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ABSTRACT

Training dictionaries for sparse representations is a time con-

suming task, due to the large size of the data involved and to

the complexity of the training algorithms. We investigate a

parallel version of the approximate K-SVD algorithm, where

multiple atoms are updated simultaneously, and implement

it using OpenCL, for execution on graphics processing units

(GPU). This not only allows reducing the execution time with

respect to the standard sequential version, but also gives dic-

tionaries with which the training data are better approximated.

We present numerical evidence supporting this somewhat sur-

prising conclusion and discuss in detail several implementa-

tion choices and difficulties.

Index Terms— sparse representation, dictionary design,

parallel algorithm, GPU, OpenCL

1. INTRODUCTION

OpenCL [1] is an open standard allowing portable parallel

programming, aimed especially at graphics processing units

(GPU) but not restrained to them. Despite its recent proposal,

OpenCL has gained support from the industry and its imple-

mentation is supported by the major GPU manufacturers. Al-

though some implementations miss certain features and there

are difficulties in portability [2], there are much more incen-

tives for using OpenCL than languages specialized to a single

type of GPUs.

Signal processing has been a field of active development

for GPU algorithms and, in the last few years, for OpenCL

implementations. The problems solved in this framework

are typical for image or video processing, as naturally fit for

GPUs. There is work on segmentation [3], feature match-

ing [4], motion estimation [5] and real time particle filter-

ing [6], among others. Also more intensive computation

tasks have been tackled, like the solution of optimization
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problems (rank minimization) [7]. Closer to our interest, we

see algorithms for computing sparse representations [8].

In this paper, we focus on the problem of designing dic-

tionaries for sparse representations [9], which is as follows.

Given a set of m signals (or patches) Y ∈ R
p×m and a target

sparsity level s, find dictionary D ∈ R
p×n (whose columns

are named atoms) such that ‖E‖F is minimized, where

E = Y −DX (1)

is the approximation error and X ∈ R
n×m is the matrix of

sparse representations, having at most s nonzero elements on

each column. Denoting Yj a column of Y and Xij an element

of X , that means that

Yj ≈ DXj =
∑

i∈I

DiXij , |I| = s, (2)

i.e. a signal vector Yj is approximated using only s atoms.

The problem is difficult since both the dictionary D and

the sparse representation matrix X are unknown. The most

successful algorithms like MOD [10] and K-SVD [11] al-

ternate the optimization of the unknowns. Given an initial

dictionary D, chosen randomly or as a selection of signal

vectors, the sparse representations (2) are found; Orthogonal

Matching Pursuit (OMP) is often preferred due to its speed.

Then, keeping X fixed, a new dictionary is designed such

that ‖Y − DX‖F is minimized or reduced. K-SVD opti-

mizes the atoms one by one, in the process changing also the

representations corresponding to that atom. An SVD decom-

position is used to this purpose, for each atom. To reduce

the computation time, the Approximate K-SVD (AK-SVD)

algorithm [12] replaces the SVD decomposition with a sin-

gle iteration of the power method. Further improvements are

suggested in [13, 14].

Our contribution is a parallel version of AK-SVD and its

full implementation in OpenCL. Parallelism is present at sev-

eral levels in the algorithm, but the atom update process is

essentially sequential. The reason is that a modification of an

atom is immediately taken into account for the next updates,

in the general style of Gauss-Seidel iterations. We investigate

here a version of the algorithm where more atoms are updated



simultaneously. This not only takes less time on the GPU, but,

surprisingly, may lead to smaller approximation error in (1).

2. PARALLEL AK-SVD WITH OPENCL

The main operations of our algorithm are shown in Algorithm

1. Steps 2–6 describe the first stage of AK-SVD, the compu-

tation of sparse representations, and steps 7–14 describe the

second stage, the atoms update. We will present first the main

ideas behind our parallel version, then give some details on

the OpenCL implementation.

2.1. Parallel signal representations

The first stage of the AK-SVD algorithm is naturally parallel,

since the signal representations (2) are completely indepen-

dent. We first precompute the scalar products between the

atoms and themselves and between the atoms and the signal

vectors (steps 2–3). Since these are matrix multiplications

of fairly large size, they can be easily parallelized. To com-

pute the sparse representation of a signal, we use the Batch

OMP (BOMP) algorithm, using the same operations as in the

AK-SVD algorithm [12]; this algorithm builds the Cholesky

decomposition of the matrix of the normal system associ-

ated with the sparse least-squares problem; the selection of

columns is made by the standard matching pursuit criterion.

