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313 Spl. Independenţei, 060042 Bucharest, Romania
∗Corresponding author (E-mail : bogdan.dumitrescu@acse.pub.ro)

Abstract—Dictionary learning (DL) for sparse representation
is a difficult optimization problem for which several successful
algorithms exist, although none can be claimed the best. A
common problem is a possible stall in the evolution of the
algorithm, due to nearly linearly dependent atoms. The proposed
cure was to regularize the error criterion using either the
norm of the representations or an atom coherence measure.
However, only gradient-based algorithms have been proposed
for the regularized problems. We give here regularized versions
of Approximate K-SVD and other algorithms related to it and
investigate numerically their behavior. The experiments show
that the new regularized algorithms are able to reduce the
representation error, and thus produce better dictionaries, when
the imposed sparsity is not very high.

Key words - sparse representation; dictionary learning; regu-
larization.

I. INTRODUCTION

Dictionary learning (DL) for sparse representations [1], [2]
is currently an important topic in signal processing due to
the ability of trained dictionaries to perform better than fixed
dictionaries like those built from popular transforms.

Given a data set Y ∈ Rm×N , made of N signals of size
m, and a sparsity level s, the DL problem is

minimize
D,X

‖Y −DX‖2F
subject to ‖x`‖0 ≤ s, ` = 1 : N

‖dj‖2 = 1, j = 1 : n

(1)

where the variables are the dictionary D ∈ Rm×n, whose
columns are usually named atoms, and the sparse represen-
tations matrix X ∈ Rn×N , whose columns have at most s
nonzero elements. Notation: dj is the j-th column (atom) of
the dictionary D, x` is the `-th column of the representation
matrix X , ‖·‖0 is the number of nonzero elements of a vector
(the so-called 0-norm, although not actually a norm) and ‖·‖F
is the Frobenius norm of a matrix. The second constraint,
atom normalization, is meant to remove the multiplicative
indetermination between D and X .

Besides the inherent difficulties caused by the non-convexity
of the objective of (1) and the combinatorial character of the
sparsity constraint, a particular obstacle was identified in [3]
in the possible (almost) linear dependence of atoms that are
used in the representation of the same signal. The proposed
cure was to change the objective into

fµ(D,X) = ‖Y −DX‖2F + µ‖X‖2F , (2)

where µ > 0 encourages small values of the representation
coefficients and thus decreases the likelihood of atoms with
similar directions (which typically cause large coefficients).
This is a typical regularization for least-squares problem
aiming to make the solution unique in cases of rank deficiency.

Although originally proposed [4] with another purpose, an
alternative solution to the same problem is to reduce the
total mutual coherence between atoms, thus decreasing the
apparition of groups of almost linear dependent atoms. The
optimization objective is

fγ(D,X) = ‖Y −DX‖2F + γ‖DTD − I‖2F . (3)

Until now, the regularized problems were solved with
algorithms using gradient descent for the dictionary update.
We propose here algorithms derived from Approximate K-
SVD (AK-SVD) [5]. We also investigate numerically when
regularization is more likely to bring benefits, in the sense
of obtaining a better approximation error than when solving
directly (1).

II. BASIC DL ALGORITHMS

Most DL algorithms iterate two basic operations: sparse
coding and dictionary update. In sparse coding, the dictionary
D is fixed and the representations X are computed, most often
with the Orthogonal Matching Pursuit (OMP) algorithm [6].
Keeping now the support of the representations (the nonzero
pattern of X) fixed, the dictionary is updated such as the
representation error is reduced. Some methods update also the
representation coefficients.

AK-SVD [5] is a simpler and faster version of the K-SVD
algorithm [7], based on the idea of alternate optimization of the
atoms and their corresponding representation when the support
is fixed. Assume all atoms but dj are fixed and denote Ij
the indices of the signals that use dj in their representation.
If atom dj is ignored, then the representation error of these
signals is

F = YIj −
∑
i 6=j

diXi,Ij , (4)

where the subscript Ij denotes the restriction of the matrix to
the columns with indices in Ij . AK-SVD aims to decrease the
representation error

‖F − djXj,Ij‖2F (5)

by optimizing alternatively the atom dj and the corresponding
representation coefficients Xj,Ij (made of the nonzero ele-
ments in row j of X). AK-SVD is described in Algorithm



1 and we detail below its most specific operations. To alle-
viate notation, but with obvious correspondence with (5) we
consider the template problem

min
‖d‖=1,x

{
φ(d,x)

∆
= ‖F − dxT ‖2F

}
(6)

When d is fixed, (6) is a simple least squares problem and
the optimal representation is

x = F Td. (7)

When x is fixed, the objective of (6) can be written as

φ(d,x) = tr[(F T − xdT )(F − dxT )]
= tr(F TF )− 2tr(xdTF ) + tr(xdTdxT )
= ‖F ‖2F + ‖x‖2 − 2dTFx.

