
U.P.B. Sci. Bull., Series C, Vol. 78, Iss. 3, 2016 ISSN 2286-3540

EFFICIENT DICTIONARY LEARNING IMPLEMENTATION
ON THE GPU USING OPENCL

Paul Irofti1

Abstract The dictionary learning field offers a wide range of algo-
rithms that are able to provide good sparse approximations and well trained
dictionaries. These algorithms are very complex and this is reflected in the
slow execution of their computationally intensive implementations. This ar-
ticle proposes efficient parallel implementations for the main algorithms in
the field that significantly reduce the execution time.

Keywords: sparse representation, dictionary design, parallel algorithm,
GPU, OpenCL

1. Introduction

Sparse representation with overcomplete dictionaries has been an ac-
tive research topic during the last decade in the signal processing commu-
nity. The increased interest in the field is certainly due to the wide range of
applications[1, 2] it provides such as noise removal[3], compression[5], classifi-
cation and compressed sensing[4].

The field’s core problem is: given a set of signals Y ∈ Rp×m, train a
dictionary D ∈ Rp×n, whose columns are also called atoms, through which the
signals from Y can be sparsely represented by using just a few atoms from D.
This approximation is formalized as the following optimization problem:

min
D,X
‖Y −DX‖F (1)

where X ∈ Rn×m are the sparse representations and the factorization DX is
the Frobenius norm approximation of Y .

The dictionary learning (DL) problem from (1) is hard due to its bilinear
nature of finding both the sparse representations and their associated well
designed dictionary. This problem has many variables and thus require simple
optimization methods which is why most algorithms approach DL through
iterative methods that split the problem in two distinct stages: representation
and dictionary update. These two stages are iterated a number of times until
a local minima is reached.

1Eng, Department of Automatic Control and Computers University Politehnica of
Bucharest 313 Spl. Independenţei, 060042 Bucharest, Romania, e-mail: paul@irofti.net.

39

40 Paul Irofti

1.1. Sparse Representations

When performing sparse representation the dictionary is fixed and the
interest is finding the representation with the largest number of zeros in its
support that uses a known fixed dictionary to represent a given full signal.
This can be formalized as the following optimization problem:

minimize
x

‖x‖0
subject to y = Dx

(2)

where y is the signal, D the dictionary, and x the resulting sparse represen-
tation. This is a hard problem and most of the existing methods propose an
alternative to (2) by approximating y following a sparsity constraint s:

minimize
x

‖y −Dx‖22
subject to ‖x‖0 ≤ s

(3)

In the above formulations the pursuit of x can be split in two parts:
finding the best few columns from D, to be used as the support of x, and then
filling its non-zero entries with the coefficients found through least-squares
(LS). Denoting I as the support set and DI the restriction of D to the columns
belonging to I, the representation can be computed as:

xI = (DT
IDI)

−1DT
I y (4)

where xI are the coefficients corresponding to the current support and thus
the other elements of x are zero.

Most DL algorithms use Orthogonal Matching Pursuit (OMP) [11] during
the sparse representations stage. The main reason is that OMP is fast and it
is used in applications together with the optimized dictionary; it makes sense
to appeal to the same representation algorithm in training the dictionary as
well as in using it. However, it is worth mentioning that there are other greedy
algorithms like Orthogonal Least Squares (OLS) [12], Subspace Pursuit [13],
Projection-Based OMP (POMP) or Look-Ahead OLS (LAOLS) [14], that,
although more computationally intensive than OMP, are still fast enough for
practical use and provide better representations. These algorithms follow the
same steps described in the last paragraph with differences in the strategy of
building the sparse support I.

1.2. Dictionary Update

Moving on towards dictionary update methods the problem is changing
as the representations are fixed and the dictionary goes through a refinement
stage that sometimes affects not only its atoms but also their associated rep-
resentations.