We compute the sparse representations in parallel for

groups of m̃ signals. This is a compromise between leaving

full decision to the GPU scheduler (when m̃ = m) and a

tight control of the parallelism (when m̃ is small, for example

equal to the number of compute units). However, we did not

notice significant differences between values from 1024 to

m.

2.2. Parallel atoms update

The operations in the inner loop (steps 11–14) update an atom

Dj and its coefficients in the representations where it appears.

These operations are a direct implementation of the power

method applied to the matrix FTF , where F is the error ma-

trix (1) from which the contribution of the current atom is

removed. The signals whose current representations do not

contain the current atom are not involved in the computation,

hence the matrix F has a smaller number of columns (|I| in-

stead of m). Note that F is not explicitly computed, but its

expression is inserted in steps 13 and 14 and the computations

proceed accordingly.

We introduce a new parameter ñ, which is the number

of atoms processed in parallel with the power method. This

is a departure from the standard AK-SVD algorithm, where

ñ = 1. An obvious advantage is the parallelism, the maxi-

mum being obtained when ñ = n; this corresponds to a Ja-

cobi variant of the K-SVD algorithm, opposed to the usual

Gauss-Seidel form for ñ = 1. A possible drawback is a

Algorithm 1: PAK-SVD

Data: initial dictionary D ∈ R
p×n

signals set Y ∈ R
p×m

target sparsity s
number of K-SVD iterations K
number of parallel atoms ñ
number of parallel signals m̃
number of update iterations u

Result: trained dictionary D
sparse representations X ∈ R

n×m

1 for k ← 1 to K do

2 G = DTD, in parallel

3 H = DTY , in parallel

4 for ℓ← 1 to m/m̃ do

5 for j ← (ℓ− 1)m̃+ 1 to ℓm̃, in parallel do

6 Xj = BOMP (G,Hj , s)

7 for i← 1 to u do

8 for ℓ← 1 to n/ñ do

9 E = Y −DX
10 for j ← (ℓ− 1)ñ+ 1 to ℓñ, in parallel do

11 I = {indices of signals whose

representations use the j-th atom}
12 F = EI +DjXj,I

13 Dj = FXT
j,I/‖FXT

j,I‖2
14 Xj,I = FTDj

slower convergence, since the atoms from the same group of

size ñ cannot influence each other and hence further reduce

the representation error.

In order to make the parallel updates possible, we com-

pute in step 9 the current error matrix, which is hence updated

after every ñ atom updates. This is a significant computation

effort if ñ is small and the AK-SVD avoids it. However, since

matrix multiplication is an operation with much parallelism,

we can afford it on the GPU.

We introduce also the modification proposed in [14], to

perform several cycles of updates for each sparse represen-

tation stage. The variable u from step 7 is 1 in the standard

AK-SVD, but one or two more dictionary update cycles may

be useful. Convergence speed may be gained if the parallel

updates are faster than the OMP representations. In principle,

the values of u and ñ could change during the AK-SVD main

iterations.

2.3. OpenCL implementation details

The OpenCL platform allows us to execute small functions

(kernels) in parallel on a chosen number of processing ele-

ments (PE), or work-items, within the compute units located

on the OpenCL device [1]. These PEs are organized in an



n-dimensional space that can be set up in different ways

for each kernel. The n-dimensional space is split into lo-

cal work-groups, corresponding to compute units; PEs in a

work-group can better share common resources. For exam-

ple, in 2D, we can denote the n-dimensional range definition

as NDR(〈xg, yg〉, 〈xl, yl〉). There are xg × yg PEs, organized

on work-groups of size xl × yl, running the same kernel.

Matrix multiplication. Steps 2, 3 and 9 from the PAK-

SVD algorithm were implemented in OpenCL through a ded-

icated block-based full-matrix multiplication kernel.

The kernel semantics follow that of the classic GEMM

BLAS operation. The input matrices as well as the result ma-

trix are kept in global memory. The operations for calculating

a block of the resulting matrix were performed within a work-

group.

We mapped the elements of the resulting matrix in the

shape of a 2-dimensional global space that is further split into

block-sized work-groups. The optimal block size on our GPU

device was found to be of 64 × 64 PEs, thus for a result

matrix A ∈ R
n×m we defined our n-dimensional space as:

NDR(〈n,m〉, 〈64, 64〉).
Before doing the actual multiplication, each work-item

within a work-group copies an element from the input block

sub-matrices into local memory. This extra step is paid in full

by faster memory access time during matrix multiplication.

Further on, we use vectorized types for the arithmetic opera-

tions. On our device, float4 proved to be the fastest type.

