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Regularized K-SVD
Bogdan Dumitrescu, Paul Irofti

Abstract

The problem of dictionary learning (DL) for sparse representations can be approximately solved by

several algorithms. Regularization of the optimization objective (representation error) was proved useful

since it avoids possible bottlenecks due to nearly linearly dependent atoms. We show here how the well

known K-SVD algorithm can be adapted to the regularized DL problem, despite previous claims that

such an adaptation seems impossible. We also provide numerical evidence that regularized K-SVD is

better than Simultaneous Codeword Optimization (SimCO), the most prominent algorithm dedicated to

the regularized DL problem.

Index Terms

sparse representations, dictionary learning, regularization

I. INTRODUCTION

Dictionary learning (DL) for sparse representations [1], [2], [3] has many applications in audio and

image processing, compression, classification and computer vision, where it gives better performance

than it can be obtained with fixed dictionaries like those built from popular transforms.

The DL problem can be stated as follows. The input consists of a data matrix Y ∈ Rm×N , whose

columns are the signals whose representation is sought with sparsity level s ∈ N. The main output is

the dictionary D ∈ Rm×n, whose columns are named atoms. Each signal is represented as a linear
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combination of s atoms and the objective is to minimize the representation error:

minimize
D,X

‖Y −DX‖2F

subject to ‖x`‖0 ≤ s, ` = 1 : N

‖dj‖2 = 1, j = 1 : n.

(1)

We denote by dj the j-th atom of the dictionary D and by x` the `-th column of the representation

matrix X ∈ Rn×N ; ‖ · ‖0 is the number of nonzero elements of a vector and ‖ · ‖F is the Frobenius

norm of a matrix. The first constraint imposes the sparsity level: each column of X must have at most

s nonzero elements. The second constraint imposes unit norm on the atoms, such that the multiplicative

indetermination between D and X is removed. The DL optimization problem (1) is hard due to the

discrete character of the constraints and the non-convexity of the objective.

Typical DL algorithms like MOD [4] and K-SVD [5] alternate two main optimization steps in the

attempt of solving (1). The sparse coding step finds the sparse representations X for the current dictionary,

usually with Orthogonal Matching Pursuit (OMP) [6]. The dictionary update step optimizes the dictionary

D and, in the case of K-SVD, also the representations X , keeping the support fixed (the nonzero structure

of X); this is the step that makes the main difference between algorithms.

Regularized DL [7] optimizes the objective function

fµ(D,X) = ‖Y −DX‖2F + µ‖X‖2F , (2)

where µ > 0 is a given parameter. This objective combines representation error with a term meant to avoid

large values of the sparse representation coefficients, which is a symptom of nearly linearly dependent

atoms that contribute to the same signal representation. In such a situation, the progress in the dictionary

update step becomes very slow, due to the almost flat error function.

The Simultaneous Codeword Optimization (SimCO) algorithm proposed in [7] updates the whole

dictionary using gradient (or second order) descent with optimal line search and always works with

the optimal representations for the given support. While this strategy ensures good results, SimCO is

computationally expensive. Optimal line search requires many calculations of the objective function.

Also, several descent steps (called inner iterations) are made in each dictionary update step, which imply

many calculations of the gradient.

It was stated in [7] that “it is not clear how to extend K-SVD to the regularized case”; a sequential

version of SimCO was used there as a substitute for regularized K-SVD. We show in Section II that

a regularized version of K-SVD does exist and actually has a very simple form, quite near from that
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of the standard algorithm. A similar extension is provided in Section III for Approximated K-SVD [8].

In Section IV, we present numerical tests showing that the new regularized algorithms are faster than

SimCO and also give better results.

Another approach to regularized DL is via elastic net regularization [9], [10], where sparsity is enforced

by adding γ‖X‖1 to (2), where γ > 0 is a weight; in the sparse coding stage, OMP is replaced

by algorithms specialized to the new objective, that are typically slower. Elastic net regularization is

adapted for classification purposes in [11]. In a more general framework, regularized DL is solved in

[12] with an alternating proximal algorithm. The regularized DL algorithm from [13], based on SimCO,

proposes replacing OMP with regularized OMP (ROMP) [14] in sparse coding; note, however, that the

regularization used in ROMP has no connection with the (traditional) least-squares regularization from

(2). Finally, in other works like [15], [16] regularization is achieved by replacing the `2 term from (2)

with a function depending on the mutual coherence of the atoms. We have compared simple algorithms

for quadratic and coherence regularized DL in [17], showing their benefits when s is not small. We note

that none of the above methods optimizes simultaneously both the atoms and the representations in the

dictionary update stage, in K-SVD style, like the algorithm proposed here.