Efficient Dictionary Learning Implementation on the GPU using OpenCL 41

Among the dictionary update methods K-SVD [8] is by far the most
popular approach. K-SVD starts by writing the DX factorization as:

DX =
n∑
`=1

d`X`,I` (5)

where I` are the indices of the nonzero elements of the `-th row from X repre-
senting the signals that use atom d` in their representation. The representation
error without atom j in the dictionary can then be written as the matrix:

E = Y −
∑
`6=j

d`X`,I` (6)

And so the authors attack the dictionary refinement problem by posing the
following optimization problem

min
dj ,Xj,Ij

∥∥E − djXj,Ij
∥∥2
F

(7)

where atom dj and the affected representations Xj,Ij are updated while the rest
of the atoms are fixed. The problem is treated as a rank-1 approximation of the
error matrix whose solution is the singular vector of the largest singular value.
AK-SVD[7] approaches the problem in an almost identical manner, except that
it builds the singular vector through a single power method iteration.

A generalization to K-Means clustering of K-SVD led to SGK [9] that
relaxes the update optimization problem (7) and updates just the atom without
its associated representations:

min
dj

∥∥∥∥∥
(
Y −

∑
`6=j

d`X`,I`

)
− djXj,Ij

∥∥∥∥∥
2

F

(8)

With this change the problem is simplified to least-squares. NSGK [10] builds
on top of SGK by solving (8) and updating the dictionary and the represen-
tations as differences between their current and previous values:{

D = D(k−1) + (D(k) −D(k−1))

X = X(k−1) + (X(k) −X(k−1))
(9)

where X(k−1) is the sparse representation matrix at the beginning of the k-
iteration of the DL algorithm, while X(k) is the matrix computed in the k-th
iteration.

This process can be simplified by changing the matrix Y from (8) with

Z = Y + D(k)X(k−1) −D(k)X(k) (10)

For a more in-depth overview of the field the reader is invited to consult
the works from [15] and [1].

42 Paul Irofti

1.3. Parallelism with OpenCL

Due to the complex problems that they attempt to solve, both the greedy
representation algorithms and the atom update methods are computationally
intensive tasks that take a long time to execute. The goal here is to provide
fast and efficient solutions for these tasks by splitting them into smaller inde-
pendent execution blocks that can be parallelized on multicore architectures.

OpenCL [6] is an open standard for portable parallelization created as
a response to the growing number of applications that exploit the extensive
set of features found on modern graphical proccessing units (GPU) in order
to provide a general purpose programming environment. The main advantage
of using OpenCL versus other existing vendor-specific frameworks (such as
CUDA) is that the portable hardware abstraction imposed by the standard
provides a single unified language for all types of GPUs, CPUs and FGPAs.

OpenCL abstracts the smallest execution unit available in hardware as
proccessing elemnents (PE) that are organized in groups at which parallelism is
guaranteed called compute units (CU) located on the OpenCL device. Com-
pute units can also be executed in parallel and on the GPUs they are also
called waves or wavefronts. The PEs execute identical small functions (also
called kernels) and are organized in an n-dimensional space that is defined by
the application. An occupied (busy) PE is also called a work-item. The set
of active compute units are called work-groups. PEs share resources locally,
within the compute unit, and globally, on the OpenCL device. For a bidi-
mensional split of the PE set, the n-dimensional range definition is denoted
as NDR(〈xg, yg〉, 〈xl, yl〉). There are xg × yg PEs, organized in work-groups of
size xl × yl, running the same kernel.

Even though the case-study of the experiments presented here use the
GPU, note that this proposal can be applied on any multicore setup (including
regular CPUs and FPGAs) that adheres to the OpenCL standard.

The manuscript is structured as follows: section 2 proposes and discusses
an efficient parallel implementation for the sparse representation stage, section
3 discusses and analyzes the parallelization of the atom update stage for AK-
SVD, SGK and NSGK and section 4 concludes the study.