Orthogonal Matching Pursuit. All the operations required

for the sparse representation of a single signal, step 6 in PAK-

SVD, were packed in and implemented by a single OpenCL

kernel.

The input matrices as well as the resulting sparse signal

are kept in global memory. The BLAS operations required

for performing the Cholesky update and for recalculating the

residual are done sequentially inside the BOMP kernel, not

through a separate call to the BLAS kernel. Due to the rather

small size of the matrices involved in these operations, mea-

surements showed that using a dedicated kernel (as for steps

2, 3 and 9) does not even begin to pay for the required GPU

IO. In-lining proved to be a lot faster.

The main obstacles we encountered while implementing

step 6 were memory-bound. BOMP is a huge memory con-

sumer and mostly due to auxiliary data. The necessary mem-

ory is of size O(ns). Keeping all the auxiliary data in local

memory would permit only the processing of one signal per

compute-unit, corresponding to an NDR(〈m̃〉, 〈1〉) splitting.

This would be wasteful as it would not reach full GPU occu-

pancy and thus it would not cover the global memory latency

costs.

After trying several work-group sizes, like 64, 128 and

256, we decided to leave the decision to the GPU scheduler,

by using NDR(〈m̃〉, 〈any〉). This solution appears the best

in our case. As mentioned before, we took m̃ = m.

Atoms update. The atom updating process, steps 11–14

in PAK-SVD, was implemented through another dedicated

OpenCL kernel. The input matrices E and X are kept in

global memory as well as the existing dictionary D. How-

ever, the atom Dj is transferred to private memory, where it

is kept during the update operations. This poses no problem

due to the reasonable problem size (we used p ≤ 64).

On the other hand, storing a list of indices I (step 11)

turns out to be difficult, since the number of indices varies a

lot, depending on how much an atom is used in sparse sig-

nal representations. The GPU we have used has 32k local

memory, which allows storage of about 8000 indices. If the

number of signals is smaller, we use local memory, which is

the ideal solution. Otherwise, the set I is stored as a global

variable and hence global memory access latency diminishes

the performance of the update stage.

In both cases we define a 1-dimensional space of ñ global

PEs. We leave defining the work-group size to the GPU

scheduler by using NDR(〈ñ〉, 〈any〉).
The BLAS operations required for performing steps 12–

14 were all done inside the update kernel in a sequential fash-

ion for the same reasons enumerated when describing step 6

(BOMP).

BLAS issues. For further optimization we tried using the

BLAS library for OpenCL from AMD. While probably good

for one-time use scenarios, it did not give good performance

in our case, which needed multiple calls for mostly quickly

changing, small sized, data. The loss in transfer times be-

tween host and OpenCL memory was not compensated at

all by the parallel computations. We were hence obliged to

implement our own versions of BLAS operations, described

above, for both big and small data sets.

3. RESULTS AND PERFORMANCE

We used colored and gray scale bitmap images for the training

signals, taken from the USC-SIPI [15] image database (e.g.

barb, lena, boat, etc.). The images were normalized and split

into random 8×8 blocks representing the patches. The initial

dictionary was built similarly or by generating random atoms;

when comparing different algorithms, the initialization was

always the same.

As a rule, we chose the dimensions as powers of two be-

cause this way the data objects and the work-loads are easier

divided and mapped across the NDRs without the need for

padding. We picked p = 64 and n ∈ {64, 128, 256, 512},
while we ran through a wide range of signal set dimensions

(1024–131072). While we did most of the profiling around

s = 8, we consistently investigated s ∈ {4, 6, 8, 10, 12}when

it came to minimizing the error. For parallelism, we used al-

most all the time m̃ = m while we walked ñ from 1, in incre-

ments of powers of 2, up to n.

We tested our OpenCL implementation of PAK-SVD on

an ATI FirePro V8800 (FireGL V) card from AMD, running

at a maximum clock frequency of 825MHz, having 1600
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Fig. 1: Error evolution for m = 16384, n = 512, s = 12.

Table 1. Final errors for AK-SVD and PAK-SVD with ñ = n.

n

128 256 512

AK PAK AK PAK AK PAK

s

4 0.0425 0.0407 0.0385 0.0387 0.0376 0.0372

6 0.0374 0.0349 0.0334 0.0316 0.0311 0.0297

8 0.0345 0.0306 0.0294 0.0272 0.0259 0.0245

10 0.0322 0.0276 0.0276 0.0239 0.0233 0.0206

12 0.0319 0.0249 0.0254 0.0205 0.0221 0.0176

streaming processors, 2GB global memory and 32KB local

memory. Also, the CPU tests for our AK-SVD C implemen-

tation were made on an Intel i7-3930K CPU running at a

maximum clock frequency of 3.2GHz.

