
LOW DIMENSIONAL SUBSPACE FINDING VIA SIZE-REDUCING DICTIONARY

LEARNING

Bogdan Dumitrescu, Paul Irofti

Department of Automatic Control and Computers

University Politehnica of Bucharest

313 Spl. Independenţei, 060042 Bucharest, Romania

E-mails: bogdan.dumitrescu@acse.pub.ro, paul@irofti.net

ABSTRACT

We present a dictionary learning algorithm that aims to re-

duce the size of the dictionary to a parsimonious value during

the learning process. The sparse coding step uses a weighted

Orthogonal Matching Pursuit favoring atoms that enter more

representations. The dictionary update step optimizes a reg-

ularized error, encouraging the apparition of zero rows in the

representation matrix; the corresponding unused atoms are

eliminated. The algorithm is extended to the case of incom-

plete data. Besides dictionary learning, the algorithm is also

shown to be useful for finding low-dimensional subspaces.

Such versatility is a feature with little precedent. Numerical

examples show good convergence properties.

Index Terms— sparse representation, dictionary learn-

ing, low-rank representation

1. INTRODUCTION AND MAIN PROBLEMS

The starting point of our discussion is the problem of dictio-

nary learning (DL) for sparse representations [1, 2]. Given

the signals matrix Y ∈ R
m×N , we want to find a dictionary

D ∈ R
m×n and a sparse matrix X ∈ R

n×N such that the

representation error ‖Y −DX‖2F is small. The learned dic-

tionary D is the main outcome; its columns are named atoms

and have norm equal to 1. The sparsity constraint is usually

expressed by enforcing the representation matrix X to have

at most s nonzero elements on each column. Since each sig-

nal is represented as a linear combination of at most s atoms,

the underlying problem is that of sparse representation (SR).

Typically, the dictionaries are overcomplete, i.e. m < n.

A related problem is that of low-rank representation

(LRR) [3, 4], where the signals are known to lie in a sin-

gle low-dimensional subspace, not in several, like in the SR

case. The dictionary D is a tall matrix, with m > n, and n

This work was supported by the Romanian National Authority for Sci-

entific Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2011-

3-0400.

may even be very small; the subspace dimension n is usually

not a priori known. The representation matrix X is now full.

In both the above problems we want to obtain a naturally

parsimonious representation which ensures a small represen-

tation error. Parsimony is seen here as related to the dictio-

nary size n. In the standard DL problem, we are interested

in having the smallest number of atoms that otherwise satis-

fies representation requirements, like e.g. a preset error level,

or other performance indicators depending on the application

at hand. Too many atoms often do not improve representa-

tion, but certainly increase the complexity of operating with

the dictionary. In the LRR problem, parsimony is more obvi-

ously stated: we want to find the number n of atoms which is

the correct dimension of the subspace where the signals lie.

We treat both SR and LRR problems in the DL frame-

work, by designing a size-reducing DL algorithm. The typi-

cally iterative DL design is initialized with a large dictionary

and the number of atoms is encouraged to decrease in time,

until reaching a low value that ideally is the exact subspace di-

mension in LRR, but has no precise meaning in SR, although

it follows a general ideal of parsimony. The size-reducing DL

algorithm, based on Approximated K-SVD (AK-SVD) [5, 6],

is presented in Section 2. We adapt the algorithm to the case

of incomplete data, where some randomly chosen elements

of the matrix Y are missing, in Section 3. We show the good

behavior of our algorithms in Section 4, insisting on the LRR

problem with incomplete data.

Here are some relations with previous work. There are

several algorithms that attempt finding an efficient dictionary

size in the DL problem. Some [7, 8] start with a small dic-

tionary and grow it until reaching a predefined error level.

Others [9, 10, 11] start with a large dictionary and use di-

verse clustering and pruning techniques to reduce the number

of atoms. In [12] a Bayesian approach is used to decide what

atoms are significant. All these algorithms could be used in

principle for the LRR problem, but there is no previous at-

tempt in this direction, certainly not for incomplete data. Our

algorithm is different as it alters the optimization objective

and then derives an adapted dictionary update algorithm fol-

lowing exactly AK-SVD, the least complex among the pop-

ular DL algorithms. Also, the sparse coding stage is a min-

imally modified Orthogonal Matching Pursuit (OMP) [13].

