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Abstract—The design of dictionaries for sparse representations
is typically done by iterating two stages: compute sparse repre-
sentations for the fixed dictionary and update the dictionary using
the fixed representations. Most of the innovation in recent work
was proposed for the update stage, while the representation stage
was routinely done with Orthogonal Matching Pursuit (OMP),
due to its low complexity. We investigate here the use of other
greedy sparse representation algorithms, more computationally
demanding than OMP but still with convenient complexity. These
algorithms include a new proposal, the projection-based Orthog-
onal Least Squares. It turns out that the effect of using better
representation algorithms may be more significant than improv-
ing the update stage, sometimes even leveling the performance of
different update algorithms. The numerous experimental results
presented here suggest which are the best combinations of
methods and open new ways of designing and using dictionaries
for sparse representations.

Keywords—sparse representation, greedy algorithms, dictionary
learning

I. INTRODUCTION

Sparse representations [1], [2] are intensively used in signal
processing applications, like image coding, denoising, echo
channels modeling and many others. The overcomplete bases
used for representation are either fixed, e.g. by taking rows of
popular transforms like discrete cosine or wavelet, or trained
using a representative sample of the signals that appear in the
application at hand. Our topic is the latter case, known also as
dictionary learning (DL).

The DL problem is posed as follows. Given a data set
Y € RP*™ made of m vectors (signals or data items) of size
p, and a sparsity level s, the aim is to solve the optimization
problem

minimize |Y — DX|%
D, X (1)

subject to  [|l@ifo <5, 1<i<m
where the variables are the dictionary D € RP*™ whose
columns are usually named atoms, and the sparse represen-
tations matrix X € R"*™_ whose columns have at most s
nonzero elements. By x; we denote the i-th column of the
matrix X, by || - ||o the number of nonzero elements of a
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vector (the so-called 0-norm, although not actually a norm)
and by || - || the Frobenius norm of a matrix.

Since problem (1) is bilinear in its variables and thus
not convex, almost all successful design algorithms attempt
to solve it through an iterative process that alternates two
basic stages until convergence or a sufficiently large number of
iterations. First, given a dictionary D, a sparse representation
matrix X is sought by minimizing the objective of (1), named
also representation error; note that this is also not a convex
problem, due to the sparsity constraint. Then, keeping X
fixed, a new dictionary is designed by minimizing or just
decreasing the representation error; this is usually called the
atom update stage. The iterative process usually converges to
a local minimum, although even this is not guaranteed; the
sparse representation stage does not necessarily decrease the
representation error.

The known design algorithms are different in the treatment
of the second stage. MOD [3] minimizes directly |[Y — DX,
which is a convex problem for a given X. K-SVD [4]
optimizes the atoms one by one, using a singular value
decomposition (SVD), and also changes the representations
together with the atoms; an approximate version called AK-
SVD [5] replaces the costly SVD with one or few iterations
of the power method. Several improvements of K-SVD were
proposed recently; for earlier work we refer to [6], [7]. The
SGK algorithm [8] also optimizes the atoms sequentially, by
solving a least-squares problem, but without changing the
representations. NSGK [9] expresses the optimization problem
in terms of differences to the previous values of D and X and
applies SGK to a linearized version of the objective function.
Other methods like [10] and [11] play with the number of
atom updates that are made for a given representation. Parallel
instead of sequential updates were proposed in [12], with clear
benefit in sparse image representations.

All these algorithms use Orthogonal Matching Pursuit
(OMP) [13] in the first stage to compute the sparse represen-
tations. The main reason is that OMP is fast and also that it is
used in applications together with the optimized dictionary; it
makes sense to appeal to the same representation algorithm in
training the dictionary as well as in using it. However, there
are other greedy algorithms, like Orthogonal Least Squares
(OLS) [14], Subspace Pursuit [15], Projection-Based OMP
(POMP) or Look-Ahead OLS (LAOLS) [16], that are still
fast enough for wide practical use, but achieving typically
better representations than OMP. OLS can be implemented
efficiently as an orthogonal triangularization with pivoting,



while POMP and LAOLS are able to trade off complexity and
representation error. Besides the greedy category, the class of
Basis Pursuit algorithms [1] offers a number of algorithms with
very good representation error, but much slower than OMP and
its improved versions.

