
Malware Identification with Dictionary Learning
Paul Irofti∗†, Andra Băltoiu†

∗ Department of Computer Science, University of Bucharest, Romania
† The Research Institute of the University of Bucharest (ICUB), University of Bucharest, Romania

Emails: paul@irofti.net, andra.baltoiu@fmi.unibuc.ro

Abstract—Malware identification is a difficult task that has
been recently approached by training classifiers through machine
learning. We present here a low complexity semi-supervised
dictionary learning framework that begins with training an initial
dictionary on a small labeled data set, and then continues with
online learning on incoming unlabeled data, making use of every
sample that it is exposed to, with the scope of adapting to new
and unknown malware types. Our main contribution is a new
online algorithm that makes use of regularization techniques that
balance the capability of the dictionary to express both fresh and
well established patterns.

Index Terms—malware identification, online semisupervised
learning, dictionary learning, sparse representations

I. INTRODUCTION

The spread of networking-capable daily-usage embedded
devices has lead to the phenomenon known as the Internet
of Things (IoT), where these low-power machines provide
intelligent services by calling out to high-performance servers
to process their data through machine learning (ML) algo-
rithms. This externalization of data raises privacy and security
concerns [1], but also hinders the adaptation and, possibly,
the retraining of the ML models on the particular data that
each IoT device is exposed to. In this paper we address these
problems by creating a light-weight ML framework based on
dictionary learning (DL) with sparse representations [2].

The dictionary learning problem starts with a set of N
training signals of length m grouped as the columns of the
matrix Y ∈ Rm×N and attempts to solve

min
D,X

‖Y −DX‖2F

s.t. ‖x`‖0 ≤ s, ` = 1 : N

‖dj‖ = 1, j = 1 : n

(1)

in search of the optimal dictionary D ∈ Rm×n producing s-
sparse representations X ∈ Rn×N such that their product is
a close approximation of Y . Here ‖.‖0 counts the number
of non-zero elements. The dictionary columns, also called
atoms, are normalized to avoid indetermination due to the
DX product. Existing methods approach the problem through
alternate optimization strategies, where first the dictionary
is fixed and the representations are computed, and last the
representations are fixed and the dictionary is updated. This
process is iterated multiple times as needed. For both stages
fast and efficient algorithms exist that provide state of the art

This work was supported by a grant of the Romanian Ministry of
Research and Innovation, CCCDI-UEFISCDI, project number 17PCCDI/2018
within PNCDI III.

results in many applications [2]. We mention the fundamental
algorithms OMP [3] for the representation stage, and K-SVD
[4] and MOD [5] for dictionary update.

In the following we study the application of DL to the
malware identification problem. We view this as a binary-
classification problem, where the DL algorithm instills dis-
criminatory properties to the dictionary while simultaneously
training a linear classifier. The classifier is applied on the
sparse representations to perform the identification task. The
training data are vectorized file descriptors built from large
datasets of clean and malware samples. Lacking runtime
information, these descriptors try to compensate by including
most, if not all, of the information that can be extracted from
each sample leading to very long descriptors. The dynamics
of the cyber-security field in general, and malware design in
particular, urges us to design our models such that device
specialization and fast adaptations are possible. A watch will
see different attacks than a router and new types of malware
are released everyday. Thus we tackle large data samples
whose patterns are often changing.

When device specifications are extremely restricting and
we deal with large-scale problems, direct DL methods can
be prohibitive and instead online approaches can be applied.
In online methods, the sparse representation is learned by
adapting the dictionary to incoming batches of signals. With
each such set, the dictionary is updated as to encompass
the new information brought by the signals, without it being
recomputed entirely at all times, thus reducing resource de-
mands. Formulated correctly, this continuous dictionary update
can be turned to our advantage in adapting to new malware.

With this in mind, we study the case where we start with an
initial dictionary trained on a small labeled dataset and then
proceed to the online stage where we receive unlabeled data
items that we classify but also use to update the dictionary.
The initial stage represents supervised learning that can be
performed offline, with the resulting model installed on the
IoT device. The online stage represents unsupervised learning
and is meant to employ fast and incremental dictionary updates
such that they can be performed directly on the IoT device.
The entire process is called semi-supervised learning. In this
paper, our focus is on the unsupervised learning stage.