2. Sparse Signal Representation

The dictionary learning process, as described in section 1, operates on
large training signals sets that need to be sparsely represented. Following the
equation from (3) the first stage of DL is naturally parallel, since the signal
representations are completely independent. Given that this applies to all
greedy algorithms, OMP is chosen as a case-study as it is the popular choice
in the literature. The following subsections will present the details of the OMP
algorithm and describe its parallel OpenCL implementation.

Efficient Dictionary Learning Implementation on the GPU using OpenCL 43

Algorithm 1: Batch OMP

1 Arguments: α0 = DT y, G = DTD, sparse goal s

2 Initilize: α = α0, I = ∅, L = (1)

3 for k = 1 : s do
4 Select new column: i = argmaxj |αj |
5 Increase support: I ← I ∪ {i}
6 if k > 1 then

7 Solve for w
{
Lw = GI,s

}
8 L =

(
L 0

wT
√

1− wTw

)

9 Compute new solution: LLT xI = α0
I

10 Update: α = α0 −GIxI

2.1. Batch Orthogonal Matching Pursuit

The implementation followed the Batch OMP (BOMP) algorithm variant
described in [7]. The steps from algorithm ?? present the operations necessary
for performing sparse representation for a single signal y. The authors from
[7] show that the best time performance is obtained when first precomput-
ing the scalar products between the atoms and themselves and between the
atoms and the signal vectors (step 1) and then proceed to compute the actual
sparse representation of each signal. Since these are matrix multiplications of
fairly large size, they can be easily parallelized. For each signal y, the atom
selection is made by the standard matching pursuit criterion in step 4 and the
sparse support is extended in step 5. Next, the algorithm builds the Cholesky
decomposition of the matrix of the normal system associated with the sparse
least-squares problem (steps 6–8) and computes the new representation by
solving it in step 9. Due to the precomputations from step 1, an explicit resid-
ual update is no longer necessary and can be replaced by the expression from
step 10 (as explained in [7]) which has a lower computation complexity. Sparse
representations are computed via BOMP in parallel for groups of m̃ signals.

2.2. OpenCL Implementation

The matrix precomputations needed by BOMP were performed by a
dedicated BLAS kernel that implements block matrix multiplication. Since the
two multiplications are independent of each other, they can be also performed
in parallel. These operations are depicted in the first part of figure 1 where
each grid represent one BLAS operation and each grid element represents a
block matrix multiplication.

The Input and resulting matrix are kept in global memory. Each work-
group performs the operations required for calculating one block from the result
matrix. PEs are organized in a 2-dimensional space that is further split into 2-
dimensional block-size dependent work-groups. Full resource occupancy of the

44 Paul Irofti

DTD DTY

y1 y2y3 ym. . .

D(k)X(k) D(k)X(k−1)

d1 d2d3 dn

Y −DX

Precompute

BOMP

NSGK

Error matrix

Atom Update

Fig. 1. Parallel DL: each row is executed simultaneously and each
grid represents an OpenCL kernel whose elements are independent
execution threads.

GPU (an indicator of maximum performance) was achieved when using work-
groups of 16× 16 PEs. Thus for a result matrix A ∈ Rn×m the n-dimensional
space was defined as: NDR(〈n,m〉, 〈16, 16〉). Before doing the actual multi-
plication, each work-item within a work-group copies a few elements from the
input block sub-matrices into vectorized variables in local memory. On the
device available for this study, the fastest vectorized type was float4.

All the operations required for the sparse representation of a single signal
with BOMP, were packed in and implemented by a single OpenCL kernel
as shown in the second row from figure 1. The input matrices as well as
the resulting sparse signal are kept in global memory. The BLAS operations
required for performing the Cholesky update and for recalculating the residual
are done sequentially inside the BOMP kernel, not through a separate call to
the BLAS kernel. Due to the rather small size of the matrices involved in
these operations, measurements showed that using a dedicated kernel (as for
precomputing the matrices from step 1) does not even begin to pay for the
required GPU IO. In-lining proved to be a lot faster.

The main obstacles encountered during the implementation were memory
bound. BOMP is a huge memory consumer and mostly due to auxiliary data.