So, our algorithm has low complexity; although starting with

a larger than desired number of atoms, it typically reduces this

number very quickly.

There are very few DL algorithms for incomplete data,

notably [14, 15] based on Bayesian dictionary learning, tuned

for imaging applications.

For the LRR problem with incomplete data, we look at

the big data context, where iterative algorithms with relatively

low complexity per iteration are sought. Some are still based

on singular value decomposition (SVD), associated with hard

[3] or soft thresholding [4]; they can find the subspace di-

mension, but may have large complexity. Online algorithms

are less complex, but use the true n [16] (otherwise they may

diverge) or a fixed n [17]. Our algorithm combines the low

complexity features of online algorithms (having however a

batch character) with a good numerical performance and is

different in character from all the above LRR algorithms.

2. SIZE-REDUCING DICTIONARY LEARNING

Many DL algorithms are built on an alternate optimization

structure, in which the dictionary D and the representations

X are optimized one at a time, the other being fixed. More

precisely, we follow the framework of K-SVD [5] and AK-

SVD [6], in which each iteration has two steps. In the sparse

coding step, given the dictionary, the sparse representations

X are computed; typically, OMP is used to this purpose. In

the dictionary update step, the atoms and their corresponding

representation coefficients are updated sequentially; the pat-

tern of nonzeros is fixed. In this section we describe the mod-

ifications made to these steps such that our goals are attained.

First we modify OMP such that atoms that are less used in

the current representations are selected less than atoms that

are ”popular”. Then we describe a dictionary update stage

in the style of AK-SVD, but working with an objective that

combines representation error with a term that favors the re-

duction of the number of used atoms.

2.1. Size-reducing OMP

Standard OMP represents a signal by greedily selecting atoms

that have large projections on the signal. Denoting y ∈ R
m

a signal, x ∈ R
n its current sparse representation (initially

equal to zero) and r = y −Dx the current residual (initially

equal to the signal), OMP adds to the representation the atom

dj for which the projection |rTdj| is the largest. Denoting I
the indices of the nonzeros in x, the current representation is

the least-squares (LS) solution

xI = (DT
IDI)

−1DT
I y. (1)

(By DI we denote the restriction of D to the columns with

indices in I.)

OMP treats the atoms equally. If the probability p(dj) of

an atom to enter the representation were known, it was pro-

posed in [18] to use Bayes’ rule and thus change the selection

criterion according to

p(dj|r) ∼ p(r|dj) · p(dj), (2)

where the probability of the residual given the atom can be

naturally taken proportional with the projection, i.e.

p(r|dj) ∼ |rTdj|. (3)

This choice leads to a weighted OMP. Another possibility is

given in [19]; however, it needs the variance of the noise. An

additive rule is proposed in [20] instead of (2), where a logit

term proportional to log[p(dj)/(1 − p(dj))] is added to the

projection; again, the variance of the noise is needed.

Since our purpose is to reduce the number of atoms and

considering the iterative nature of DL algorithms, a natural

measure of the probability of an atom is given by the weight

of its coefficients with respect to the whole current represen-

tation matrix X . So, denoting xT
j the j-th row of matrix X ,

we propose to use (2) with prior probabilities

p(dj) ∼ f(‖xT
j ‖2/‖X‖2F), (4)

where f is a function that allows adaptation to various situ-

ations. In the simplest case, f is the identity. For standard

OMP, f is constant.

In the beginning the dictionary has many atoms and start-

ing with the identity function in (4) will favor atoms that con-

tribute in reducing the error for many signals, even though

they may be not the optimal choice. However, as the DL pro-

cess advances and the number of atoms ideally settles, we

want OMP to work in the standard mode, where it tries to

find the combination of atoms that minimizes the error. So,

denoting k the iteration number in the alternate DL process,

we propose to use in (4) the function

f(ξ) = ξ +
αk

n
, (5)

where α ≥ 0 is a parameter. As k grows, the values of f(ξ)
tend to have similar values for all ξ ∈ [0, 1]. It is also possi-

ble to switch, at a certain iteration or depending on other fac-

tors, from (5) to the constant function, which means switching

from weighted to standard OMP.