To obtain the last equality we have used the unit norm con-
straint on the atom and the property of the trace operator that
tr(ABC) = tr(BCA). In the last expression, the first two
terms are constant. The third is a scalar product that becomes
minimum when the unit norm atom d has the direction of the
vector that multiplies it, hence the optimal atom is

d = Fx/‖Fx‖. (8)

Among the related algorithms are SGK [8], which uses
only the atom update d = Fx/‖x‖2, which is a least-squares
solution with the same direction as (8) (normalization is made
after all atoms are updated), and NSGK [9], which builds the
matrix F in a different way, using differences of the dictionary
with respect to its previous value. Parallel versions can be
introduced like in [10] for AK-SVD, by updating all atoms
simultaneously.

III. REGULARIZED ALGORITHMS

To extend AK-SVD and the other algorithms cited at the
end of the previous section to regularized criteria, we have to
solve the basic problem (6) with the regularized functions that
appear in (2) and (3). Consider first

min
‖d‖=1,x

{
φµ(d,x)

∆
= ‖F − dxT ‖2F + µ‖x‖2

}
(9)

(The norm of the other representations has been neglected,
since it does not change the outcome.)

When the representation x is fixed, the optimal atom is
obviously the same as for the basic problem and is given by
(8). However, when the atom is fixed, the function

φµ(x) = ‖F ‖2F + (1 + µ)xTx− 2xF Td

is minimized by

x =
1

1 + µ
F Td. (10)

So, the effect of regularization is that the representations are
dampened.

Consider now the basic problem

min
‖d‖=1,x

{
φγ(d,x)

∆
= ‖F − dxT ‖2F + 2γ‖D̄Td‖2

}
(11)

corresponding to the coherence regularized problem (3), where
D̄ is the current dictionary from which atom d has been

Algorithm 1: A step of AK-SVD and regularized versions

Data: current dictionary D ∈ Rm×n
signals set Y ∈ Rm×N

Result: new dictionary D

1 Sparse coding: keeping D fixed, compute sparse
representations X using OMP

2 for j = 1 to n do
3 Update atom dj using (8) or (13)
4 Update its representation using (7) or (10)

removed. (The factor 2 accounts for the symmetry of the
matrix DTD.)

When the atom is fixed, the optimal representation is the
same as in (7). When the representation is fixed, the opti-
mization of the atom leads no longer to an analytic solution.
We propose an efficient alternative that works very well in
practice. If the optimal representation (7) (for the yet variable
atom) is inserted in (11), the function becomes

φγ(d) = ‖F ‖2F − dT (FF T − 2γD̄D̄T )d. (12)

The function is minimized by the eigenvector d corresponding
to the maximum eigenvalue of the matrix H = FF T −
2γD̄D̄T . In the spirit of AK-SVD, we propose to apply a
single iteration of the power method on the matrix H , starting
with the previous version of the atom. So, we compute the new
atom with

d← Fx− 2γD̄D̄Td (13)

then normalize the atom.

IV. NUMERICAL RESULTS

In this section we present numerical simulations for varied
plain and regularized DL algorithms. When applying (9) we
shrinked µ by 5% at each iteration. We measured similar
execution times when using regularization.

As naming convention, we suffix the regularized methods
with ’r’ for representation damping and ’c’ for coherence
reduction. The parallel dictionary update algorithm variants
are prefixed by the letter ’P’. Although we implemented all
the methods mentioned above, for space reasons we report
only the results of the best ones for each type of experiment.

In the following, we compare the resulting dictionary and
sparse representations with the original signals by computing
the root mean square error RMSE = ‖Y−DX‖F√

mN
.

A. Synthetic Data

Our first set of experiments start with an arbitrary dictionary
with n = 50 i.i.d. gaussian atoms of size m = 20 each, from
which we construct a signal set of N vectors, every vector
generated as a linear combination of s different atoms. We
perturb the signals by adding white gaussian noise with SNR
levels of 10, 20, 30 and ∞ dB. Next, we dismiss the original
dictionary and perform DL on the noisy vectors.