While the subject of semi-supervised DL has been studied
in offline [6] and online [7] contexts, to our knowledge, the
problem of updating both the classifier and the dictionary for
each incoming unlabeled data item that model receives, has not
been studied before. Existing methods use various heuristics,

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE

such as classification confidence indicators, to choose only a
safe subset of the incoming signals for the learning process.
This selection discourages new patterns from entering the ML
model, a cautious strategy which might be desired in some
applications, but not for cases such as malware identification
where fresh information is key.

II. PRELIMINARIES

A. Classification

The task of instilling class discriminative properties to the
dictionary has been extensively studied in the past. We focus
here on algorithms that explicitly train a linear classifier and
choose Label Consistent K-SVD (LC-KSVD) [8] in particular
due to its extensive use and reported success in the literature.

Let the Y training signals belong to any of c known classes,
LC-KSVD extends the general DL problem (1) by assigning
atom subsets for each class and forcing the representations to
follow the class label rather than approximation quality. The
new objective becomes

min
D,W ,A,X

‖Y −DX‖2F+α‖H−WX‖2F+β‖Q−AX‖2F (2)

where H ∈ Rc×N represents the label matrix and Q ∈ Rn×N

represents the matrix allocating each atom to a specific class. If
signal y belongs to class ci, then column hi will have element
ci set and zeros everywhere else. The rows in Q correspond to
each atom in D and the columns to each signal in Y . Let Q
be the zero matrix, for each class ci we fetch the block from
Q whose rows correspond to the group of atoms allocated
to ci and whose columns correspond to the batch of signals
belonging to class ci, and set all its entries to 1. Putting aside
their special structure, we can interpret H and Q as training
signals for the dictionaries W and, respectively, A. As D is
the sparse representation dictionary producing x given signal
y, W ∈ Rc×n is the class label representation dictionary and
is thus a linear classifier for x. Dictionary A ∈ Rn×n is also
a linear transformation on the representation x that enforces
label consistency instead of approximation quality.

The classification problem (2) can be rewritten through basic
algebraic operations in the standard DL form (1) by extending
the training signals and dictionary matrices:

min
D,W ,A,X

∥∥∥∥∥∥
 Y√

αH√
βQ

−
 D√

αW√
βA

X

∥∥∥∥∥∥
2

F

(3)

This can now be solved through standard DL algorithms, such
as K-SVD, where we denote the extended signals with Ỹ and
the extended dictionary with D̃. The matrices D and W are
extracted at the end of the learning process from D̃ and can
now be used for classification; the unlabled signal y is sparsely
represented with D, by means of an algorithm such as OMP,
and then the largest entry of the Wx vector decides its class.

B. Online Learning

In the online setting an incoming signal y arrives at time t
and we use it to update the current dictionary D(t). The dom-
inant online DL algorithms are ODL [9] and RLS-DLA [10].

ODL is a coordinate descent algorithm that iteratively updates
the dictionary atoms in K-SVD fashion; in order to obtain the
optimal dictionary multiple sweeps of coordinates need to be
performed. RLS-DLA, on the other hand, follows the recursive
least square paradigm which ensures optimality with a few
simple vector multiplications. Here we focus on the later due
to its low complexity and encouraging results (with numerical
stability modifications) when compared to ODL [2, Chapter 5].

MOD [5] keeps the signals and representations fixed in (1),
and updates the dictionary by solving the least squares (LS)
problem DX = Y . RLS-DLA rephrases this approach in the
online context starting from the matrices

G = XXT , P = Y XT , (4)

such that the LS at time t is written as GD(t) = P . Given a
new signal y at time t + 1, updating the dictionary resumes
to solving

D(t+1)(G+ xxT) = P + yxT . (5)

where x is the sparse representation using D(t). This leads to
the simple update rule

D ←D + αruT (6)

where u = ϕ−1G−1x, α = 1
1+xTu

, r = y −Dx and ϕ is
a forgetting factor. The inversion is efficiently solved through
the matrix inversion lemma and the entire update requires at
most O(n2) operations.

