.

We define E k
Gϕ (k ≥ 0) inductively:

E 0
Gϕ = ϕ, E k+1

G ϕ = EGE
k
Gϕ.

Let M be a model and w ∈M. We extend the definition of the
satisfaction relation with the following clause:

M,w CGϕ iff M,w E k
Gϕ for all k = 1, 2,

Thus, the formula CGϕ is true iff everyone in G knows ϕ, everyone
in G knows that everyone in G knows ϕ, etc.

255

Common and distributed knowledge

Our definition of common knowledge has a graph-theoretical
interpretation.
Let M be a model.

Definition 5.3

Let w , v be states in M.

I We say that v is G -reachable from w in k steps (k ≥ 1) if
there exist states u0, u1, . . . , uk ∈M such that u0 = w ,
uk = v and for all j = 0, . . . , k − 1, there exists i ∈ G such
that Kiujuj+1.

I v is G -reachable from w if v is G -reachable from w in k steps
for some k ≥ 1.

Thus, v is G -reachable from w iff there is a path in the graph from
w to v whose edges are labeled by members of G .

256

Common and distributed knowledge

Proposition 5.4

Let w be a state in M.
I The following are equivalent for every k ≥ 1:

I M,w E k
Gϕ;

I M, v ϕ for all states v that are G -reachable from w in k
steps.

I M,w CGϕ iff M, v ϕ for all states v that are
G -reachable from w .

257

Common and distributed knowledge

A group G has distributed knowledge of ϕ if the combined
knowledge of the members of G implies ϕ.

I The question is how can we capture the idea of combining
knowledge in our framework.

I The answer is: we combine the knowledge of the agents in
group G by eliminating all worlds that some agent in G
considers impossible.

Let M be a model and w ∈M. We extend the definition of the
satisfaction relation with the following clause:

M,w DGϕ iff M, v ϕ for all v such that (w , v) ∈
⋂

i∈G Ki

iff M, v ϕ for all v such that Kiwv for all i ∈ G .

258

Example - the card game

Let Mc = (Fc ,V) be the model describing the simple card game.

I PROP = {iX | i ∈ {1, 2},X ∈ {A,B,C}}.
I iX read as agent i holds card X

I V (iX) =

{
{(X ,Z) | Z ∈ {A,B,C} \ {X}} if i = 1

{(Z ,X) | Z ∈ {A,B,C} \ {X}} if i = 2.

Fc is given by

259

Example - the card game

Let G = {1, 2}.
I Mc CG (1A ∨ 1B ∨ 1C): it is common knowledge that

agent 1 holds one of the cards A, B, and C .

I Mc CG (1B → (2A ∨ 2C)): it is common knowledge that if
agent 1 holds card B, then agent 2 holds either card A or card
C .

I Mc , (A,B) DG (1A∧ 2B): if the agents could combine their
knowledge, they would know that in world (A,B), agent 1
holds card A and agent 2 holds card B.

260

Muddy children puzzle

I A group of n children enters their house after having played in
the mud outside. They are greeted in the hallway by their
father, who notices that k of the children have mud on their
foreheads.

I He makes the following announcement, “At least one of you
has mud on his forehead.”

I The children can all see each other’s foreheads, but not their
own.

I The father then says, “Do any of you know that you have
mud on your forehead? If you do, raise your hand now.”

I No one raises his hand.

I The father repeats the question, and again no one moves.

I The father does not give up and keeps repeating the question.

I After exactly k repetitions, all the children with muddy
foreheads raise their hands simultaneously.

261

Muddy children puzzle

For simplicity, let us call a child

I muddy if he has a muddy forehead;

I clean if he does not have a muddy forehead.

k = 1
I There exists only one muddy child.

I The muddy child knows the other children are clean.

I When the father says at least one is muddy, he concludes that
it’s him.

I None of the other children know at this point whether or not
they are muddy.

I The muddy child raises his hand after the father’s first
question.

I After the muddy child raises his hand, the other children know
that they are clean.

262

Muddy children puzzle

k = 2
I There exist two muddy children.

I Imagine that you are one of the two muddy children.

I You see that one of the other children is muddy.

I After the father’s first announcement, you do not have enough
information to know whether you are muddy. You might be,
but it could also be that the other child is the only muddy one.

I So, you do not raise the hand after the father’s first question.

I You note that the other muddy child does not raise his hand.

I You realize then that you yourself must be muddy as well, or
else that child would have raised his hand.

I So, after the father’s second question, you raise your hand. Of
course, so does the other muddy child.

263

Muddy children puzzle

We shall analyse the muddy children puzzle using epistemic logic.