Efficient Dictionary Learning Implementation on the GPU using OpenCL 45

Fig. 2. BOMP representation kernel occupancy

The necessary memory is of size O(ns). Keeping all the auxiliary data in local
memory would permit only the processing of one signal per compute-unit,
corresponding to an NDR(〈m̃〉, 〈1〉) splitting. This would be wasteful as it
would not reach full GPU occupancy and thus it would not cover the global
memory latency costs.

After trying several work-group sizes, like 64, 128 and 256, it was decided
to leave the decision to the GPU scheduler, by using NDR(〈m̃〉, 〈any〉). This
solution appears the best on this GPU. Experiments took m̃ = m.

This is a compromise between leaving full decision to the GPU sched-
uler (when m̃ = m) and a tight control of the parallelism (when m̃ is small,
for example equal to the number of compute units). However, there was no
significant differences noted between values from 1024 to m.

Table 1 and figure 2 provide a more in-depth analysis of this fact. The
table is split in two parts with each column representing the results for different
m̃ values starting from 1024 all the way to m̃ = m. The first part shows the
vector general purpose registers (VGPR) usage per work-item, the local data
size (LDS) usage per work-group, the flattened work-group size, the flattened
global work size, and the number of waves per work-group, respectively for each
kernel. The kernel is marked with a squared dot on the graphs from figure 2
where it can be seen how resources limit the number of active wavefronts.
The limiting factor is the number of VGPRs used and changing the m̃ signal
grouping brings no change in this value. More so, table 1 shows that varying
m̃ indeed does not affect the kernel occupancy which is always at 67%.

2.3. Performance

This subsection presents the performance of the parallel GPU implemen-
tation of the BOMP algorithm and compares it to an almost identical CPU
version. It was possible to keep an almost one-to-one instruction equivalence
due to the fact that the OpenCL langauge is a custom subset of the C language.
The execution times were measured when varying the number of signals and
keeping a fixed dictionary dimension and vice-versa. In both scenarios m̃ = m
was used for the OpenCL implementation.

46 Paul Irofti

Table 1. Kernel information and occupancy for BOMP

Kernel 1024 2048 4096 8192 Limits

VGPRs 15 15 15 15 248

LDS 0 0 0 0 32768
LWS 256 256 256 256 256
GWS 1024 2048 4096 8192 16777216
Waves 4 4 4 4 4

VGPRs 16 16 16 16 24
LDS 24 24 24 24 24

LWS 24 24 24 24 24

Occ.(%) 67 67 67 67 100

-2.5

-2

-1.5

-1

-0.5

0

0.5

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240

lo
g 1

0
(t
im

e(
s)
)

Signals

CPU
GPU

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

lo
g 1

0
(t
im

e(
s)
)

Atoms

CPU
GPU

Fig. 3. BOMP performance with varied number of signals m on the
left panel and varied dictionary sizes n on the right.

Figure 3 presents in the left panel the elapsed time, in logarithmic scale,
when representing a signals set with a varied size between m = 1024 to m =
10240 with a fixed dictionary of n = 128 atoms of p = 64 size each with a
sparsity goal of s = 8. This experiment shows performance improvement of
up to 312 times when using the OpenCL GPU version.

In the right panel of figure 3 increasing the dictionary size (n = 64 up
to n = 512) has a visible performance effect on the GPU implementation as
the total number of atoms has a direct impact on the number of instructions
performed by each work-item. The tests used a fixed number of m = 8192
signals of dimension p = 64 and a target sparsity of s = 8. Here, the GPU
version is up to 250 times faster.

3. Dictionary Update

This section proposes and studies the efficient OpenCL implementations
for the dictionary update stage of the AK-SVD, SGK and NSGK methods.
Even though the optimization problems from (7) and (8) impose a sequential
atom-by-atom update it was shown in [16] that updating the atoms in parallel
groups of ñ provides similar approximation results, if not better. In order to
completely separate the update instructions of each atom, the error matrix

Efficient Dictionary Learning Implementation on the GPU using OpenCL 47

from (6) was precomputed but with all atoms included in dictionary D. The
small self-exclusion task was left to each atom. And so, with minor adjust-
ments, this lead to a completely parallel atom update stage preceded by the
full error matrix computation.