In Table I we study the impact of representation damping
(9) for µ = 0.01 and varied sparsity constraints. We used



Table I
RMSE OF PLAIN VERSUS REGULARIZED REPRESENTATIONS (µ = 0.01)

s Method SNR
10 20 30 ∞

3

MOD 0.1170 0.0637 0.0498 0.0529
MODr 0.1202 0.0659 0.0542 0.0505
P-SGK 0.1227 0.0704 0.0574 0.0549
P-SGKr 0.1213 0.0655 0.0589 0.0504
NSGK 0.1242 0.0668 0.0594 0.0577
NSGKr 0.1214 0.0691 0.0538 0.0560

P-NSGK 0.1232 0.0733 0.0570 0.0585
P-NSGKr 0.1237 0.0694 0.0584 0.0608
AK-SVD 0.1199 0.0661 0.0556 0.0576
AK-SVDr 0.1207 0.0670 0.0570 0.0531

6

MOD 0.1242 0.1114 0.1088 0.1084
MODr 0.1240 0.1106 0.1079 0.1071
P-SGK 0.1248 0.1113 0.1090 0.1083
P-SGKr 0.1241 0.1103 0.1079 0.1075
NSGK 0.1241 0.1106 0.1087 0.1075
NSGKr 0.1234 0.1099 0.1082 0.1074

P-NSGK 0.1236 0.1108 0.1086 0.1069
P-NSGKr 0.1239 0.1099 0.1074 0.1069
AK-SVD 0.1254 0.1110 0.1093 0.1083
AK-SVDr 0.1233 0.1105 0.1078 0.1065

9

MOD 0.0834 0.0805 0.0786 0.0779
MODr 0.0818 0.0782 0.0773 0.0759
P-SGK 0.0830 0.0816 0.0794 0.0791
P-SGKr 0.0806 0.0784 0.0769 0.0758
NSGK 0.0811 0.0779 0.0760 0.0761
NSGKr 0.0797 0.0760 0.0747 0.0746

P-NSGK 0.0816 0.0766 0.0760 0.0757
P-NSGKr 0.0794 0.0767 0.0743 0.0746
AK-SVD 0.0843 0.0808 0.0782 0.0790
AK-SVDr 0.0809 0.0784 0.0757 0.0765

12

MOD 0.0472 0.0458 0.0456 0.0463
MODr 0.0423 0.0409 0.0408 0.0415
P-SGK 0.0472 0.0461 0.0453 0.0469
P-SGKr 0.0417 0.0404 0.0402 0.0412
NSGK 0.0450 0.0432 0.0429 0.0432
NSGKr 0.0410 0.0400 0.0389 0.0396

P-NSGK 0.0449 0.0429 0.0421 0.0434
P-NSGKr 0.0408 0.0395 0.0393 0.0399
AK-SVD 0.0468 0.0461 0.0453 0.0468
AK-SVDr 0.0413 0.0405 0.0397 0.0404

signal sets of N = 512 vectors and trained dictionaries for
50 iterations. The results are the average of 10 runs of each
algorithm. MOD is the best for s = 3, but afterwards the
regularized versions are the absolute winners.

We follow with Table II where we depict the results of
applying the coherence reduction (11) for γ = 3 at different
sparsity levels, with N = 1500. Except for s = 4, the
coherence reduction strategy is the ubiquitous winner, the best
results being split between P-SGKc and AK-SVDc. Note that
MOD cannot be adapted to this regularization.

Figure 1 explores the choice of the regularization constants
µ and γ in the upper and the lower panel, respectively. The
experiment was done on the same initial data, with s = 8,
N = 1500 and the SNR at 20dB. Each point on the graph is
an average of 10 runs. The upper panel shows that the optimal
choice for µ is somewhere between 0.1 and 1. We tested in that
interval with µ = {0.3, 0.5, 0.7}. In the lower panel we see

Table II
RMSE OF PLAIN VERSUS COHERENCE REDUCTION (γ = 3)

s Method SNR
10 20 30 ∞

4

P-SGK 0.1279 0.0646 0.0579 0.0519
P-SGKc 0.1367 0.0700 0.0555 0.0556
NSGK 0.1308 0.0684 0.0586 0.0545
NSGKc 0.1412 0.0721 0.0636 0.0593
P-NSGK 0.1336 0.0675 0.0608 0.0580
P-NSGKc 0.1419 0.0781 0.0646 0.0615
AK-SVD 0.1271 0.0668 0.0550 0.0543
AK-SVDc 0.1264 0.0661 0.0583 0.0546

6

P-SGK 0.1431 0.1224 0.1208 0.1222
P-SGKc 0.1419 0.1218 0.1221 0.1237
NSGK 0.1426 0.1226 0.1210 0.1224
NSGKc 0.1435 0.1239 0.1221 0.1237
P-NSGK 0.1433 0.1226 0.1196 0.1226
P-NSGKc 0.1433 0.1240 0.1221 0.1240
AK-SVD 0.1427 0.1218 0.1214 0.1214
AK-SVDc 0.1405 0.1198 0.1183 0.1197