We use OMP with a combined stopping criterion: either

a sparsity level s or an error level ε (OMP stops when ‖r‖ ≤
ε
√
m, hence ε it the target RMSE per signal element). An

artificially high value of the error level can be used to reduce

the number of atoms, at least in the first DL iterations.

We denote OMP(y,D, s, ε, α) a call to our weighted

OMP. Note that when the dictionary has at most s atoms and

ε = 0, a situation that may occur in LRR context (and in fact

is desirable), then all atoms are involved in the representa-

tion, hence no support search is actually necessary. The LS

solution (1) is immediately computed on the full support.

2.2. Size-reducing dictionary update

The number of atoms can be reduced indirectly by acting on

the representation coefficients during the optimization pro-

cess. The dictionary update step can be modified by adding a

penalty term to the representation error. Note that we adopted

the convention that the atoms are normalized, which makes

useless any penalty put on their norm. Instead we can act on

the representations by optimizing the combined objective

1

2
‖Y −DX‖2F +

µ1

2
‖X‖2F + µ2

n
∑

i=1

‖xT
i ‖2, (6)

where xT
i is the i-the row of X .

The first penalty term is a simple regularization [21]

and has the purpose to discourage almost linearly dependent

atoms to enter the same representation, case in which their

coefficients are typically large. It can also be seen as a rank

minimizer, like in [17], via the nuclear norm, which obeys to

‖DX‖∗ =
1

2
min
D,X

‖D‖2F + ‖X‖2F .

In our case ‖D‖F is constant.

The second penalty term is a typical group sparsity in-

ducer, acting on the rows of X . If the entire row i of X is

zero, then the atom di is unused and can be removed from the

dictionary. If, as usual in DL, the number n of atoms is fixed,

then replacement techniques are used, the simplest being to

put a random atom instead of the unused one; on the contrary,

here we just remove the atom, as reducing the number of use-

ful atoms is our goal.

The first penalty term has a direct influence on the sparse

coding step. The LS solution (1) should be replaced by its

regularized form

xI = (DT
IDI + µ1I)

−1DT
I y. (7)

The second penalty term cannot be directly translated into

OMP, as it is expressed in terms of the rows of X , while OMP

has the columns of X as variables. However, the particular

choice of weights (4) favors creation of zero rows in X , so it

can be seen as a substitute of the second penalty term in the

sparse coding step.

Let us now describe the dictionary update step corre-

sponding to (6), when the atoms and representations are op-

timized one by one. In fact, we adapt the AK-SVD method,

where first an atom is optimized, while everything else is

fixed, then the corresponding representation coefficients are

optimized, again with everything else fixed. Let d be the

generic atom that is optimized, namely the ”current” column

of D, with index c. Denote J the set of the indices of the

nonzeros elements in row c of X; these are the indices of

signals that use d in their representation. The representation

error without atom d is

F =



Y −
∑

i6=c

dix
T
i





J

. (8)

Let xT = Xc,J be the compressed representation coeffi-

cients of the current atom. Then, the objective function corre-

sponding to (6) when only d and x are variable is

φ(d,x) =
1

2
‖F − dxT‖2F +

µ1

2
‖x‖22 + µ2‖x‖2. (9)

The penalty terms depend on the representation, so optimiz-

ing the atom with fixed representation, under the norm con-

straint ‖d‖ = 1, leads to the standard AK-SVD formula

d = Fx/‖Fx‖. (10)

To optimize the representation, we note that the gradient

of (9) with respect to x is

∂φ

∂x
= −F Td+ (1 + µ1)x+ µ2

1

‖x‖x.