We assume that it is common knowledge that

I the father is truthful,

I all the children can and do hear the father,

I all the children can and do see which of the other children
besides themselves have muddy foreheads,

I none of the children can see his own forehead,

I all the children are truthful and (extremely) intelligent.

264

Muddy children puzzle

Suppose that there are n children; we number them 1, . . . , n.
Thus, we take Ag = {1, . . . , n}.

I First consider the situation before the father speaks.

I Some of the children are muddy, while the rest are clean.

I We describe a possible situation by an n-tuple of 0’s and 1’s
of the form (x1, . . . , xn), where xi = 1 if child i is muddy, and
xi = 0 otherwise.

I There are 2n possible situations.

265

Muddy children puzzle

n = 3
I Suppose that the actual situation is described by the tuple

(1, 0, 1), that says that child 1 and child 3 are muddy, while
child 2 is clean.

I What situations does child 1 consider possible before the
father speaks?

I Since child 1 can see the foreheads of all the children besides
himself, his only doubt is about whether he is muddy or clean.
Thus child 1 considers two situations possible: (1, 0, 1) (the
actual situation) and (0, 0, 1). Similarly, child 2 considers two
situations possible: (1, 0, 1) and (1, 1, 1).

In general, child i has the same information in two possible
situations exactly if they agree in all components except possibly
the ith component.

266

Muddy children puzzle

We can capture the general situation by the frame

F = (W ,K1, . . . ,Kn),

where

I W = {(x1, . . . , xn) | xi ∈ {0, 1} for all i = 1, . . . , n}. Thus,
W has 2n states.

I For every i = 1, . . . , n,

Kiwv iff w and v agree in all components except possibly the
ith component.

I One can easily see that Ki ’s are equivalence relations.

Thus, F is a frame for the epistemic logic S5.

267

Muddy children puzzle

It remains to define PROP and the valuation V : PROP → 2W .

I Since we want to reason about whether or not a given child is
muddy, we take PROP = {p1, . . . , pn, p}, where, intuitively, pi
stands for child i is muddy, while p stands for at least one
child is muddy.

I We define V as follows:

V (pi) = {(x1, . . . , xn) ∈W | xi = 1},
V (p) = {(x1, . . . , xn) ∈W | xj = 1 for some j = 1, . . . , n}.

I It follows that

M, (x1, . . . , xn) pi iff xi = 1,

M, (x1, . . . , xn) p iff xj = 1 for some j = 1, . . . , n.

We have a model with 2n nodes, each described by an n-tuple of
0’s and 1’s, such that two nodes are joined by an edge exactly if
they differ in at most one component.

268

Muddy children puzzle

Recall that we omit self-loops and the arrows on edges.

Figure 8: Frame for the muddy children puzzle with n = 3

I M, (1, 0, 1) K1¬p2;
I M, (1, 0, 1) K1p3;
I M, (1, 0, 1) ¬K1p1;

269

Muddy children puzzle

I M C (p2 → K1p2): it is common knowledge that if child 2
is muddy, then child 1 knows it.

I M C (¬p2 → K1¬p2): it is common knowledge that if child
2 is clean, then child 1 knows it.

270

Muddy children puzzle

I M, (1, 0, 1) Ep : in (1, 0, 1), every child knows that at least
one child is muddy even before the father speaks;

I M, (1, 0, 1) ¬E 2p: p is not true at the state (0, 0, 0) that is
reachable in two steps from (1, 0, 1).

271

Muddy children puzzle

One can check that in the general case, if we have n children of
whom k are muddy (so that the situation is described by an
n-tuple exactly k of whose components are 1’s), then E k−1p is
true, but E kp is not, since each state reachable in k − 1 steps has
at least one 1 (and so there is at least one muddy child), but the
tuple (0, . . . , 0) is reachable in k steps.

272

Muddy children puzzle

Let us consider what happens after the father speaks.

I The father says p, which is already known to all the children if
there are two or more muddy children.

I Nevertheless, the state of knowledge changes, even if all the
children already know p.

273

Muddy children puzzle

I In (1, 0, 1), child 1 considers the situation (0, 0, 1) possible
and in (0, 0, 1) child 3 considers (0, 0, 0) possible.

I In (1, 0, 1), before the father speaks, although everyone knows
that at least one is muddy, child 1 thinks it possible that child
3 thinks it possible that none of the children is muddy.

I After the father speaks, it becomes common knowledge that
at least one child is muddy.

274

Muddy children puzzle

I In the general case, we can represent the change in the
group’s state of knowledge graphically by simply removing the
point (0, 0, . . . , 0) from the cube.

I More accurately, what happens is that the node (0, 0, . . . , 0)
remains, but all the edges between(0, 0, . . . , 0) and nodes with
exactly one 1 disappear, since it is common knowledge that
even if only one child is muddy, after the father speaks that
child will not consider it possible that no one is muddy.