C. Online Classification

The LC-RLSDLA [11] algorithm adds the class label and
label consistency constraints of LC-KSVD to the RLS-DLA
algorithm. When performing (6) in the supervised case, we
simply replace the incoming signal and existing dictionary
with their extended version, ỹ =

[
y;
√
αh;
√
βq

]
and

D̃ =
[
D;
√
αW ;

√
βA

]
, from (3). Thus D, W and A

are simultaneously updated.
In the unsupervised case, when unlabeled signal y arrives,

we do not have access to its label h. Let x be the sparse
representation of y and let h̃ = Wx be the classification
result. LC-RLSDLA denotes cr = maxk(h̃, 1) the credibility
level and co = (cr − maxk(h̃, 2))/cr the confidence level,
where maxk(v, i) provides the i-th largest entry of vector
v. If both levels are above certain fixed and user provided
thresholds, then vectors h and q are built according to the
classification result (as described around (2)) and dictionary
D̃ is updated as in the supervised case. If either of the two
levels are bellow the threshold, the signal is discarded.

Online Semi-Supervised Dictionary Learning (OSSDL) [7]
also adapts LC-KSVD to the online scenario, but uses ODL
instead of RLS-DLA: dictionary update is performed through
multiple coordinate descent iterations. The extended signal
ỹ and dictionary D̃ are identical to the ones used by LC-
RLSDLA. When running supervised, OSSDL updates the
extended dictionary D̃, but is more cautious when running
unsupervised and resumes to only updating the sparse repre-
sentation dictionary D.

2019 27th European Signal Processing Conference (EUSIPCO)

Similar to LC-RLSDLA, OSSDL allows only some of the
incoming unlabeled signals to enter the learning process based
on a classification confidence level. Let ci be the class assigned
to unlabeled signal y through the classification process and
let x be its sparse representation. Entry xj from x is the
coefficient of the atom dj in D and dj is constrained, through
Q, to represent signals from a single class. The confidence
level is computed by looking at the magnitude of the entries
in x corresponding to class ci in relation to the rest of the
entries. Take two fixed user provided thresholds φlow and
φhigh corresponding to low and high confidence levels. If the
confidence level is above φhigh D, W and A are updated as if
running supervised. If the current confidence level is between
the two thresholds, only D is updated using standard ODL. If
the confidence level is beneath φlow the user is prompted to
provide a label.

In [7], OSSDL performs DL on both labeled and unlabeled
data. At the end of the learning process, classifier W is up-
dated separately using only labeled data following the solution
of the regularized LS problem ‖H −WX‖2F +λ ‖W ‖2F . The
updated classifier is then used to reclassify the unlabeled data.

This process would not be feasible in our case because we
only receive unlabeled data online and thus find the task of
storing and recomputing the classification of the entire history
intractable and perhaps even futile. If at time t we label
a sample clean and, through reclassification, we consider it
malware at time t′ > t, there is not much we can do about
our initial verdict and the actions performed by the IoT device
as consequence to our judgement at time t. None the less, in
our experiments we modify OSSDL to fit our scenario, even
though it was not designed as such, which should be taken
into consideration when studying its numerical results.

III. OUR METHOD

Starting from a pre-trained dictionary state, our goal is to
provide a fast, tolerant and unsupervised online method. Fast
because we are running online on low-powered IoT devices,
tolerant as we want to permit all incoming signals to update
the dictionary, and unsupervised because we have no label
information and do not rely on user intervention in any way.

These properties are key for malware identification. We
want a fast algorithm that performs the identification task
directly on the device, with low computational complexity.
Hence we prefer RLS-DLA over ODL. We want to contin-
uously update our DL model so that our classifier can learn
and adapt to new threats, thus we have to be tolerant to all
incoming signals, especially to the ones with low classification
confidence levels, because they provide fresh information.
Threshold selection strategies, such as those used by SSDL
and LC-RLSDLA, deprive us of fresh information. Finally,
we want to run unsupervised due to privacy and usability
concerns, we want to be self-sufficient, never externalizing
data to third party entities and never asking the IoT end-user
to decide for us. This rules out manually labeling samples with
low classification confidence as in the SSDL case.

We base our method on LC-RLSDLA, where the credibility
and confidence thresholds are set to zero. Permitting all
unlabeled signals to enter the dictionary update stage is a
challenging task and we employ multiple strategies to make
this action feasible.

No matter how malware and clean samples are described,
they are fundamentally identical up to a point because they are
both executables that have to respect file format constraints
such as program headers, data sections and library imports.
To account for this commonality and focus only on the dis-
tinctiveness of the clean and malware classes, we modify the
label consistency constraint to permit a set of dictionary atoms
to partake in the representation of both classes. Having atoms
d1 represent the clean class, d2 represent the malware class,
and d3 to represent their shared features, the label consistent
matrix Q can be resumed to two columns q1 = [1 0 1]T

and q2 = [0 1 1]T corresponding to clean and malware
samples respectively. When running online, we need only store
a column for each class Q ∈ Rn×c.