Figure 1 presents a typical example of error evolution dur-

ing the iterative process, for AK-SVD (KSVD-Box imple-

mentation for Matlab by the first author of [12]) and PAK-

SVD with various values of ñ. The RMSE is ‖E‖F/
√
mn,

with E defined by (1). While for AK-SVD the error is typ-

ically decreasing, for PAK-SVD with large ñ it occasionally

increases, sometimes significantly. This behavior is milder

for smaller sparsity level s. However, despite the erratic be-

ginning, PAK-SVD tends to reach a smaller final error.

This is confirmed by the results from Table 1, where the

error after K = 200 iterations is shown for PAK-SVD with

ñ = n and AK-SVD, for several values of the dictionary size

and target sparsity. In all cases but one, the PAK-SVD with

completely parallel atom updates outperforms AK-SVD. This

is somewhat unexpected, but confirmed by other experiments,

not reported here, on different subsets of images. Although

Gauss-Seidel iterations are usually better than Jacobi, this is

not always the case, as confirmed by our examples. However,

more investigation is necessary for other types of data.

We now shift our focus towards the execution time of

PAK-SVD, looking first on the influence of ñ. As expected,

we can see in figure 2, where m = 16384, that larger ñ gives
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better results, producing a speed-up of at least 10 when going

from ñ = 1 to ñ = n.

A similar behavior is visible in figure 3, where we kept

a fixed dictionary size of n = 512 atoms and increased the

number of patches in the signal set. Naturally, the speed-up

with respect to the case ñ = 1 grows as the size of the problem

increases.

To put things in perspective, we implemented AK-SVD in

C for comparing times spent on the CPU versus times spent

on the GPU. We tried to keep the instructions between the two

versions the same wherever possible (the update stage obvi-

ously had to vary). As it can be seen in figures 2 and 3, PAK-

SVD is around 10 times faster when ñ = n. It outperforms

the CPU version except for the case where ñ = 1, which is to

be expected due to the error calculation and compensation for

each atom update and also due to the low GPU utilization. For

the largest problem, with n = 512, m = 65536, the speed-up

is 11.98.

We also compared the performance of KSVD-Box to

our OpenCL implementation of PAK-SVD. The results var-

ied based on the hardware underneath, but on new desktops

with multicore processor KSVD-Box has comparable or even



smaller execution times than PAK-SVD with ñ = n. This is

not surprising, due to the heavily-optimized full and sparse

matrix routines available in Matlab and its multi-threading

capabilities. We expect that further development of GPU

software for numerical computations will increase the perfor-

mance of our implementation.

Our measurements showed that a single dictionary update

(steps 8–14 of PAK-SVD) can be 2 to 3 times faster than the

sparse representation stage. This observation lead to modi-

fying the original K-SVD algorithm so that multiple update

rounds can be performed during the same SVD iteration. So

our experiments included varying the parameter u (step 7).

Taking as a reference the case where u = 1, we found that

bumping the number of rounds to u = 2 or u = 3 does not

significantly increase the execution time. So incrementing u
allows us to either reach the same approximation error faster

or to obtain a better approximation in a similar time as u = 1.

We obtained the best results by keeping ñ ≤ 64 and by us-

ing u = 1 for the first 50 iterations, and only afterwards in-

creasing the number of dictionary updates per SVD iteration

(u ≥ 2). We noticed that when u ≥ 2 from the start with

large dictionaries (n = 512) and high parallelism (ñ ≥ 128),

the error actually increases at the second or third consecutive

update.

4. CONCLUSIONS AND FUTURE WORK

We have proposed a parallel version of the AK-SVD algo-

rithm, with two kinds of improvements. First, the atoms

updates are performed in parallel, covering the whole range

from the sequential Gauss-Seidel-style iterations of the stan-

dard algorithm to fully parallel Jacobi-style iterations. Sec-

ond, we have implemented our parallel algorithm (PAK-SVD)

in OpenCL and tested its behavior on GPU.

Training dictionaries for image representation, we have

noticed that PAK-SVD is able to produce smaller represen-

tation error than AK-SVD, although its convergence is more

erratic in the beginning. For the sizes that we have tried, the

OpenCL implementation is up to 12 times faster than its se-

quential counterpart.

Further work will be devoted to the refinement of the im-

plementation, for example by investigating the use of sparse

matrices. The current experience will be used for exploring

parallel versions of other algorithms for training dictionaries

for sparse representations.
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