275

Muddy children puzzle

Figure 9: Frame for n = 3 after the father speaks

276

Muddy children puzzle

Let us show that each time the children respond to the father’s
question with a No, the group’s state of knowledge changes and
the cube is further truncated.

I Consider what happens after the children respond No to the
father’s first question.

I Now all the nodes with exactly one 1 can be eliminated.
(More accurately, the edges to these nodes from nodes with
exactly two 1’s all disappear from the graph.)

I Nodes with one or fewer 1’s are no longer reachable from
nodes with two or more 1’s.

277

Muddy children puzzle

I If the actual situation were described by, say, the tuple
(1, 0, . . . , 0), then child 1 would initially consider two
situations possible: (1, 0, . . . , 0), and (0, 0, . . . , 0).

I Since once the father speaks it is common knowledge that
(0, 0, . . . , 0) is not possible, he would then know that the
situation is described by (1, 0, . . . , 0), and thus would know
that he is muddy.

I Once everyone answers No to the father’s first question, it is
common knowledge that the situation cannot be (1, 0, . . . , 0).

I Similar reasoning allows us to eliminate every situation with
exactly one 1. Thus, after all the children have answered No
to the father’s first question, it is common knowledge that at
least two children are muddy.

278

Muddy children puzzle

I Further arguments in the same spirit can be used to show that
after the children answer No k times, we can eliminate all the
nodes with at most k 1’s (or, more accurately, disconnect
these nodes from the rest of the graph).

I We thus have a sequence of frames, describing the children’s
knowledge at every step in the process.

I Essentially, what is going on is that if, in some node w , it
becomes common knowledge that a node v is impossible, then
for every node u reachable from w , the edge from u to v (if
there is one) is eliminated.

279

Muddy children puzzle

I After k rounds of questioning, it is common knowledge that
at least k + 1 children are muddy.

I If the true situation is described by a tuple with exactly k + 1
1’s, then before the father asks the question for the (k + 1)st
time, the muddy children will know the exact situation, and in
particular will know they are muddy, and consequently will
answer Yes.

I Note that they could not answer Yes any earlier, since up to
this point each muddy child considers it possible that he or
she is clean.

280

Muddy children puzzle

I According to the way we are modeling knowledge in this
context, a child knows a fact if the fact follows from his or her
current information.

I However, if one of the children were not particularly bright,
then he might not be able to figure out that he knew that he
is muddy, even though in principle he had enough information
to do so.

I To answer Yes to the father’s question, the child must
actually be aware of the consequences of his information.

I Our definition implicitly assumes that (it is common
knowledge that) all reasoners are logically omniscient, that is
they are smart enough to compute all the consequences of the
information that they have.

I Furthermore, this logical omniscience is common knowledge.

281

Muddy children puzzle

I Consider now the situation in which the father does not
initially say p.

I Before the father speaks the situation is described by the
n-dimensional cube.

I When the father asks for the first time Does any of you know
whether you have mud on your own forehead?, clearly all the
children say No, since in every situation each child considers
possible a situation in which he is clean.

I No information is gained from this answer, so the situation
still can be represented by the n-dimensional cube.

I One shows by induction on m that it is common knowledge
that the father’s mth question is also answered No and the
state of knowledge after the father asks the mth question is
still described by the cube.

I Hence, children’s state of knowledge never changes, no matter
how many times the father asks questions. 282

Partition model of knowledge

Partition models of knowledge are defined in

Yoav Shoham, Kevin Leyton-Brown, Multiagents Systems,
Cambridge University Press, 2009

Let n ≥ 1 and AG = {1, . . . , n} be the set of agents.

Definition 5.5 (Partition frame)

A partition frame is a tuple PF = (W , I1, . . . , In), where

I W is a nonempty set of possible worlds.

I For every i = 1, . . . , n, Ii is a partition of W .

The idea is that Ii partitions W into sets of possible worlds that
are indistinguishable from the point of view of agent i .

283

http://www.masfoundations.org

Partition model of knowledge

Recall: Let A be a nonempty set. A partition of A is a family
(Aj)j∈J of nonempty subsets of A satisfying the following
properties:

A =
⋃

j∈J Aj and Aj ∩ Ak = ∅ for all j 6= k .

Recall: Let A be a nonempty set. There exists a bijection between
the set of partitions of A and the set of equivalence relations on A:

I (Aj)j∈J partition of A 7→ the equivalence relation on A defined
by x ∼ y ⇔ there exists j ∈ J such that x , y ∈ Aj .

I ∼ equivalence relation on A 7→ the partition consisting of all
the different equivalence classes of ∼.