Our contribution here is an empirical investigation of the
impact that the sparse representation algorithm has in DL.
The spark to start this study was the somewhat disconcerting
fact that, in a test problem often used in the DL community,
several algorithms gave quite similar result. The immediate but
apparently ignored question is if OMP is the bottleneck of DL
algorithms and thus progress in the atom update stage might be
masked by it. Would better representation algorithms allow to
discern which atom update method is in fact superior? Would
better representation algorithms cause a significant decrease of
the overall error in the DL problem (1)? Although we cannot
provide definitive answers, we try at least to gain more insight
into the DL process and assess DL algorithms on a steadier
ground.

The paper is structured as follows. In section II we review
several greedy representation algorithms that are good candi-
dates to replace OMP. Among them, there is a new proposal,
Projection-Based OLS, naturally derived from POMP. Section
III is dedicated to a short description of the main atom update
techniques used in DL. In section IV we present extensive
numerical results for two standard test problems and draw
practical conclusions based on these results.

II. SPARSE REPRESENTATION ALGORITHMS

For the sake of completeness, we review here the consid-
ered sparse representation algorithms, although without giving
all the implementation details. The basic problem is to find a
sparse least-squares solution to the system Ax = b, i.e. one
that has at most s nonzero elements and minimizes ||b— Ax||>.
Given a set of indices Z, we denote x7 the vector of solution
elements corresponding to these indices. We implicitly assume
that Z is the current support of the solution and thus the other
elements of « are zero. Similarly, Az is the restriction of A
to the columns belonging to Z. We will assume that a generic
function is available for finding the least-squares solution to
the system Azxz = b with known support Z and denote its
use by

x =LS(A,b,T). 2)

Since in greedy algorithms the support usually grows on the
current one, this function could be implemented efficiently by
using a partial orthogonal triangularization of A or a partial
Cholesky factorization of the associated normal matrix A7 A.
However, we will leave these details out of the presentation
and give only the main ideas of the methods.

Orthogonal Matching Pursuit (OMP) [13], presented in
Algorithm 1, grows the support by looking at the correlations
of the matrix columns (atoms) with the current residual and
adding the index of the largest correlation to the support;
this is traditionally called matching pursuit criterion. Then, it
computes the LS solution for the current support and updates
the corresponding residual, thus preparing the next iteration.
The residual is orthogonal on the selected columns, hence
a column cannot be twice selected. (This is also the reason
for the word “orthogonal” in OMP.) The interpretation of the

Algorithm 1: Orthogonal Matching Pursuit (OMP)

1 Arguments: A, b, s

2 Initialize: " =b, Z =0

3fork=1:sdo

Compute correlations with residual: z = ATr
Select new column: ¢ = argmax; |z;|
Increase support: Z + Z U {i}

Compute new solution: = LS(A, b, T)
Update residual: » = b — Azxz
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Algorithm 2: Orthogonal Least Squares (OLS)

1 Arguments: A, b, s

2 Initialize: Z = ()

3fork=1:sdo

4 for j 7 do

5 Build new support: 7 =Z U {5}

6 Try solution: = LS(A, b, )

7 Residual norm: p; = ||b — Azz 7|
8 Select new column: ¢ = arg min; p;

9 Increase support: Z < Z U {i}
10 | Compute new solution: * = LS(A,b,7)

selection criterion is simple: the new column is the one that
decreases the most the residual norm, keeping fixed the values
of the current solution x7.

Orthogonal Least Squares (OLS) [14] takes a slightly
different approach. The next column is the one that, together
with the previous ones, gives a solution that minimizes the
residual norm; hence, the elements of x7 can change during
the selection process. Algorithm 2 describes OLS. It can be
efficiently implemented as an orthogonal triangularization with
pivoting, which permanently orthogonalizes the not selected
columns on the selected ones. This allows the computation of
the selection criterion as a simple matrix-vector multiplication.
In average, OLS is slightly better than OMP.

A refinement of OMP was proposed in [16], in the form
of Projection-Based OMP (POMP), presented in Algorithm 3.
Unlike OMP, a number of L candidate columns are selected
via the matching pursuit criterion, where L is an argument
of the algorithm. Then, a LS solution is computed for the
support extended with all these columns. The winner is the
column with the largest element of the solution. This approach
is partly inspired from Subspace Pursuit [15], where selection
is made by attempting to find LS solutions with larger support
and looking at the magnitude of the solution elements: a large
magnitude means a higher likelihood that the position belongs
to the true support. It is clear that POMP with L = 1 is
identical to OMP. Also, it is not necessarily true that POMP
with L > 1 gives a better result than OMP, although this is
usually the case.