II. REGULARIZED K-SVD ALGORITHM

The central operation in K-SVD is to find the optimal value of an atom and of the corresponding

representations when everything else is fixed. The atoms are updated one by one and dictionary update

typically consists of a single sweep of the atoms.

Assume all atoms but dj are fixed and denote by Ij the indices of the signals that use dj in their

representation. If atom dj is ignored, then the representation error of these signals is

F = YIj −
∑
i 6=j

diXi,Ij , (3)

where YIj is the restriction of the signals matrix to the columns with indices in Ij and Xi,Ij is the i-th

row of the representation matrix restricted to the same columns. Similarly to K-SVD, regularized K-SVD

aims to optimize the error function

φ(dj ,Xj,Ij ) = ‖F − djXj,Ij‖2F + µ‖Xj,Ij‖2 (4)

and thus find the optimal atom dj and the corresponding optimal representation coefficients Xj,Ij ; this

function results immediately from (2) when all other atoms and representations are fixed; in particular,

since all rows of X but the j-th are fixed, the minimization of ‖X‖2F can be reduced to that of ‖Xj,Ij‖2.
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So, with lighter notation (d for dj and xT for Xj,Ij , where x is a column vector), our central problem

is

min
‖d‖=1,x

φ(d,xT ). (5)

Proposition 1: Using the SVD decomposition

F =

r∑
i=1

σiuiv
T
i , (6)

where the rank r ≥ 1 is irrelevant, the solution of (5) is

d = u1, x =
1

1 + µ
σ1v1. (7)

Proof. Remark first that

φ(d,xT ) = (1 + µ)‖x‖2 − 2xTF Td+ ‖F ‖2F . (8)

We express d and x in the bases formed by the singular vectors of F :

d =

m∑
i=1

ρiui, x =

N∑
i=1

θivi.

We denote t = ‖x‖ and (the atom being always normalized) note that

m∑
i=1

ρ2i = ‖d‖2 = 1,

N∑
i=1

θ2i = ‖x‖2 = t2. (9)

Since

F Td =

r∑
i=1

σiviu
T
i d =

r∑
i=1

σiρivi,

the function to be minimized becomes

φ(d,xT ) = (1 + µ)t2 − 2

r∑
i=1

σiρiθi + ‖F ‖2F .

Since σi form a decreasing sequence and the norm constraints (9) hold, the Cauchy-Schwarz inequality

gives (
r∑
i=1

σiρiθi

)2

≤
(

r∑
i=1

σ2i ρ
2
i

)
N∑
i=1

θ2i ≤ σ21t2.

Equality is attained for ρi = 0, θi = 0, for all i > 1, hence the objective function becomes

φ(d,xT ) = (1 + µ)t2 − 2σ1t+ ‖F ‖2F

and depends now on a single variable; its minimum is reached for t = σ1/(1 + µ), which gives (7).
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Remark 1: In [7], the function (4) was written in the form

φ(d,xT ) =

∥∥∥∥∥∥
 F

0

−
 d
√
µ

xT

∥∥∥∥∥∥
2

F

(10)

and it was argued that the minimum cannot be found via SVD: applying SVD directly to F gives the

standard K-SVD solution; applying SVD to the extended matrix from (10) gives an extended atom with

0 on the last position instead of
√
µ. Indeed, since minimizing (10) is a structured rank-1 approximation,

one cannot expect SVD to supply a solution like in the standard approximation.

However, an alternative proof of Prop. 1 shows the relation with a usual rank-1 approximation. Since

‖d‖ = 1, it follows that ‖x‖ = ‖dxT ‖F . Introducing the rank-1 variable Υ = dxT , it results that

min
‖d‖=1,x

φ(d,xT ) = min
rankΥ=1

‖F −Υ‖2F + µ‖Υ‖2F . (11)

A few algebraic manipulations lead to the equality

‖F −Υ‖2F + µ‖Υ‖2F =∥∥∥∥ 1√
1 + µ

F −
√

1 + µΥ

∥∥∥∥2
F

+

(
1− 1

1 + µ

)
‖F ‖2F .