284

Partition model of knowledge

I For each i = 1, . . . , n, let RIi be the corresponding equivalence
relation.

I Denote by Ii (w) the equivalence class of w in the relation RIi .

I If the actual world is w , then Ii (w) is the set of possible
worlds that agent i cannot distinguish from w .

I F = (W ,RIi , . . . ,RIn) is a frame for the epistemic logic S5.

Partition frame = frame for the epistemic logic S5

285

Partition model of knowledge

Definition 5.6 (Partition model)

A partition model over a language Σ is a tuple PM = (PF , π),
where

I PF = (W , I1, . . . , In) is a partition frame.

I π : Σ→ 2W is an interpretation function.

For every statement ϕ ∈ Σ, we think of π(ϕ) as the set of possible
worlds in the partition model PM where ϕ is satisfied.

I Each possible world completely specifies the concrete state of
affairs.

I We can take, for example, Σ to be a set of formulas in
propositional logic over some set of atomic propositions.

286

Partition model of knowledge

We will use the notation Kiϕ as “agent i knows that ϕ”.

The following defines when a statement is true in a partition model.

Definition 5.7 (Logical entailment for partition models)

Let PM = (W , I1, . . . , In, π) be a partition model over Σ, and
w ∈W . We define the � (logical entailment) relation as follows:

I For any ϕ ∈ Σ, we say that PM ,w � ϕ iff w ∈ π(ϕ).

I PM ,w � Kiϕ iff for all worlds v ∈W , if v ∈ Ii (w), then
PM , v � ϕ.

Partition model = model for the epistemic logic S5

We can reason about knowledge rigorously in terms of partition
models, hence using epistemic logic.

287

Multiagent systems

Textbook:

R. Fagin, J.Y. Halpern, Y. Moses, M. Vardi, Reasoning About
Knowledge, MIT Press, 2004

288

https://www.cs.rice.edu/~vardi/papers/book.pdf
https://www.cs.rice.edu/~vardi/papers/book.pdf

Runs and systems

289

Multiagent systems

I A multiagent system is any collection of interacting agents.

I One of the major application areas of reasoning about
knowledge: multiagent systems.

Examples

I The children and the father in the muddy children puzzle are
agents in a multiagent system.

I A game such as poker is a multiagent system. We refer to
agents as players.

I A distributed system consisting of processes in a computer
network running a particular protocol is a multiagent system.
We refer to agents as processes or sites.

290

Multiagent systems

We define in the sequel a formal model of multiagent systems that
is general enough to allow us to capture all the important features
of multiagent systems.

Key assumptions

I We look at the system at any point in time, each of the agents
is in a unique state. We refer to this as the agent’s local state.

I An agent’s local state encapsulates all the information to
which the agent has access.

I We do not make any additional assumptions about the local
state.

291

Multiagent systems

Assume that n ≥ 1 and AG = {1, . . . , n} is the set of agents.

I As each agent has a state, we think of the whole system as
being in some state.

I First idea: take the system’s state to be a tuple of the form
(s1, . . . , sn), where si is the local state of agent i .

I However, in general, more than just the local states of the
agents may be relevant when analyzing a system.

Examples

I Consider a message-passing system where processes send
messages back and forth along communication lines. We
would like to know about messages that are in transit or
about whether a communication line is up or down.

I Consider a system of sensors observing some terrain. We need
to include features of the terrain in a description of the state
of the system. 292

Multiagent systems

We conceptually divide a system into two components:

I the agents and

I the environment,

where we view the environment as everything else that is relevant.
The environment can be viewed as just another agent, though it
typically plays a special role in our analyses.

We define a global state of a system to be an (n + 1)-tuple of the
form (se , s1, . . . , sn), where se is the state of the environment and
si is the local state of agent i .

293

Multiagent systems

I A global state describes the system at a given point in time.
But a system is not a static entity; it constantly changes.

I Since we are mainly interested in how systems change over
time, we need to build time into our model.

I We define a run to be a function from time to global states.

I Intuitively, a run is a complete description of how the system’s
global state evolves over time.

I We take time to range over the natural numbers. Thus, time
steps are discrete and time is infinite.

I The initial global state of the system in a possible execution r
is r(0), the next global state is r(1), and so on.

I The assumption that time is discrete is a natural one, as
computers proceed in discrete time steps. Allowing time to be
infinite makes it easier to model situations where there is no a
priori time bound on how long the system will run.

294

Multiagent systems

I We assume that time is measured on some clock external to
the system.

I We do not assume that agents in the system necessarily have
access to this clock; at time m measured on the external
clock, agent i need not know it is time m.

I If an agent does know the time, then this information would
be encoded in his local state.

I This external clock need not measure real time.