An immediate extension, not investigated until now, is
the Projection-Based OLS (POLS), presented in Algorithm 4,
which is the application of the POMP selection idea in the
context of OLS. Of course, for L = 1 POLS is identical to
OLS. The performance of POLS with respect to POMP should



Algorithm 3: Projection-Based Orthogonal Matching
Pursuit (POMP)

Algorithm 5: Look-Ahead Orthogonal Least Squares
(LAOLS)

1 Arguments: A, b, s, L

2 Initialize: r = b, Z =)

3fork=1:sdo

4 Compute correlations with residual: z = ATr

5 Select indices J of L largest |z;]|

6 Compute potential solution: © = LS(A,b,ZU J)
7 Select largest element index: ¢ = arg max;ec 7 ||
8 Increase support: Z < Z U {i}

9 Compute new solution: © = LS(A, b,T)

10 Update residual: » = b — Azxz

Algorithm 4: Projection-Based Orthogonal Least

Squares (POLS)

Arguments: A, b, s, L
Initialize: Z = ()
for k=1:sdo
L Compute values p; like in steps 4-7 of OLS
Select indices J of L largest p;
Apply steps 6-9 of POMP

A T R W N =

be similar to that of OLS with respect to OMP, but we will be
able to say more in the numerical experiments section.

The last sparse representation algorithm that we use is
Look-Ahead OLS (LAOLS) [16], given in Algorithm 5. Like in
POMP, L indices are selected at each iteration via the matching
pursuit criterion. After appending each of these indices to the
current support, OMP is run starting from this support to the
completion of an s-sparse solution. The newly selected index is
that giving the lowest residual for the final OMP solution. So,
a look-ahead search is performed for each index selection. We
note that in fact the proper name of this algorithm would be
LAOMP, since OMP is run in step 7 in the selection process.
An OLS version is easy to derive by replacing step 4 with steps
4-7 of OLS and using OLS instead of OMP in step 7. However,
we did not pursue the investigation of such an algorithm, due
to the higher complexity of LAOLS with respect to the other
presented algorithms.

Although we have mentioned Subspace Pursuit [15], we
skip its presentation due to the poor results obtained in
dictionary learning and we will not report any experiments
with it.

Algorithm complexity. The significant instructions from an
OMP iteration and their complexities are: the correlations in
step 4, O(pn), the least squares computation from step 7
(which we assume to be incrementally computed for each
new column), O(sp), and the residual update, O(sp). For s
iterations, this amounts to a total complexity of O(spn +s2p).
POMP performs an extra LS operation in step 6 on the
support and its L-sized extension 7. This amounts to L
incremental LS calculations at each iteration, which results
in a total O(sL(s + L)p) extra cost compared to plain OMP.
If L = O(s), then the extra cost is O(s%p).

An efficient implementation of OLS consists of two in-

1 Arguments: A, b, s, L
2 Initialize: » = b, Z =)
3fork=1:sdo

4 Compute correlations with residual: z = ATr

5 Select indices J of L largest |z;]|

6 for j € J do

7 Run OMP starting from Z U {j}, obtaining x
8 L Compute residual norm p; = [|b — Az|?

9 Select new column: i = arg min; p;

10 Increase support: Z < Z U {i}
11| Compute new solution: x = LS(A,b,7)

tensive tasks: selection via correlations (similar to OMP),
O(spn) and performing the transformations needed by the
partial orthogonal triangularization, O(spn). Even though OLS
has a similar theoretical complexity as OMP, it is slower by
a constant factor, due to a larger constant multiplying the
complexity term spn. POLS adds a single computationally
significant instruction to OLS which is, again, the LS on the
extended support, that was shown earlier to total to an extra
cost of O(sL(s + L)p).

The increase in complexity for POMP and POLS with
respect to OMP and OLS is negligible for small s, but becomes
significant when s2 > n. (We assume that L < s, which is a
good practical choice.)

While the fastest option for representation remains OMP,
POLS (and the other alternatives) are still a good candidate
for DL, where execution time is not critical and representation
error is important. For a more in-depth comparison and anal-
ysis of the algorithmic complexity we refer the reader to table
I and section V from [16].