In order to dampen the effect that incoming signal y has on
the current model, we extend the objective in (2) and rephrase
it for the online setting by regularizing the change in W and
A (thus also implicitly in D):

min
D,W ,A

‖y −Dx‖22 + α‖h−Wx‖22 + β‖q −Ax‖22

+ λ1 ‖W −W0‖2F + λ2 ‖A−A0‖2F
(7)

Here h is the unit vector ei, where position i is decided
based on the classification result, q is the i-th column from
Q, Matrices W0 and A0 represent the current classifier and
label consistency dictionary.

Because the objective in (7) does not have a direct solu-
tion, we first update the dictionaries without regularization
(λ1 = λ2 = 0) which leads to the plain LC-RLSDLA problem.
The resulting dictionaries are D0, W0 and A0. We proceed
by mediating the rate of change in W0 and A0 through
regularization. We define

f(W) = ‖h−Wx‖22 + λ1 ‖W −W0‖2F (8)

g(A) = ‖q −Ax‖22 + λ2 ‖A−A0‖2F (9)

as the minimization objective for W and A respectively, when
considering everything else fixed in (7). Here we make an
abuse of notation and set λ1 = λ1/α and λ2 = λ2/β. We can
view f and g as proximal functions [12] where W0 and A0

are obtained from the previous iteration. The solutions to (8)
and (9) are the simple LS problems

W = (hxT + λ1W0)(xx
T + λ1I)

−1 (10)

A = (qxT + λ2A0)(xx
T + λ2I)

−1 (11)

obtained from the gradient equations ∇f = 0 and ∇g = 0.
If we look at f and g as generalized Tikhonov regulariza-

tions, the Tikhonov parameters λ1 and λ2 can be estimated
through generalized cross-validation [13]. In our case, we
have to perform the estimation for each new signal which
is prohibitive due to its high computational cost. Instead

2019 27th European Signal Processing Conference (EUSIPCO)

we propose two alternatives. Either, we fix λ1 and λ2 in
the supervised phase through standard cross-validation, this
is the fastest option that lifts the estimation burden when
running online and unsupervised. Or, given that the Tikhonov
parameter is tightly related to the singular value of xxT , we
look at the change brought to (4) in (5) as a rank-1 update
to positive semidefinite matrix G. The effect of the update
is reflected in the spectrum of ϕG + xxT , which indirectly
influences that of W0 and A0, and which can be iteratively
updated when a new signal arrives [14]. We have seen good
results in our experiments when setting

λ1,2 = ‖G‖2 or λ1 = ‖W0‖2 , λ2 = ‖A0‖2 . (12)

Algorithm 1: TODDLeR
Data: signal y ∈ Rm, sparsity level s ∈ R

dictionaries D ∈ Rm×n, W ∈ Rc×n, A ∈ Rn×n

label consistency matrix Q ∈ Rn×c

parameters α ∈ R, β ∈ R
Result: updated dictionaries D, W , A

1 Representation: x = OMP(y,D, s)
2 Classification: i = argmaxj=1:c(Wx)
3 Build labels: h = ei, q = qi s.t. ỹ =

[
y;
√
αh;
√
βq

]
4 Dictionary update: D̃ = RLS-DLA(ỹ, D̃, s)
5 Optional tuning: set λ1,2 according to (12)
6 Regularization: set W and A according to (11)

The operations performed at the arrival of a new unlabeled
signal y are described in Algorithm 1 called Tolerant Online
Discriminative DL with Regularization (TODDLeR). Step 1
computes the sparse representation x using OMP needed for
applying the linear classifier in step 2: signal y belongs to
class i corresponding to the position of the maximum value
in Wx. Step 3 produces the extended signal ỹ, that includes
the label and label consistent vectors of class i, to be used
when updating the extended dictionary D̃ = [D;W ;A] in
step 4. We use RLS-DLA to perform online DL. Steps 1–4
can be viewed as performing LC-RLSDLA with nil thresholds.
Unless fixed beforehand, step 5 updates the regularization
parameters as earlier described. Step 6 performs the actual
regularization on W and A. Counting the computational
intensive operations we have O(smn) instructions for OMP
in step 1, O(n2) for RLS-DLA in step 4, and O(s3) for
efficiently solving the two LS problems in step 6. Tuning
the regularization parameters adds an extra cost of O(n2)
operations required for computing the new eigenvalues in (12).
This leads to a total of O(smn+ n2 + s3) operations.