I We model the external clock in whatever way makes it easiest
for us to analyze the system.

I In the case of the muddy children puzzle, there could be one
tick of the clock for every round of questions by the father
and every round of answers to the father’s question.

I In a poker game, there could be one tick of the clock each
time someone bets or discards.

295

Multiagent systems

A system can have many possible runs, since the system’s global
state can evolve in many possible ways: there are a number of
possible initial states and many things that could happen from
each initial global state.

I The basic idea is to define a system to be a nonempty set of
runs.

I Instead of trying to model the system directly, the definition
models the possible behaviors of the system.

I The set of runs is nonempty, as the system we are modeling
should have some behaviors.

We use the term system in two ways: as the real-life collection of
interacting agents or as a set of runs.

296

Multiagent systems

I Let Le be a set of possible states for the environment and let
Li be a set of possible local states for agent i for i = 1, . . . , n.

I We take G = Le × L1 × . . .× Ln to be the set of global states.

Definition 6.1

A run over G is a function r : N→ G.

A run r over G can be identified with the sequence (r(m))m∈N of
global states in G.

Definition 6.2

We refer to a pair (r ,m) consisting of a run r and time m as a
point. We say that r(m) is the global state at the point (r ,m).

297

Multiagent systems

A round takes place between two time points. We define round m
in run r to take place between time m − 1 and time m. We view
an agent as performing an action during a round.

Let (r ,m) be a point and r(m) = (se , s1, . . . , sn) be the global
state at (r ,m). We define

re(m) = se and ri (m) = si for all i = 1, . . . , n.

Thus, ri (m) is agent i ’s local state at the point (r ,m).

Definition 6.3

A system R over G is a set of runs over G. We say that (r ,m) is a
point in system R if r ∈ R. We denote by PR the set of points of
R.

In practice, the appropriate set of runs will be chosen by the
system designer or the person analyzing the system. 298

Bit-transmission problem

I Imagine we have two processes, say a sender S and a receiver
R, that communicate over a communication line.

I The sender starts with one bit (either 0 or 1) that it wants to
communicate to the receiver.

I The communication line is faulty. There is no guarantee that
a message sent by either S or R will be received.

I We assume that a message is either received in the same
round that it is sent, or lost altogether. Thus, rounds are long
enough for a message to be sent and delivered.

I This type of message loss is the only possible faulty behavior
in the system.

299

Bit-transmission problem

I Because of the uncertainty regarding possible message loss, S
sends the bit to R in every round, until S receives a message
from R acknowledging receipt of the bit. We call this message
from R an ack message.

I R starts sending the ack message in the round after it receives
the bit. To allow S to stop sending the bit, R continues to
send the ack repeatedly from then on.

This informal description gives what we call a protocol for S and
R: it is a specification of what they do at each step.

300

Bit-transmission problem

I S sends the bit to R until S receives the ack message; before
it receives the ack message, S does not know whether R
received the bit.

I R knows perfectly well that S stops sending messages after it
receives an ack message, but R never knows for certain that S
actually received its acknowledgment.

I Even if R does not receive messages from S for a while, R
does not know whether this is because S received an ack
message from R; it could be because the messages that S
sent were lost in the communication channel.

301

Bit-transmission problem

I We could have S send an ack-ack message (an
acknowledgment to the acknowledgment) so that R could
stop sending the acknowledgment once it receives an ack-ack
message from S .

I But this only pushes the problem up one level: S will not be
able to safely stop sending ack-ack messages, since S has no
way of knowing that R has received an ack-ack message.

I This type of uncertainty is inherent in systems where
communication is not guaranteed.

302

Bit-transmission problem

We formalize the bit-transmission problem as a system.
To describe the set of runs that make up this system,

I we choose to have the local states of S and R include very
little information; essentially, just enough to allow us to carry
out our analysis.

I it is useful to have the environment’s state record the events
taking place in the system.

303

Bit-transmission problem

Let LS be the set of possible local states of S . We take

LS = {0, 1, (0, ack), (1, ack)}.
I S ’s local state is k ∈ {0, 1} if its initial bit is k and it has not

received an ack message from R.

I S ’s local state is (k, ack) if its initial bit is k ∈ {0, 1} and it
has received an ack message from R.

Let LR be the set of possible local states of R. We take

LR = {λ, 0, 1}.
I λ denotes the local state where R has received no messages

from S .

I k ∈ {0, 1} denotes the local state where R received the
message k from S .

304

Bit-transmission problem

The environment’s local state is used to record the history of
events taking place in the system. At each round, we have the
following possibilities:

I S sends the bit to R and R does nothing.
Notation: (sendbit,Λ).

I S does nothing and R sends an ack to S .
Notation: (Λ, sendack).