III. ATOM UPDATE METHODS

Before presenting several recent methods for atom update,
let us first remind in Algorithm 6 the general structure of most
DL algorithms. The dictionary D is initialized either randomly
or by a random selection of signal vectors. The norm of the
atoms is forced to 1 at all stages, in order to eliminate the
multiplicative indeterminacy in the product D X. The iterative
process is composed of the two main stages mentioned in
the introduction. First, a sparse representation algorithm like
those presented in the previous section is used to compute
the sparse representation matrix X. Note that the problem
can be decoupled, since each column of X can be computed
separately by attempting to find a sparse solution to the LS
problem Dx; = y;, for i = 1 : m. Then, the atoms are updated
using different methods, all aiming to reduce the objective of
(1). We will present next several techniques for updating atom
d;. We denote Z; the set of the indices of nonzero elements
on the j-th row of X. Otherwise said, these are the indices of
the signals whose representation involves the atom d;.



Algorithm 6: Dictionary learning — general structure

Arguments: signal matrix Y, target sparsity s
Initialize: dictionary D (with normalized atoms)
for k=1,2,... do

With fixed D, compute sparse representations X
L With fixed X, update atoms d;, j =1:n

N oA W N -

K-SVD [4] solves the optimization problem
2

min Y, - Z A Xz, | —d;j X1 )
4 X5 ] F

where all atoms excepting d; are fixed. Note that the matrix
within parenthesis is the representation error of the dictionary
without the atom d;. To minimize the error, the problem (3) is
seen as a rank-1 approximation of this modified error matrix.
The solution is given by the singular vectors corresponding
to the largest singular value. The less complex AK-SVD [5]
runs a single iteration of the power method to compute the two
vectors. Note that (3) allows the representations to be changed
also in this stage.

SGK [8] considers the same optimization problem, but only
with d; as variable:

2

rr(%n Y7 - diXyz, | —diX;1, 4)
(] »

This is a simple least-squares problem, for which an explicit
solution can be easily computed. NSGK [9] operates similarly,
but using differences with the previous values of the dictionary
and representations.

All these algorithms update the atoms sequentially, using
thus their most recent values when updating another atom.
This is the typical Gauss-Seidel approach. We have looked
also at the Jacobi version, in which the atoms are updated
independently, meaning that problems like (3) or (4) are solved
simultaneously for 7 = 1 : n. This technique can be applied
to all presented atom update algorithms. We append the initial
P (from parallel) to their name to denote the Jacobi versions.

IV. NUMERICAL RESULTS

We give here numerical results for two DL problems
used very often as benchmark: dictionary recovery and DL
for sparse image representation. In the general structure of
Algorithm 6, we use all the combinations of 5 representation
methods (OMP, OLS, POMP, POLS, LAOLS) and 6 atom
update methods (SGK, P-SGK, NSGK, P-NSGK, AK-SVD,
PAK-SVD). All DL algorithms are run with the same data, in
particular with the same initial dictionary. For POMP, POLS
and LAOLS we took L = s.

A. Dictionary recovery

We generated a signal set of m = 1500 vectors as a linear
combination of s € {3,4,5} atoms from a random original
dictionary of n = 50 atoms with a size of p = 20 each and