The optimal representation satisfies the relation

x =
‖x‖

(1 + µ1)‖x‖+ µ2
· F Td. (11)

This leads to a soft thresholding relation for the optimal norm

and to the following expression for the optimal representation

x = max

(

0,
‖F Td‖ − µ2

1 + µ1

)

· 1

‖F Td‖F
Td. (12)

2.3. Size-reducing AK-SVD

Gathering all the above information, we obtain the size-

reducing AK-SVD Algorithm 1.

For the SR problem, either the sparsity level s is given,

case in which the error level is ε = 0, or the error level is

given and s takes a value that is large enough (but smaller

than m), which may be seen only as a safety measure for the

possibly (few) badly represented signals. The regularization

parameters µ1 and µ2 have relatively small values, while α
can be rather large.

For the LRR problem, the sparsity level should be fixed

to a value larger than the true subspace dimension. The error

level ε should be larger than the noise level for preventing

many atoms entering the representations. The parameters µ1

and especially µ2 need larger values, in order to reduce the

dictionary size. For the same reason, α needs to be small.

In both problems, once the dictionary size settles, the opti-

mization should focus on the approximation error. So, we can

Algorithm 1: An iteration of size-reducing AK-SVD.

Data: current dictionary D ∈ R
m×n

signals set Y ∈ R
m×N

sparse representations X ∈ R
n×N

parameters s, ε, α, µ1, µ2

Result: next dictionary D, next representations X

1 Compute representations: X = OMP(y,D, s, ε, α)
2 Compute error matrix: E = Y −DX

3 for j = 1 to n do

4 Error without atom j: F = E + djx
T
j

5 Compute new atom dj with (10)

6 Compute new representation row xT
j with (12)

7 Update error: E = F − djx
T
j

8 If ‖xj‖ = 0, remove atom j (and row j of X)

9 Optional: update parameters ε, µ1, µ2

introduce a diminishing factor λ ≤ 1 that multiplies ε, µ1, µ2

at the end of each iteration from Algorithm 1. (Although in-

dividual factors could be used for each parameter, we prefer a

single one for the sake of simplicity.) Also, some parameters

should be given default values whenever necessary; for ex-

ample, in LRR context, when n becomes smaller than s and

settles to a certain value, then it is natural to set ε = 0 and

hence replace OMP with a regularized LS solution.

Regarding convergence, our algorithm inherits the prop-

erties of AK-SVD. In dictionary update, the combined objec-

tive is guaranteed to decrease; in sparse coding this no longer

happens; however, when OMP is replaced by simple LS (as

mentioned above for LRR), the error certainly decreases.

The algorithm has the complexity of AK-SVD; the extra

operations due to regularization or weighting are not signifi-

cant in this respect. Also, there are many operations that can

be programmed in parallel. Sparse coding is inherently par-

allel, as each signal can be coded independently. Dictionary

update contains mainly matrix-vector multiplications, again

parallel (but with a lower grain).

3. MISSING DATA CASE

We present now a version of the algorithm for the case where

the data are incomplete. More precisely, instead ofY we have

M ⊙ Y , where the elements of the known mask matrix M

are zero or one and ⊙ is the elementwise product. A zero in

M means the respective signal element is not available; the

corresponding zero in M ⊙ Y carries thus no meaning. We

assume data are missing with probability ρ, independently of

their position.

Somewhat surprisingly, DL with incomplete data has re-

ceived little attention and was used in particular setups [14,

15, 22]. AK-SVD can be relatively easily adapted to this

case. To simplify the exposition, we discuss here the nec-

essary changes for the error objective

‖M ⊙ (Y −DX)‖2F . (13)

Adding weigths in OMP and regularization terms in dictio-

nary update can be done like in the full-data versions from

the previous section.

An algorithm for OMP with missing data was proposed

in [23], providing recovery guarantees. Interestingly, it com-

putes the support of the representation by just applying stan-

dard OMP to M ⊙ Y ; only the final representation coeffi-

cients are computed in a different way, using the naturally

available estimate of ρ, which is the zeros density in M . In

all our tests, this version of OMP was better than standard

OMP. It is also tempting to adapt OMP by completely ignor-

ing the missing elements (and the corresponding rows of the

dictionary), hence running standard OMP for shorter vectors,

which considerably decreases the execution time; for images,

this masked OMP was actually the best; in other tests, masked

OMP gave similar results with missing-data OMP, so we pre-

ferred it in the numerical experiments reported here. Note

that when the dictionary has at most s atoms and ε = 0, then

masked OMP reduces to the regularized LS solution from

[17], all atoms being used in the representation.