I both S and R send messages. Notation: (sendbit, sendack).

We let the environment’s state be a finite sequence of elements
from the set

{(sendbit,Λ), (Λ, sendack), (sendbit, sendack)}.

Here the mth member of the sequence describes the actions of the
sender and receiver in round m.

305

Bit-transmission problem

There are many possible runs in this system, but these runs must
all satisfy certain constraints.

Initially, the system must start in a global state where nothing has
been recorded in the environment’s state, neither S nor R has
received any messages, and S has an initial bit of either 0 or 1.
Thus, the initial global state of every run in the system has the
form

((), k, λ),

where () is the empty sequence and k ∈ {0, 1}.

306

Bit-transmission problem

Consecutive global states

r(m) = (se , sS , sR) and r(m + 1) = (s ′e , s
′
S , s
′
R) in a run r

are related by the following conditions:

I If sR = λ, then s ′S = sS , s ′e = se(sendbit,Λ) (where
se(sendbit,Λ) is the result of appending (sendbit,Λ) to the
sequence se), and either s ′R = λ or s ′R = sS .

Before R receives a message, it sends no messages; as a
result, S receives no message, so it continues to send the bit
and its state does not change. R may or may not receive the
message sent by S in round m + 1.

307

Bit-transmission problem

Consecutive global states

r(m) = (se , sS , sR) and r(m + 1) = (s ′e , s
′
S , s
′
R) in a run r

are related by the following conditions:

I If sS = sR = k, then s ′R = k , s ′e = se(sendbit, sendack), and
either s ′S = k or s ′S = (k, ack).

After R has received S ’s bit, it starts sending
acknowledgments, and its state undergoes no further changes.
S continues to send the bit, and it may or may not receive the
acknowledgment sent by R in round m + 1.

308

Bit-transmission problem

Consecutive global states

r(m) = (se , sS , sR) and r(m + 1) = (s ′e , s
′
S , s
′
R)in a run r

are related by the following conditions:

I If sS = (k , ack), then s ′e = se(Λ, sendack), s ′S = sS , and
s ′R = sR .

Once S has received R’s acknowledgment, S stops sending
the bit and R continues to send acknowledgments. The local
states of S and R do not change any more.

Definition 6.4

We take the system Rbt describing the bit-transmission problem to
consist of all the runs meeting the constraints just described.

309

Incorporating knowledge and time

310

Incorporating knowledge

I We already saw in the bit-transmission problem that we were
making statements such as “R does not know for certain that
S received its acknowledgment.”

I An agent’s actions depend on its knowledge.

I We shall see that knowledge can be incorporated in our
framework in a straightforward way.

I The basic idea is that a statement such as R does not know ϕ
means that

(*) as far as R is concerned, the system could be at a point
where ϕ does not hold.

I We capture (*) using frames for epistemic logic.

I We think of R’s knowledge as being determined by its local
state, so that R cannot distinguish between two points of the
system in which it has the same local state, and it can
distinguish points in which its local state differs.

311

Incorporating knowledge

Let R be a system over G and i be an agent. Recall that PR
denotes the set of points of R.

Definition 6.5

We define the binary relations ∼i on G and Ki on PR as follows:

I for all global states s = (se , s1, . . . , sn), s ′ = (s ′e , t
′
1, . . . , t

′
n),

s ∼i s
′ iff si = s ′i .

I for all points (r ,m), (r ′,m′),

(r ,m)Ki (r ′,m′) iff r(m) ∼i r
′(m′) iff ri (m) = r ′i (m

′).

If s ∼i s
′ or (r ,m)Ki (r ′,m′), we say that they are

indistinguishable to agent i .

312

Incorporating knowledge

I For every agent i , ∼i and Ki are equivalence relations.

I FR = (PR,K1, . . . ,Kn) is a frame for the epistemic logic S5.

Thus, to every system R we associate a frame FR for the
epistemic logic S5.

Note that there is no relation Ke for the environment. This is
because we are not usually interested in what the environment
knows.

313

Incorporating knowledge

Let PROP be a set of atomic propositions.

Definition 6.6

An interpreted system is a pair I = (R, π), where R is a system
over a set G of global states and π : G → (PROP → {0, 1}) is an
interpretation.
We also say that I is based on R or that R is the system
underlying I.

Thus, π assigns truth values to atomic propositions at global
states: for every state s ∈ G and p ∈ PROP, π(s)(p) ∈ {0, 1}.

Remark 6.7

π induces also an interpretation over the points of R. For every
point (r ,m) ∈ R, take π((r ,m)) to be π(r(m)). That is, for every
p ∈ PROP,

π((r ,m))(p) = π(r(m))(p).
314

Incorporating knowledge

We refer to the points and states of the system R as points and
states, respectively, of the interpreted system I. That is, we shall
also use the notation PI for PR.
Thus,

I (r ,m) is a point in the interpreted system I = (R, π) iff
(r ,m) is a point in R iff r ∈ R.