TABLE 1. PERCENTAGE OF RECOVERED ATOMS FOR SGK AND P-SGK

s Method SNR
10 20 30 00

SGK(OMP) 86.84 | 90.32 | 90.20 | 88.72
SGK(OLS) 89.08 | 89.04 | 89.48 | 89.00
SGK(POMP) 91.48 | 92.72 | 93.48 | 93.48
SGK(POLS) 91.80 | 92.88 | 93.48 | 92.44
3 SGK(LAOLS) 89.24 | 92.24 | 92.52 | 92.88
P-SGK(OMP) 87.76 | 90.44 | 90.12 | 89.16
P-SGK(OLS) 86.52 | 90.60 | 90.76 | 89.40
P-SGK(POMP) | 92.04 | 94.56 | 93.48 | 92.52
P-SGK(POLS) | 91.48 | 92.64 | 93.64 | 92.48
P-SGK(LAOLS) | 88.92 | 92.92 | 92.24 | 92.40
SGK(OMP) 71.52 | 92.16 | 92.32 | 91.72
SGK(OLS) 73.80 | 93.20 | 93.36 | 93.20
SGK(POMP) 88.04 | 96.24 | 95.48 | 96.40
SGK(POLS) 87.60 | 96.28 | 95.76 | 96.72
4 SGK(LAOLS) 85.84 | 95.52 | 93.80 | 94.96
P-SGK(OMP) 65.64 | 92.68 | 92.04 | 92.48
P-SGK(OLS) 73.36 | 92.64 | 91.68 | 93.40
P-SGK(POMP) | 87.16 | 96.84 | 95.76 | 96.44
P-SGK(POLS) | 89.96 | 96.36 | 96.04 | 96.04
P-SGK(LAOLS) | 84.64 | 95.32 | 95.24 | 94.88
SGK(OMP) 10.56 | 93.32 | 93.64 | 93.64
SGK(OLS) 12.28 | 94.96 | 94.84 | 94.56
SGK(POMP) 53.72 | 98.12 | 97.52 | 98.84
SGK(POLS) 64.72 | 98.52 | 97.48 | 97.84
5 SGK(LAOLS) | 5844 | 96.76 | 97.32 | 97.24
P-SGK(OMP) 10.44 | 93.24 | 93.80 | 93.96
P-SGK(OLS) 12.12 | 94.16 | 94.12 | 94.72
P-SGK(POMP) | 56.32 | 98.28 | 98.12 | 98.20
P-SGK(POLS) | 69.28 | 98.36 | 98.12 | 97.60
P-SGK(LAOLS) | 57.76 | 96.56 | 97.48 | 97.36

then proceeded to add white gaussian noise with SNR 10, 20,
30 and oo dB to the set in order to obtain the signals matrix Y.
We then ran the DL algorithms, with the noisy set Y and the
known target sparsity s as inputs, for 9s? iterations, initializing
with a random dictionary. The resulting dictionary was checked
against the original one: if the scalar product between two
atoms, one from the resulting dictionary and one from the
original dictionary, was larger than 0.99 (in absolute value),
then the atom was considered successfully recovered. Tables
I, II, and III show the percentages of recovered atoms for all
combinations of methods, averaging over 50 tests. Here are
some conclusions that can be drawn from the results.

1. As expected, the more complex representation methods
bring indeed an increase in performance: the recovery percent-
age obtained with POMP, POLS and LAOLS (especially the
first two) is clearly better than with OMP, for all atom update
methods. OLS and OMP are almost at the same level, with a
marginal advantage for OLS.

2. For the same representation method, there is little
difference between the atom update methods. The conclusion
is that the recovery test (with these commonly used data) is
not relevant for comparing atom update methods and that the
sparse representation is actually the bottleneck here. A reason
may be the small size of the problem or the constant used to
decide similarity between the recovered and original atoms. In
any case, it appears that the progress in atom update methods
can no longer be assessed with this test.



TABLE II. PERCENTAGE OF RECOVERED ATOMS FOR NSGK AND
P-NSGK
s Method SNR
10 20 30 o0

NSGK(OMP) 87.12 | 90.52 | 90.32 | 89.92
NSGK(OLS) 87.44 | 91.52 | 90.28 | 90.52
NSGK(POMP) 91.40 | 93.16 | 92.48 | 93.96
NSGK(POLS) 90.96 | 93.32 | 93.28 | 93.40
3 NSGK(LAOLS) 88.76 | 92.52 | 92.20 | 92.44
P-NSGK(OMP) 86.12 | 90.52 | 91.36 | 89.84
P-NSGK(OLS) 87.60 | 92.08 | 90.40 | 90.04
P-NSGK(POMP) | 90.36 | 93.48 | 93.28 | 91.88
P-NSGK(POLS) | 91.48 | 93.76 | 92.96 | 93.32
P-NSGK(LAOLS) | 88.44 | 92.52 | 92.60 | 93.36
NSGK(OMP) 68.16 | 92.88 | 92.76 | 92.84
NSGK(OLS) 70.76 | 94.04 | 93.28 | 93.04
NSGK(POMP) 85.40 | 96.60 | 95.96 | 96.68
NSGK(POLS) 86.32 | 96.36 | 95.80 | 95.80
4 NSGK(LAOLS) 83.44 | 96.08 | 95.60 | 95.48
P-NSGK(OMP) 69.28 | 93.64 | 92.92 | 93.88
P-NSGK(OLS) 70.24 | 93.48 | 93.44 | 93.96
P-NSGK(POMP) | 87.44 | 96.44 | 96.20 | 96.04
P-NSGK(POLS) | 88.76 | 96.52 | 96.12 | 96.44
P-NSGK(LAOLS) | 83.64 | 95.00 | 95.20 | 95.48
NSGK(OMP) 9.60 | 94.12 | 93.88 | 94.16
NSGK(OLS) 8.08 | 9496 | 94.72 | 95.04
NSGK(POMP) 53.48 | 98.52 | 97.80 | 97.72
NSGK(POLS) 67.96 | 97.48 | 97.48 | 97.76
5 NSGK(LAOLS) 56.96 | 97.08 | 97.08 | 97.72
P-NSGK(OMP) 11.68 | 94.32 | 93.60 | 93.52
P-NSGK(OLS) 8.96 | 94.84 | 95.12 | 94.40
P-NSGK(POMP) | 51.72 | 98.32 | 98.56 | 98.32
P-NSGK(POLS) | 65.52 | 98.20 | 98.20 | 97.72
P-NSGK(LAOLS) | 51.96 | 97.64 | 97.56 | 97.36