Since the second term is constant, it results that (11) has the same solution as

min
rankΥ=1

∥∥∥∥ 1

1 + µ
F −Υ

∥∥∥∥2
F

, (12)

whose solution is (7).

Relation (7) says that the only difference between regularized and standard K-SVD is that the coeffi-

cients are smaller by a factor of 1+µ in the former algorithm. So, the regularized objective (2) explicitly

leads to diminished coefficients.

For the sake of completeness, Algorithm 1 summarizes the operations of regularized K-SVD. Its

complexity is practically the same as that of standard K-SVD, since the number of divisions with 1 + µ

is not significant. The behavior is also similar. The dictionary update stage is guaranteed to reduce the

objective function (2), since it consists of optimal block coordinate descent steps on an atom and its

representation. However, the sparse coding stage may occasionally not reduce the objective, due to the

suboptimality of OMP (and in general of sparse representation algorithms). Despite this fact, regularized

K-SVD typically displays a descending trend of the objective values.

III. REGULARIZED AK-SVD

Approximated K-SVD (AK-SVD) [8] can be regularized easily by adapting the basic idea that the atom

and its representation coefficients are optimized successively and not simultaneously like in K-SVD. So,
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Input: initial dictionary D ∈ Rm×n

signals set Y ∈ Rm×N

number of iterations K

Output: new dictionary D

for k = 1 to K do

Sparse coding: keeping D fixed, compute sparse representations X with OMP

Dictionary update:

for j = 1 to n do

Gather in Ij the indices of signals using atom dj

Compute σ1, u1, v1, the first singular value and vectors, respectively, of matrix (3)

Set new atom dj = u1

Set new representations Xj,Ij = σ1v1/(1 + µ)

end for

end for

Algorithm 1: Regularized K-SVD algorithm

the problem (5) is not solved exactly; instead, the objective φ(d,xT ) is decreased by minimizing first

on the atom d and then on the representation x. The derivations below follow immediately by taking the

appropriate derivatives in the expression (8) of the objective.

When the representations are fixed, the optimal atom in (5) is the same as in AK-SVD, namely

d = Fx/‖Fx‖. (13)

When the atom is fixed, the optimal representations are

x =
1

1 + µ
F Td. (14)

Like in the regularized K-SVD formula (7), the diminishing factor 1+µ applies to the AK-SVD relation

for the representation.

To conclude, regularized AK-SVD consists of replacing (7) with (13) and (14) (in this order). Again,

regularized AK-SVD has practically the same complexity as the standard version and similar convergence

properties.
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IV. NUMERICAL RESULTS

The purpose of the numerical experiments reported below is to compare the performances of SimCO

and our regularized K-SVD as reflected by their different approaches to dictionary update through the

regularized objective (2). Sparse coding is implemented via OMP; other sparse coding algorithms are

certainly possible, but are outside the focus of this paper.

The first round of simulations is performed on synthetic data. Starting with a known dictionary, we

randomly pick s = 4 atoms that we combine linearly to generate a sparse representation. The process is

repeated N times to obtain the training data matrix Y . We followed the experiment from [7] by using

dictionaries of size m = 16 with n = 32 atoms and varying the training set size N . The DL process

is iterated K = 50 times and for SimCO we use a single inner iteration. We executed 50 runs for each

parametrization. The performance of each algorithm is compared in terms of its sparse representation

distortion that is defined as ‖Y − DX‖2F /N . When performing regularization, we set µ = 0.1 for the

first 30 DL iterations and µ = 0 for the remaining 20.

The averaged results are presented in Figure 1 where we suffix the regularized versions with an ’r’.

While regularized SimCO performs better than the standard algorithms, a behavior that is typical for low

number N of signals, it is clearly visible that the proposed methods are always ahead.

We also tested the regularized DL algorithms on image representation tasks. We used 8 × 8 image

patches from the USC-SIPI [18] database that we vectorized as signals of size m = 64. The following

experiment was performed with N = 4096 random patches that we used for training n = 256 dictionary

atoms for K = 50 DL iterations. For each method and parametrization we executed 10 runs each starting

with the same initial dictionary and training set. The simulations were performed with Matlab R2015a

on an Intel i7-3930K CPU running at a maximum clock frequency of 3.2GHz with 16GB of system

memory.

In Table I we show the averaged RMSE = ‖Y −DX‖F /
√
mN of KSVD, AK-SVD and SimCO. For

SimCO we show multiple results with varied number of inner dictionary update iterations. We present

regularization results with µ = 0.05, like in [7].