The AK-SVD dictionary update adaptation was presented

sketchily in [22]. With incomplete data and without penalty

terms, the objective (9) becomes

‖M ⊙ (F − dxT)‖2F . (14)

Denoting M ⊂ N
2 the indices of available data in Y , the LS

problem corresponding to (14) is

dixj = fij , (i, j) ∈ M. (15)

If x is fixed, then the optimal atom has the elements

di =

∑

(i,j)⊂M fijxj
∑

(i,j)⊂M x2
j

, i = 1 : m. (16)

Normalizing the atom, we obtain the missing data version of

(10). The numerators in (16) are the elements of the vector

(M ⊙ F)x. The denominators are the norms of the com-

pressed representations corresponding to the available signals

that use di in their representation.

Similarly, if the atom is fixed in (15), the optimal repre-

sentation coefficients are

xj =

∑

(i,j)⊂M fijdi
∑

(i,j)⊂M d2i
. (17)

The numerators are the elements of the vector (M ⊙ F)Td.

This is the equivalent of the vectorF Td from (12). Extending

(17) to a regularized objective is thus immediate.

Iteration

0 10 20 30 40 50 60 70 80 90 100

R
M

S
E

0.12

0.13

0.14

0.15

0.16

0.17

0.18

AK-size

AK-SVD

Fig. 1: Size-reducing vs plain AK-SVD.

4. NUMERICAL RESULTS

In all numerical experiments reported here we generate the

signal matrix Y by multiplying random D and X (nor-

mally distributed elements and uniformly random sparsity

pattern, if sparsity is required) and adding Gaussian noise

at a SNR of 20 dB. We report RMSE values, defined as

‖Y −DX‖F/
√
mN , averaged over 10 runs.

In DL, size-reducing AK-SVD can be used not only for

finding an economical number of atoms, but also as an initial-

ization method for plain AK-SVD, as show the results from

Figure 1, where m = 20, N = 500, s = 4. Size-reducing

AK-SVD starts with 100 atoms and uses ε = 0.02 and α =
0.2; after 20 iterations it switches to standard OMP and hence

to plain AK-SVD. (Regularization is not used, so µ1 = µ2 =
0.) Initially, the error grows due to the decrease in the num-

ber of atoms, but then decreases, with the sharpest decrease

when switching to standard OMP. The average final number

of atoms is 54. For comparison, plain AK-SVD is run with

54 atoms and initialized with a subset of the initialization of

size-reducing AK-SVD. Similar relative behavior of the two

algorithms can be seen for other parameter values, which lead

to various number of atoms.

We give more results for the LRR problem, starting with

the full data case, with m = 50, N = 2000 and true dimen-

sion n = 4. Size-reducing AK-SVD is run starting with an

initial dictionary with 100 atoms; similar results are obtained

with smaller numbers. Figure 2 shows the results for two val-

ues of the sparsity level s. First, we take s = 8, which ac-

counts as an upper bound of the true dimension; to check the

results, the algorithm is then run with s = 4, hence assum-

ing the true dimension is known; still, the initial dictionary

has 100 atoms. The parameter values are ε = 0.05, α = 0,

µ1 = 0.1, µ2 = 1, λ = 0.95. In all runs, the dictionary is

reduced to 4 atoms in less than 10 iterations, thus reaching

the true subspace dimension and hence the error level reaches

an almost optimal value. In this example the RMSE reached

by size-reducing AK-SVD after 60 iterations is 0.271 with

s = 8 and 0.270 with s = 4; using the SVD decomposition

Iteration

0 10 20 30 40 50 60

R
M

S
E

0.02

0.03

0.04

0.05

0.06

0.07

0.08

unknown dim

known dim

Fig. 2: Low-dimensional subspace finding, full data.