I I is an interpreted system over G if R is a system over G.

315

Incorporating knowledge

Let I = (R, π) be an interpreted system.

Define VI : PROP → 2PI as follows: for all p ∈ PROP,

VI(p) = {(r ,m) ∈ PI | π((r ,m))(p) = 1}
= {(r ,m) ∈ PI | π(r(m))(p) = 1}.

MI = (PI ,VI ,K1, . . . ,Kn) is a model for the epistemic logic S5.

Thus, to every interpreted system I we associate a model MI for
the epistemic logic S5.

316

Incorporating knowledge

Definition 6.8

For every formula ϕ of MLAg , we say that

ϕ is true in I at point (r ,m) iff MI , (r ,m) ϕ.

Notation: (I, r ,m) � ϕ.

Remark 6.9

For every p ∈ PROP, (I, r ,m) � p iff MI , (r ,m) p iff
(r ,m) ∈ VI(p) iff π((r ,m))(p) = 1 iff π(r(m))(p) = 1.

As π is a function on global states, the truth of an atomic
proposition p at a point (r ,m) depends only on the global state
r(m). This seems like a natural assumption; the global state is
meant to capture everything that is relevant about the current
situation.

317

Incorporating knowledge

Remark 6.10

For every i ∈ AG and every formula ϕ, (I, r ,m) � Kiϕ

iff MI , (r ,m) Kiϕ

iff MI , (r ′,m′) ϕ for all (r ′,m′) such that (r ,m)Ki (r ′,m′)

iff MI , (r ′,m′) ϕ for all (r ′,m′) such that r(m) ∼i r
′(m′)

iff MI , (r ′,m′) ϕ for all (r ′,m′) such that ri (m) = r ′i (m
′).

318

Incorporating knowledge

Proposition 6.11

Let (r ,m) and (r ′,m′) be points in I such that r(m) = r ′(m′).
Then for every formula ϕ,

(I, r ,m) � ϕ iff (I, r ′,m′) � ϕ.

Proof: By induction on ϕ.
I ϕ = p ∈ PROP. Then (I, r ,m) � p iff π(r(m))(p) = 1 iff
π(r ′(m′))(p) = 1 iff (I, r ′,m′) � ϕ.

I The cases ϕ = ¬ψ and ϕ = ψ → χ are obvious.
I ϕ = Kiψ. Then

(I, r ,m) � Kiϕ iff MI , (r∗,m∗) ϕ for all (r∗,m∗)
such that ri (m) = r∗i (m∗)
iff MI , (r∗,m∗) ϕ for all (r∗,m∗)
such that r ′i (m

′) = r∗i (m∗)
iff (I, r ′,m′) � Kiϕ. 319

Incorporating knowledge

Definition 6.12

We say that ϕ is true in an interpreted system I if (I, r ,m) � ϕ
for all points (r ,m) in I.
Notation: I � ϕ.

Definition 6.13

Let M be a class of interpreted systems. We say that ϕ is true in
M if I � ϕ for every interpreted system I ∈ M.
Notation: M � ϕ.

320

Incorporating knowledge

Definition 6.14

We say that ϕ is valid in a system R if I � ϕ for every interpreted
system I based on R.
Notation: I � ϕ.

Definition 6.15

Let F be a class of systems. We say that ϕ is valid in F if R � ϕ
for every system R ∈ F .
Notation: F � ϕ.

321

Bit-transmission problem - again

Consider the bit-transmission problem again.

We take PROP to consist of six atomic propositions:

I bit = 0 representing the assertion that the value of S ’s initial
bit is 0;

I bit = 1 representing the assertion that the value of S ’s initial
bit is 1;

I recbit representing the assertion that R has received S ’s
message;

I recack representing the assertion that S has received R’s
acknowledgment;

I sentbit representing the assertion that S has just sent a
message;

I sentack representing the assertion that R has just sent a
message.

322

Bit-transmission problem - again

Definition 6.16

Define the interpreted system Ibt = (Rbt , πbt), where Rbt is the
system defined by Definition 6.4 and πbt is an interpretation such
that for all points (r ,m),

I (Ibt , r ,m) � bit = k iff rS(m) is either k or (k , ack) for
k = 0, 1;

I (Ibt , r ,m) � recbit iff rR(m) 6= λ;

I (Ibt , r ,m) � recack iff rS(m) = (k , ack) for some k = 0, 1;

I (Ibt , r ,m) � sentbit iff the last tuple in re(m) is
(sendbit, sendack) or (sendbit,Λ);

I (Ibt , r ,m) � sentack iff the last tuple in re(m) is
(sendbit, sendack) or (Λ, sendack).