Even though K-SVD variants are the clear winners for all sparsity targets, regularization starts to pay

off only for larger values of s where finding linearly dependent atoms is more likely. As stated by the

SimCO authors, plain SimCO is rather weak, but even with regularization it takes 50 inner dictionary

update iterations to start obtaining results somewhat comparable to K-SVD.

In terms of complexity, our algorithms are clearly superior to SimCO. For example, with s = 8 in the

test above, a single dictionary update (the “for j” loop in Algorithm 1) takes about 1 second for K-SVDr
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Fig. 1. Final errors averaged over 50 runs (µ = 0.1).

and less than 0.2 seconds for AK-SVDr. For the same task, an inner SimCO update iteration takes about

1.5 seconds. However, SimCO needs many inner iterations to compete with regularized K-SVD in terms

of achieved error level, hence the computational advantage of our algorithms. Of course, since we used

plain Matlab implementations, these times give only a rough estimate of the performance that can be

achieved. Still, the difference is too large in favor of our algorithms to be radically changed by any

implementation.

We also performed image denoising experiments where we trained the dictionary with n = 256 atoms

based on N = 1000 samples, each built by randomly picking 8×8 patches from the corrupted image. The

DL process was performed with K = 10 iterations. SimCO also executed an extra 50 inner dictionary

update iterations. Finally, we used the learned dictionary to reconstruct the image. The entire process,

data dimensions and parametrization are identical to the ones presented in [7] except for the fact that

they fix µ = 0.05 where we chose to explore varied regularization values and also look at the standard
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TABLE I

RMSE FOR THE STANDARD AND REGULARIZED (µ = 0.05) K-SVD

Method s = 4 s = 6 s = 8 s = 10 s = 12

KSVD 0.0362 0.0301 0.0266 0.0243 0.0227

KSVDr 0.0371 0.0318 0.0270 0.0239 0.0219

AK-SVD 0.0363 0.0299 0.0262 0.0240 0.0230

AK-SVDr 0.0373 0.0314 0.0270 0.0241 0.0219

SimCO(1) 0.0665 0.0628 0.0597 0.0556 0.0517

SimCOr(1) 0.0622 0.0562 0.0503 0.0463 0.0402

SimCOr(10) 0.0513 0.0455 0.0408 0.0369 0.0333

SimCOr(20) 0.0467 0.0418 0.0373 0.0337 0.0308

SimCOr(30) 0.0446 0.0391 0.0354 0.0323 0.0298

SimCOr(40) 0.0425 0.0373 0.0342 0.0310 0.0287

SimCOr(50) 0.0408 0.0359 0.0326 0.0300 0.0280

TABLE II

IMAGE DENOISING PSNR AND EXECUTION TIMES

µ = 0 µ = 0.05 µ = 0.1 µ = 0.5

Method PSNR Time PSNR Time PSNR Time PSNR Time

KSVD 28.35 15.2 28.40 15.9 28.38 16.2 28.37 17.1

AK-SVD 28.34 4.8 28.36 5.1 28.40 5.2 28.38 5.2

SimCO 28.13 170 28.27 200 28.36 184 28.32 197

versions.

The results are shown in Table II. Looking at the peak signal-to-noise ratio (PSNR) columns, we can

see that the K-SVD methods are always providing better denoising, independent of how we choose µ. The

time columns show the DL execution time measured in seconds. Here we note the significant advantage

of the proposed methods: regularized AK-SVD is about 3 times faster that regularized K-SVD, which is

more than 10 times faster than SimCO. We note that the differences between the regularized and standard

algorithms are minor, a fact not mentioned in [7].

January 21, 2017 DRAFT



10

We have thus covered the numerical experiments from [7] that involved regularized DL and in all of

them our regularized K-SVD was superior to SimCO.

V. CONCLUSIONS

Regularized dictionary learning is useful for its better numerical behavior, compared to the standard

DL problem. We have derived explicit relations for solving the basic optimization problem involving

a single atom and its representation coefficients, thus obtaining a regularized K-SVD algorithm. Like

standard K-SVD, the algorithm requires the computation of the first singular vectors of a matrix, the

only difference being a dampening of the representation coefficients. Numerical experiments show that

our algorithm is preferable to SimCO (until now the algorithm of choice for regularized DL), being

slightly superior in terms of end results but much faster.
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