B. Dictionary learning

We built the training signals Y from m = 8192 random
8 x 8 blocks taken from the USC-SIPI image collection [17]
(e.g. barb, lena, boat etc.) that we vectorized as columns of
Y (so, p = 64). With these signals, we trained dictionaries
of size n = 256 over 200 iterations, with target sparsity s =
8, using again all combinations of methods. The final errors
Y — DX | /\/pm are shown in table IV while the evolution
of the representation error over the number of iterations is
depicted in figures 1-11.

Regarding the final error, the conclusions are mixed. With
a single exception, all the other representation methods are
better than OMP, often much better; in this sense, the results
are meeting normal expectations. The best results for an atom
update method (in bold) are similar and OLS, LAOLS and
POLS share the winners, while POMP is rather disappointing.
OLS is clearly better for the parallel methods, a feature shared
by OMP and POMP. On the contrary, LAOLS and POLS are
systematically better for the sequential methods. We do not
have an explanation for this feature of the results.

Figures 1-6 present the error evolution for each atom
update method combined with the diverse representation meth-
ods. The error does not decrease uniformly, especially in the
first iterations. The parallel methods suffer more from sudden
increases in error, however having a decreasing trend.

TABLE III. PERCENTAGE OF RECOVERED ATOMS FOR AK-SVD AND
PAK-SVD
s Method SNR
10 20 30 00

AK-SVD(OMP) 88.00 | 89.16 | 89.96 | 88.20
AK-SVD(OLS) 88.72 1 90.52 | 89.68 | 89.84
AK-SVD(POMP) | 91.24 | 94.00 | 92.92 | 92.32
AK-SVD(POLS) 91.48 | 93.40 | 92.88 | 92.56
3 AK-SVD(LAOLS) | 88.40 | 92.08 | 92.76 | 92.28
PAK-SVD(OMP) 87.76 | 90.44 | 90.12 | 89.16
PAK-SVD(OLS) 86.52 | 90.60 | 90.76 | 89.40
PAK-SVD(POMP) | 92.04 | 94.56 | 93.48 | 92.52
PAK-SVD(POLS) | 91.52 | 92.64 | 93.64 | 92.48
PAK-SVD(LAOLS) | 88.92 | 92.64 | 92.28 | 92.44
AK-SVD(OMP) 71.80 | 92.44 | 92.76 | 92.68
AK-SVD(OLS) 73.12 | 93.44 | 92.96 | 92.96
AK-SVD(POMP) | 88.04 | 96.84 | 95.84 | 96.76
AK-SVD(POLS) 88.24 | 96.04 | 96.36 | 95.60
4 AK-SVD(LAOLS) | 82.92 | 94.92 | 96.24 | 95.68
PAK-SVD(OMP) | 65.64 | 92.68 | 92.04 | 92.48
PAK-SVD(OLS) 73.36 | 92.64 | 91.68 | 93.40
PAK-SVD(POMP) | 87.16 | 96.84 | 95.76 | 96.44
PAK-SVD(POLS) | 90.08 | 96.36 | 96.04 | 96.04
PAK-SVD(LAOLS) | 84.60 | 95.32 | 95.24 | 94.92
AK-SVD(OMP) 10.48 | 93.44 | 93.20 | 93.00
AK-SVD(OLS) 12.24 | 93.64 | 94.60 | 95.20
AK-SVD(POMP) | 54.04 | 98.44 | 97.64 | 98.12
AK-SVD(POLS) 62.56 | 98.12 | 98.28 | 98.96
5 AK-SVD(LAOLS) | 48.16 | 96.96 | 96.72 | 96.44
PAK-SVD(OMP) 10.44 | 93.24 | 93.80 | 93.96
PAK-SVD(OLS) 12.12 | 94.16 | 94.12 | 94.72
PAK-SVD(POMP) | 56.32 | 98.28 | 98.12 | 98.20
PAK-SVD(POLS) | 69.16 | 98.36 | 98.12 | 97.52
PAK-SVD(LAOLS) | 59.60 | 97.56 | 97.00 | 97.36