The truth value of all the atomic propositions is completely
determined by the global state, since the environment’s state
records the events taking place in the system.

323

Bit-transmission problem - again

After R receives S ’s bit, then R knows the value of the bit.

Proposition 6.17
Let (r ,m) be a point such that rR(m) = k for k = 0, 1. Then
(Ibt , r ,m) � KR(bit = k).

Proof: Let (r ′,m′) be a point s.t. rR(m) = r ′R(m′) = k . Then S
must have initial bit k at (r ′,m′), so (Ibt , r ′,m′) � bit = k .

When S receives R’s ack message, then S knows that R knows the
initial bit.

Proposition 6.18
Let (r ,m) be a point such that rS(m) = (k , ack) for k = 0, 1.
Then (Ibt , r ,m) � KSKR(bit = k).

Proof: Let (r ′,m′) be a point s.t. rS(m) = r ′S(m′) = (k, ack). We
have to prove that (Ibt , r ′,m′) � KR(bit = k). This follows from
Proposition 6.17, using the fact that r ′R(m′) = k .

324

Incorporating time

I The temporal language MLtemp is obtained by adding to
MLAg the following temporal operators: � (always), its dual
♦ (eventually), © (next time), and U (until).

I Formulas of MLtemp are defined as follows:

ϕ ::= p | ¬ϕ | ϕ→ ϕ | Kiϕ | �ϕ | ♦ϕ | ©ϕ | ϕUϕ,

where p ∈ PROP and i ∈ Ag .

I We sometimes refer to formulas of MLtemp as temporal
formulas and to formulas of MLAg as knowledge formulas.

Intuition:

I �ϕ is true if ϕ is true now and at all later points;

I ♦ϕ is true if ϕ is true at some point in the future;

I ©ϕ is true if ϕ is true at the next step;

I ϕUψ is true if ϕ is true until ψ is true.
325

Incorporating time

Let I = (R, π) be an interpreted system. Then for all points
(r ,m) in I and every formulas ϕ, ψ,

(I, r ,m) � �ϕ iff (I, r ,m′) � ϕ for all m′ ≥ m,

(I, r ,m) � ♦ϕ iff (I, r ,m′) � ϕ for some m′ ≥ m,

(I, r ,m) �©ϕ iff (I, r ,m + 1) � ϕ,

(I, r ,m) � ϕUψ iff (I, r ,m′) � ψ for some m′ ≥ m and

(I, r ,m”) � ϕ for all m” with m ≤m”<m′.

I The interpretation of ©ϕ as “ϕ is true at the next step”
makes sense because our notion of time is discrete.

I All the other temporal operators make perfect sense even for
continuous notions of time.

326

Incorporating time

Proposition 6.19

For every interpreted system I,

I � ♦ϕ↔ >Uϕ and I � �ϕ↔ ¬♦¬ϕ.

Thus, we can take © and U as our basic temporal operators, and
define ♦ and � in terms of U.

I The truth of a temporal formula depends only on the run.

I The truth of ϕ at a point (r ,m) in I = (R, π) does not
depend on R at all, but only on π, so we can write
(π, r ,m) � ϕ.

I In general, temporal operators are used for reasoning about
events that happen along a single run.

Definition 6.20

We say that r satisfies ϕ if (π, r , 0) � ϕ holds. 327

Incorporating time

Once we have temporal operators, there are a number of important
notions that we can express.

I The formula �♦ϕ is true iff ϕ occurs infinitely often; that is,
(I, r ,m) � �♦ϕ exactly if the set {m′ | (I, r ,m′) � ϕ} is
infinite.

I The formula ♦�ϕ is true iff ϕ is true almost everywhere; that
is, (I, r ,m) � ♦�ϕ iff for some m′ and all m” ≥ m′, we have
(I, r ,m”) � ϕ.

I The temporal operators that we have defined can talk about
events that happen only in the present or future.

I We can add temporal operators for reasoning about the past,
for example, an analogue to ♦ that says at some time in the
past.

328

Bit-transmission problem - again

Consider the bit-transmission problem again.

The formula �(recbit → ♦recack) says that if at some point along
a run the receiver receives the bit sent by the sender, then at some
point in the future the sender will receive the acknowledgment sent
by the receiver.

The formula ♦(KR(bit = 0) ∨ KR(bit = 1)) says that the receiver
eventually knows the sender’s initial bit.

329

	Classical propositional logic
	Classical first-order logic
	Intelligent Agents
	Modal logics
	Epistemic logics
	Multiagent systems