3.1. OpenCL Implementation

The matrix multiplication needed for computing the current error is done
in the same manner as the matrix precomputations for BOMP that were de-
scribed in section 2. Note that for NSGK two extra BLAS operations are
needed in order to compute the difference based matrix Z as described around
equation (10). Matrix Z will replace Y when computing the error matrix E.
That is why in figure 1 the NSGK row precedes the error calculation from the
fourth row.

The actual atom update process was implemented by a single OpenCL
kernel as depicted in the last row from figure 1. The error matrix E, the
dictionary D and the representation matrix X are kept in global memory while
the atom to be updated is transfered in private memory by each PE. This
brings an increase in performance through lower latency during the update
operations. The required extra storage is not an issue because the problem
size is usually reasonable (p ≤ 64).

There were difficulties with storing the list of indices I of the signals using
the current atom in their representation. The list size varies a lot from one
atom to another. Only 8000 indices fit in local memory on the GPU available
for this study. This might be enough for some use-cases but not for all. If this
bound is exceeded, I is stored in global memory which solves the problem at
the cost of higher access times.

For all algorithms the PEs are partitioned as a 1-dimensional space of ñ
work-items and the work-group size is left up to the GPU scheduler by using
NDR(〈n〉, 〈any〉).

The BLAS operations required for performing the power method are all
done inside the update kernel in a sequential fashion for the same reasons
enumerated when describing BOMP.

The AK-SVD and the SGK kernels are the same until the point where the
atom is updated. At that time SGK is done with the update stage while AK-
SVD has to perform the extra instructions needed for updating the affected
sparse representations. NSGK uses the same atom update kernel as SGK with
the input error matrix calculated as E = Z −DX instead of E = Y −DX as
explained earlier.

Table 2 analyzes the atom update kernel performance in terms of GPU
occupancy. Experiments showed that varying the number of atoms in the
dictionary from n = 64 up to n = 512 had no effect on occupancy. That is
why focus here is on the main obstacle: the memory storage location of the
indices set I. Table 2 shows that moving the indices in local memory has a

48 Paul Irofti

Fig. 4. AK-SVD dictionary update GPU occupancy. The top panel
shows the benefits of keeping I in local memory while the bottom
panel depicts what happens when it is moved it in global memory.

Table 2. Kernel information and occupancy for SGK

Kernel SGK AK-SVD

I local global local global Limits

VGPRs 6 38 10 40 248

LDS 0 0 0 0 32768

LWS 256 256 256 256 256
GWS 512 512 512 512 16777216

Waves 4 4 4 4 4

VGPRs 24 4 24 4 24

LDS 24 24 24 24 24
LWS 24 24 24 24 24

Occ.(%) 100 16 100 16 100

significant impact bumping occupancy from 16% to 100% due to lowering the
number of used VGPRs by 32 and 30 in the SGK and, respectively, AK-SVD
case. The difference can also be spotted in figure 4 by comparing the VGPR
screens from the top and bottom panels. The rest of the occupancy factors are
not affected by I.

3.2. Performance

In figure 5 the parallel GPU versions were prefixed with P and compared
their performance to the regular DL algorithms. Two experiments were per-
formed that depict how execution time is affected by an increase in dictionary

Efficient Dictionary Learning Implementation on the GPU using OpenCL 49

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

192 320 448

lo
g 1

0
(t
im

e(
s)
)

Atoms
5 8 10 12 14

Signals

SGK
NSGK

AK-SVD

P-SGK
P-NSGK

PAK-SVD

Fig. 5. DL execution times.

atoms and, respectively, in training signals. All methods were executed for
k = 200 iterations with full atom parallelism ñ = n.