IV. RESULTS1

We have chosen two existing datasets for testing TOD-
DLeR. A newer, more complex dataset of Windows Portable
Executable (PE) files and an older, highly popular Android
malware database. The two differ considerably in dimension,

1Code available at https://github.com/abaltoiu/malid

class balance and complexity of feature space. Nonetheless,
whenever possible, we kept the same algorithm parameters
across the two cases, with an eye on reliability rather than an
ideal fine-tuning to dataset specifics.

Offline pre-training was performed in similar conditions, on
a small signal batch. We used LC-KSVD to train a dictionary
of n = 3m atoms, where an equal number of atoms were
allocated for the clean and malware classes, and for the
shared sub-dictionary. At initialization, 20 DL iterations are
separately performed on these 3 atom groups, followed by 50
iterations of training on the entire dictionary.

We used α = 4 and β = 16 [8] for both LC-KSVD and
LC-RLSDLA. This choice is also confirmed by a preliminary
cross-validation we performed on the first dataset, where α =
16, β = 16 resulted in similar performance. For RLS-DLA,
we set the forgetting factor to ϕ = 0.999. The credibility and
confidence thresholds in LC-RLSDLA were fixed to co = 0.2,
cr = 0.7 [11] and the high and low thresholds in OSSDL were
set to φlow = 3 and φhigh = 4.5 [7].

A. Execution time

We compared execution times on synthetic data Y ∈
R50×1000 with sparsity and dictionary overcompleteness as
described above. We report average values over 100 trials.
All algorithms were implemented in Matlab R2018b and
performed on an Intel i5 CPU with 8GB of system memory.

The lowest execution time was obtained with LC-RLSDLA,
2.327ms per signal, followed by TODDLeR without parameter
tuning at 3.381ms. The two parameter tuning strategies, λ1,2 =
‖G‖2 and λ1 = ‖W ‖2 λ2 = ‖A‖2 were executed in 6.251ms
and 6.904ms respectively, while OSSDL took 11.572ms.

B. DREBIN Dataset

The DREBIN dataset [15] consists of 123,453 legitimate
Android applications and 5,560 malware. The authors per-
formed static analysis on the files, that resulted in m = 11
separate features stemming from 8 categories that span ap-
plication hardware requests, permission requests, inter- and
intra-process communications, Android restricted API calls,
network connections and others.

The training and test signals were obtained by performing
a hashing vectorization, with 11 bins, using the Python scikit-
learn feature extraction module. Unlike [15], we work with
the 11 individual features directly, rather than the 8 category
features.

We reserved 80,000 signals for testing and used the remain-
der for pre-training. LC-KSVD training was performed on
40,000 signals, with s = 5, and resulted in 95.87% accuracy
when tested on a set of 9,013 samples. Each of these splits
ensured a fair amount of clean and malware samples.

Online training with TODDLeR was performed in different
regularization setups. First, fixed values for λ1 and λ2 were
considered, as they provide a fast solution, despite requir-
ing preliminary parameter adjustment. Parameters λ1,2 = 4
yielded best results and are reported here. Parameter tuning
with λ1 = ‖W ‖2, λ2 = ‖A‖2 yielded similar accuracy,

2019 27th European Signal Processing Conference (EUSIPCO)

(a) Classification accuracy on Drebin dataset (b) Preliminary test on Ember dataset (c) Classification accuracy on Ember dataset

while λ1,2 = ‖G‖2 came in second. Either way, TODDLeR
outperformed both LC-RLSDLA and OSDDL as presented in
Figure 1a. Results on this imbalanced dataset make TODDLeR
a good candidate for rare events classification tasks.

C. EMBER Dataset

The EMBER dataset [16] was created as a static malware
detection benchmarking tool for machine learning methods,
in an attempt to overcome the lack of standardization and
maintained datasets in the field. It contains 1.1 million features
of clean, malware and unlabeled PE files. The feature space
is m = 2351 and includes header information, imported
functions and 256 features representing the byte histogram of
the file. In our experiments we use clean and malware data.

First we perform z-score sample standardization to ensure a
democratic treatment of all features. LC-KSVD pre-training,
with s = 20, was executed on 7,200 signals and resulted in
92.17% accuracy when tested on a set of 1,800 samples. The
resulting dictionary was used for TODDLeR initialization.