Iteration

0 10 20 30 40 50 60

R
M

S
E

0

0.05

0.1

0.15

0.2

0.25

0.3

unknown dim, full

unknown dim, available

known dim, full

known dim, available

Fig. 3: Low-dimensional subspace finding, incomplete data.

of Y (which at this size is possible) and truncating it to the

first 4 singular values gives RMSE = 0.268.

We go now to the incomplete data case, with the same

dimensions as above and a missing ratio ρ = 0.5 (half of

the data are available, in random positions). Figure 3 shows

the results; dashed lines represent the RMSE ‖M ⊙ (Y −
DX)‖F/

√

(1− ρ)mN , i.e. the error on the available data

only. Some parameters need larger values to force the de-

crease of dictionary size: ε = 0.3, α = 0.01, µ1 = 0.5,

µ2 = 8. The true subspace dimension is reached in about 5

iterations.

The last example shows the behavior with larger dimen-

sions (m = 500, N = 2000, true size n = 10) and also more

missing data (ρ = 0.9). Figure 4 shows two RMSE, one with

s = 20, the other with s = 10. When signal size is much

bigger than subspace dimension, then the initial dictionary

size has little importance in the evolution of the algorithm; in

terms of convergence, this problem is actually simpler than

the previous, despite the higher missing data ratio; the evolu-

tion of the RMSE is almost the same for s = 20 and s = 10.

The parameters can thus be tuned less aggressively: ε = 0.02,

α = 0.01, µ1 = 0.5, µ2 = 5. Again the true size is reached

typically in about 5 iterations.

Of course, more work is necessary to automatically select

the values of the parameters depending on the data. We note

Iteration

0 10 20 30 40 50 60

R
M

S
E

0.02

0.04

0.06

0.08

0.1

0.12

0.14

unknown dim, full

unknown dim, available

known dim, full

known dim, available

Fig. 4: Low-dimensional subspace finding, incomplete data.

that the values we used are relatively robust, in the sense that

small changes do not significantly affect the outcome. They

are also sub-optimal, as we did not systematically search for

the best values; hence, improvements in convergence speed

are possible.

5. CONCLUSIONS AND FUTURE WORK

We have presented a double-purpose dictionary learning al-

gorithm that reduces the size of the dictionary and can also

be successfully used to find low-rank representations. It also

works well with incomplete data.

A main topic of future work is to design adaptive algo-

rithms, thus grouping under the same form online dictionary

learning and subspace tracking.

6. REFERENCES

[1] R. Rubinstein, A.M. Bruckstein, and M. Elad, “Dictionaries

for Sparse Representations Modeling,” Proc. IEEE, vol. 98,

no. 6, pp. 1045–1057, June 2010.

[2] I. Tosic and P. Frossard, “Dictionary Learning,” IEEE Signal

Proc. Mag., vol. 28, no. 2, pp. 27–38, Mar. 2011.

[3] E.J. Cai, J.F. Candes and Z. Shen, “A Singular Value Thresh-

olding Algorithm for Matrix Completion,” SIAM J. Optim.,

vol. 20, no. 4, pp. 1956–1982, 2010.

[4] S. Ma, D. Goldfarb, and L. Chen, “Fixed Point and Bregman It-

erative Methods for Matrix Rank Minimization,” Math. Prog.,

Ser. A, vol. 128, pp. 321–353, 2011.

[5] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An Al-

gorithm for Designing Overcomplete Dictionaries for Sparse

Representation,” IEEE Trans. Signal Proc., vol. 54, no. 11, pp.

4311–4322, Nov. 2006.

[6] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient Imple-

mentation of the K-SVD Algorithm Using Batch Orthogonal

Matching Pursuit,” Tech. Rep. CS-2008-08, Technion Univ.,

Haifa, Israel, 2008.

[7] C. Rusu and B. Dumitrescu, “Stagewise K-SVD to Design Ef-

ficient Dictionaries for Sparse Representations,” IEEE Signal

Proc. Letters, vol. 19, no. 10, pp. 631–634, Oct. 2012.