The dictionary experiment used a set of m = 12288 signals with a target
sparsity of s = 6. The signal experiment used a dictionary of n = 256 atoms
with sparsity s = 10. In the signals panel the x-axis represents thousands of
signals. The results show an increase in speed of 10.6 times for NSGK, 10.8
times for SGK and 12 times for AK-SVD.

4. Conclusions

This paper studied and proposed efficient GPU implementations using
OpenCL for the main algorithms in the dictionary learning field. A full de-
scription of the kernels was provided leading to complete parallel execution of
the sparse representation and dictionary update stages. Also discussed was
the n-dimensional topology of each kernel and the optimal storage location of
the data structures in order to obtain the best GPU occupancy.

Acknowledgement

This work was supported by the Romanian National Authority for Scien-
tific Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2011-3-0400
and by the Sectoral Operational Programme Human Resources Development
2007-2013 of the Ministry of European Funds through the Financial Agreement
POSDRU/159/1.5/S/132395.

50 Paul Irofti

References

[1] I. Tosic and P. Frossard, “Dictionary Learning,” IEEE Signal Proc. Mag., 28(2011),

no. 2, 27–38.

[2] M. Elad, “Sparse and Redundant Representations: from Theory to Applications in

Signal Processing,” Springer, 2010.

[3] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations

over learned dictionaries,” Image Processing, IEEE Transactions on, 15(2006), no. 12,

3736–3745.

[4] D.L. Donoho, “Compressed Sensing,” Information Theory, IEEE Transactions on,

52(2006), no. 4, 1289–1306.

[5] K. Kreutz-Delgado, J.F. Murray, B.D. Rao, K. Engan, T.W. Lee, and T.J. Se-

jnowski, “Dictionary learning algorithms for sparse representation,” Neural Compu-

tation, 15(2003), no. 2, 349–396.

[6] Khronos OpenCL Working Group, The OpenCL Specification, Version 1.2, Revision 19,

Khronos Group, 2012.

[7] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient Implementation of the K-SVD

Algorithm using Batch Orthogonal Matching Pursuit,” Technical Report - CS Technion,

2008.

[8] M. Aharon, M. Elad, and A.M. Bruckstein, “K-SVD: An Algorithm for Designing

Overcomplete Dictionaries for Sparse Representation,” Signal Processing, IEEE Trans-

actions on, 54(2006), no. 11, 4311–4322.

[9] S.K. Sahoo and A. Makur, “Dictionary training for sparse representation as generaliza-

tion of k-means clustering,” Signal Processing Letters, IEEE, 20(2013), no. 6, 587–590.

[10] M. Sadeghi, M. Babaie-Zadeh, and C. Jutten, “Dictionary Learning for Sparse Repre-

sentation: a Novel Approach,” IEEE Signal Proc. Letter, 20(2013), no. 12, 1195–1198.

[11] Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad, “Orthogonal matching pursuit: Re-

cursive function approximation with applications to wavelet decomposition,” in 27th

Asilomar Conf. Signals Systems Computers, 1(1993), 40–44.

[12] S. Chen, S.A. Billings, and W. Luo, “Orthogonal Least Squares Methods and Their

Application to Non-Linear System Identification,” Int. J. Control, 50(1989), no. 5,

1873–1896.

[13] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal recon-

struction,” Information Theory, IEEE Transactions on, 55(2009), no. 5, 2230–2249.

[14] S. Chatterjee, D. Sundman, M. Vehkapera, and M. Skoglund, “Projection-based and

look-ahead strategies for atom selection,” Signal Processing, IEEE Transactions on,

60(2012), no. 2, 634–647.

[15] R. Rubinstein, A.M. Bruckstein, and M. Elad, “Dictionaries for Sparse Representations

Modeling,” Proc. IEEE, 98(2010), no. 6, 1045–1057.

[16] P. Irofti and B. Dumitrescu, “GPU parallel implementation of the approximate K-

SVD algorithm using OpenCL,” in 22nd European Signal Processing Conference, 2014,

271–275.