8

P-SGK 0.1169 0.1089 0.1085 0.1068
P-SGKc 0.1108 0.1029 0.1014 0.1007
NSGK 0.1137 0.1067 0.1055 0.1043
NSGKc 0.1119 0.1041 0.1025 0.1010
P-NSGK 0.1138 0.1067 0.1056 0.1042
P-NSGKc 0.1114 0.1041 0.1022 0.1012
AK-SVD 0.1169 0.1093 0.1081 0.1070
AK-SVDc 0.1111 0.1043 0.1027 0.1018

10

P-SGK 0.0846 0.0805 0.0809 0.0813
P-SGKc 0.0748 0.0705 0.0702 0.0708
NSGK 0.0811 0.0767 0.0780 0.0779
NSGKc 0.0759 0.0715 0.0711 0.0713
P-NSGK 0.0804 0.0767 0.0768 0.0770
P-NSGKc 0.0759 0.0709 0.0707 0.0712
AK-SVD 0.0841 0.0813 0.0811 0.0816
AK-SVDc 0.0760 0.0713 0.0719 0.0728

12

P-SGK 0.0574 0.0548 0.0547 0.0553
P-SGKc 0.0452 0.0430 0.0427 0.0426
NSGK 0.0547 0.0523 0.0516 0.0523
NSGKc 0.0458 0.0433 0.0428 0.0431
P-NSGK 0.0538 0.0519 0.0516 0.0516
P-NSGKc 0.0456 0.0434 0.0429 0.0430
AK-SVD 0.0577 0.0556 0.0552 0.0556
AK-SVDc 0.0461 0.0436 0.0432 0.0436

the approximation improvement as we increase the coherence
factor until it stalls past γ = 3.

B. Images

In this section we present a few experiments on real data
collected from the USC-SIPI database. We sample random
8× 8 image patches that we vectorize as a dictionary training
set with N = 2048 signals. We show in Table III the
results, with and without regularization, when performing DL
for a dictionary of n = 128 atoms on for varied sparsity
constraints. Each method executes 50 iterations and each data
point represents an average of 10 runs. We emphasised the
winning variation of each row and for each sparsity level s
we mark the overall winner with an extra † symbol.

Excepting s = 6 where the standard algorithms dominated,
all the other tests clearly indicate the benefit of the regular-
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Figure 1. Final errors averaged over 10 runs for s = 8 with SNR= 20.
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Figure 2. AK-SVD error evolution for s = 8 averaged over 10 runs.

ization for all algorithms but P-NSGKc.
In Figure 2 we show the error evolution of the AK-SVD

algorithm along with its regularized variants for the s = 8
case from Table III. We can see that the curves are similar
in terms of smoothness and descent with the regularization
versions always ahead of the regular AK-SVD.

V. CONCLUSIONS

We have presented regularized versions of AK-SVD and re-
lated algorithms. Extensive numerical experiments have shown

Table III
RMSE OF PLAIN VERSUS REGULARIZED DL

s Method γ = µ = 0 µ = 0.01 γ = 0.3

4

NSGK 0.0367 0.0364 0.0340
P-NSGK 0.0360 0.0358 0.0401
AK-SVD 0.0388 0.0383 0.0349
PAK-SVD 0.0353 0.0352 0.0338†

6

NSGK 0.0269 0.0306 0.0309
P-NSGK 0.0242† 0.0289 0.0392
AK-SVD 0.0296 0.0321 0.0296
PAK-SVD 0.0251 0.0287 0.0285

8

NSGK 0.0269 0.0264 0.0276
P-NSGK 0.0242 0.0241† 0.0462
AK-SVD 0.0296 0.0293 0.0271
PAK-SVD 0.0251 0.0248 0.0246

10

NSGK 0.0236 0.0235 0.0261
P-NSGK 0.0220 0.0215† 0.0551
AK-SVD 0.0270 0.0268 0.0246
PAK-SVD 0.0218 0.0217 0.0220

12

NSGK 0.0220 0.0219 0.0237
P-NSGK 0.0199 0.0193† 0.0486
AK-SVD 0.0257 0.0254 0.0231
PAK-SVD 0.0210 0.0205 0.0202

that, except for very high sparsity, the regularized versions are
able to reach lower values of the representation error and thus
confirm their usefulness in the family of dictionary learning
algorithms.
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