[8] M. Marsousi, K. Abhari, P. Babyn, and J. Alirezaie, “An Adap-

tive Approach to Learn Overcomplete Dictionaries With Effi-

cient Numbers of Elements,” IEEE Trans. Signal Proc., vol.

62, no. 12, pp. 3272–3283, June 2014.

[9] R. Mazhar and P. D. Gader, “EK-SVD: Optimized Dictionary

Design for Sparse Representations,” in 19th Int. Conf. Pattern

Recognition, 2008, pp. 1–4.

[10] J. Feng, L. Song, X. Yang, and W. Zhang, “Learning Dictio-

nary via Subspace Segmentation for Sparse Representation,” in

18th IEEE Int. Conf. Image Proc., 2011, pp. 1245–1248.

[11] N. Rao and F. Porikli, “A Clustering Approach to Optimize

Online Dictionary Learning,” in Int. Conf. Acoustics Speech

Signal Proc. (ICASSP), Kyoto, Japan, Mar. 2012, pp. 1293–

1296.

[12] H.P. Dang and P. Chainais, “A Bayesian Nonparametric Ap-

proach to Learn Dictionaries with Adapted Number of Atoms,”

in IEEE Workshop Mach. Learning for Signal Proc., 2015.

[13] Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad, “Orthogo-

nal Matching Pursuit: Recursive Function Approximation with

Applications to Wavelet Decomposition,” in 27th Asilomar

Conf. Signals Systems Computers, Nov. 1993, vol. 1, pp. 40–

44.

[14] M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dun-

son, G. Sapiro, and L. Carin, “Nonparametric Bayesian Dictio-

nary Learning for Analysis of Noisy and Incomplete Images,”

IEEE Trans. Image Proc., vol. 21, no. 1, pp. 130–144, Jan.

2012.

[15] Z. Xing, M. Zhou, A. Castrodad, G. Sapiro, and L. Carin, “Dic-

tionary Learning for Noisy and Incomplete Hyperspectral Im-

ages,” SIAM J. Imaging Sciences, vol. 5, no. 1, pp. 33–56,

2012.

[16] Y. Chi, Y.C. Eldar, and R. Calderbank, “PETRELS: Paral-

lel Subspace Estimation and Tracking Using Recursive Least

Squares from Partial Observations,” IEEE Trans. Signal Proc.,

vol. 61, no. 23, pp. 5947–5959, Nov. 2013.

[17] M. Mardani, G. Mateos, and G.B. Giannakis, “Subspace

Learning and Imputation for Streaming Big Data Matrices and

Tensors,” IEEE Trans. Signal Proc., vol. 63, no. 10, pp. 2663–

2677, May 2015.

[18] O.D. Escoda, L. Granai, and P. Vandergheynst, “On the Use of

A Priori Information for Sparse Signal Approximations,” IEEE

Trans. Signal Proc., vol. 54, no. 9, pp. 3468–3482, Sep. 2006.

[19] M. Elad and I. Yavneh, “A Plurality of Sparse Representations

Is Better Than the Sparsest One Alone,” IEEE Trans. Info. Th.,

vol. 55, no. 10, pp. 4701–4714, Oct. 2009.

[20] J. Scarlett, J.S. Evans, and S. Dey, “Compressed Sensing With

Prior Information: Information-Theoretic Limits and Practical

Decoders,” IEEE Trans. Signal Proc., vol. 61, no. 2, pp. 427–

439, Jan. 2013.

[21] W. Dai, T. Xu, and W. Wang, “Simultaneous Codeword Opti-

mization (SimCO) for Dictionary Update and Learning,” IEEE

Trans. Signal Proc., vol. 60, no. 12, pp. 6340–6353, Dec. 2012.

[22] C. Guichaoua, “Dictionary Learning for Audio In-

painting,” 2012, HAL Robotics [cs.RO]. 2012.

http://dumas.ccsd.cnrs.fr/dumas-00725263.

[23] Y. Chen and C. Caramanis, “Noisy and Missing Data Regres-

sion: Distribution-Oblivious Support Recovery,” in Int. Conf.

Mach. Learning, Atlanta, Georgia, 2013.