Figures 7—11 present the error evolution from the viewpoint
of the sparse representation methods. We note that POMP,
POLS and LAOLS have a smoothing effect on the curves
for all atom update methods, the decrease being more or less
uniform after the first iterations.

Finally, one may wonder if the designed dictionaries could
be used with OMP as representation method, although another
method has been employed in learning. The reason is that
one may need the dictionaries in practical applications where
speed is of the essence, hence one may want to use the
fastest reliable representation method, i.e. OMP, which is at
least a few times faster than the other methods discussed in
this study. On the contrary, in learning, which is a one-time
operation, we often have the luxury to use higher complexity
methods for obtaining a very good dictionary. So, we computed
with OMP the representations X associated the dictionaries
D designed by the various methods. The errors are given in
table V, whose structure is similar to that of table IV. The
first column is identical, since OMP is used both for learning
and representation. The other columns are different, since the
method used for learning is not OMP. As expected, the results
in table V are generally worse than those in table IV. However,
we are interested in the results that are better than in the first
column; these are shown with bold digits. Remarkably, POLS
gives consistently better results, which means that we could
use any atom update method coupled with POLS in the DL
process, then use the designed dictionary with OMP and thus
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TABLE IV. DL FINAL ERRORS

OMP OLS | POMP | POLS | LAOLS
SGK 0.0162 | 0.0150 | 0.0153 | 0.0124 | 0.0117
P-SGK | 0.0136 | 0.0119 | 0.0126 | 0.0129 | 0.0133
NSGK 0.0154 | 0.0139 | 0.0139 | 0.0126 | 0.0116
P-NSGK | 0.0136 | 0.0116 | 0.0127 | 0.0136 | 0.0141
AK-SVD | 0.0162 | 0.0150 | 0.0148 | 0.0114 | 0.0124
PAK-SVD | 0.0136 | 0.0119 | 0.0126 | 0.0130 | 0.0132
TABLE V. REPRESENTATION ERRORS USING DESIGNED DICTIONARIES
AND OMP
OMP OLS | POMP | POLS | LAOLS
SGK 0.0162 | 0.0332 | 0.0170 | 0.0119 | 0.0127
P-SGK | 0.0136 | 0.0156 | 0.0157 | 0.0124 | 0.0136
NSGK 0.0154 | 0.0252 | 0.0149 | 0.0123 | 0.0124
P-NSGK | 0.0136 | 0.0133 | 0.0159 | 0.0128 | 0.0144
AK-SVD | 0.0162 | 0.0251 | 0.0165 | 0.0119 | 0.0136
PAK-SVD | 0.0136 | 0.0156 | 0.0157 | 0.0124 | 0.0136

get better representations than using OMP in training. We can
say that this is a new design method that is better than the
current methods in exactly the same conditions.

V. CONCLUSIONS

We have studied the effects of combining several sparse
representation and atom update methods for solving the prob-
lem of overcomplete dictionary design. As expected, replacing
OMP with more sophisticated methods like OLS, POMP,
POLS and LAOLS leads to better results and smoother conver-
gence. In image representation applications, we also conclude
that combining OLS with parallel atom update methods gives
systematically good results. Finally, combining POLS and any
considered atom update method produces dictionaries that give
small representation errors also with OMP, thus allowing the
fastest implementation for the use of the designed dictionary
and obtaining better representations than all existing dictionary
design methods that employ OMP in the learning process.
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Fig. 7: Error evolution for OMP with different dictionary
update methods.
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