We test three different regularization strategies on 10,000
test signals and compare the results with LC-RLSDLA and
OSSDL. Figure 1b shows the classification accuracy after
1,000 signals. We can see that LC-RLSDLA behaves similarly
to TODDLeR, while OSSDL falls behind. We continue the
experiment with LC-RLSDLA. Figure 1c shows the classi-
fication accuracy results over the entire set. LC-RLSDLA
comes in second after TODDLeR with parameter tuning
λ1,2 = ‖G‖, while tuning based on matrices W and A and
fixed parametrization come in last. The ups and downs are due
to new malware types that temporarily hinder performance.

Area Under the Curve (AUC) values confirm the hierarchy
in the figures above. The highest value, 0.8878, is obtained
when regularization is performed with λ1,2 = ‖G‖2, followed
by LC-RLSDLA with 0.8782. Third is parameter update with
λ1 = ‖W ‖2, λ2 = ‖A‖2, with 0.8626, while the fixed λ1,2
strategy has an AUC score of 0.8406.

V. CONCLUSIONS

We proposed a semi-supervised framework in which an
initial dictionary is trained on labeled data using standard
DL algorithms and developed a new algorithm for the second
stage where the dictionary is continuously updated in online
fashion with new unlabled signals. The elements of novelty

are the regularization constraint during online training, the fact
that, unlike existing methods, we use all unlabeled signals to
update the dictionary, and the application of DL to malware
identification with encouraging numerical results.

REFERENCES

[1] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “IoT security techniques
based on machine learning: How do IoT devices use AI to enhance
security?” IEEE Signal Processing Magazine, vol. 35, no. 5, pp. 41–49,
Sept 2018.

[2] B. Dumitrescu and P. Irofti, Dictionary Learning Algorithms and Appli-
cations. Springer, 2018.

[3] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in 27th Asilomar Conf. Signals Systems Computers,
vol. 1, Nov. 1993, pp. 40–44.

[4] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An Algorithm for
Designing Overcomplete Dictionaries for Sparse Representation,” IEEE
Trans. Signal Proc., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[5] K. Engan, S. Aase, and J. Husoy, “Method of optimal directions for
frame design,” in IEEE Int. Conf. Acoustics Speech Signal Proc., vol. 5,
1999, pp. 2443–2446.

[6] X. Liu, M. Song, D. Tao, X. Zhou, C. Chen, and J. Bu, “Semi-supervised
coupled dictionary learning for person re-identification,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2014, pp. 3550–3557.

[7] G. Zhang, Z. Jiang, and L. Davis, “Online semi-supervised discrimina-
tive dictionary learning for sparse representation,” in Asian conference
on computer vision. Springer, 2012, pp. 259–273.

[8] Z. Jiang, Z. Lin, and L. Davis, “Learning A Discriminative Dictionary
for Sparse Coding via Label Consistent K-SVD,” in IEEE Conf. Com-
puter Vision and Pattern Recognition, 2011, pp. 1697–1704.

[9] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online Learning for Matrix
Factorization and Sparse Coding,” J. Machine Learning Res., vol. 11,
pp. 19–60, Jan. 2010.

[10] K. Skretting and K. Engan, “Recursive least squares dictionary learning,”
IEEE Trans. Signal Proc., vol. 58, no. 4, pp. 2121–2130, 2010.

[11] S. Matiz and K. Barner, “Label consistent recursive least squares
dictionary learning for image classification,” in 2016 IEEE International
Conference on Image Processing (ICIP). IEEE, 2016, pp. 1888–1892.

[12] G. Peng and W. Hwang, “A proximal method for dictionary updating
in sparse representations,” IEEE Transactions on Signal Processing,
vol. 63, no. 15, pp. 3946–3958, 2015.

[13] G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation as
a method for choosing a good ridge parameter,” Technometrics, vol. 21,
no. 2, pp. 215–223, 1979.

[14] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen, “Rank-one modification
of the symmetric eigenproblem,” Numerische Mathematik, vol. 31, no. 1,
pp. 31–48, 1978.

[15] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck,
“Drebin: Effective and explainable detection of android malware in your
pocket,” 2014.

[16] H. S. Anderson and P. Roth, “EMBER: An Open Dataset for Training
Static PE Malware Machine Learning Models,” ArXiv e-prints, 2018.

2019 27th European Signal Processing Conference (EUSIPCO)

