
Overcomplete Dictionary Learning With
Jacobi Atom Updates

Paul Irofti, Bogdan Dumitrescu
Department of Automatic Control and Computers

University Politehnica of Bucharest
313 Spl. Independenţei, 060042 Bucharest, Romania

Email: paul@irofti.net, bogdan.dumitrescu@acse.pub.ro

Abstract—Dictionary learning for sparse representations is
traditionally approached with sequential atom updates, in which
an optimized atom is used immediately for the optimization
of the next atoms. We propose instead a Jacobi version, in
which groups of atoms are updated independently, in parallel.
Extensive numerical evidence for sparse image representation
shows that the parallel algorithms, especially when all atoms
are updated simultaneously, give better dictionaries than their
sequential counterparts.

Keywords—dictionary learning, parallel algorithm, sparse rep-
resentation

I. INTRODUCTION

Sparse representations are the basis for a wide range of very
effective signal processing techniques with numerous applica-
tions for, but not limited to, audio and image processing.

In this paper, we approach the problem of training dictionar-
ies for sparse representations by learning from a representative
data set. Given a set of signals Y ∈ Rp×m and a sparsity level
s, the goal is to find a dictionary D ∈ Rp×n that minimizes
the Frobenius norm of the approximation error

E = Y −DX, (1)

where X ∈ Rn×m is the associated s-sparse representations
matrix, with at most s nonzero elements on each column.
Otherwise said, each column (signal or data vector) from Y
is represented as a linear combination of at most s columns
(atoms) from D. To eliminate the magnitude ambiguity in
this bilinear problem, where both D and X are unknown, the
columns of the dictionary are constrained to unit norm.

Since dictionary learning (DL) for sparse representations
is a hard problem, the most successful algorithms, like K-
SVD [1] (and its approximate version AK-SVD [2]) and MOD
[3], adopt an alternating optimization procedure with two
basic stages. First, fixing the current dictionary D (initialized
randomly or with a subset of Y ), the sparse representations X
are computed with Orthogonal Matching Pursuit (OMP) [4] or
another algorithm. Then, keeping X fixed, a new dictionary
is obtained through various techniques. The second stage,
where the atoms of the dictionary are updated, makes the
main difference between DL algorithms. Recent methods or

This work was supported by the Romanian National Authority for Scientific
Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2011-3-0400.

improvements can be found in [5]–[8]. Overviews of earlier
work and applications are presented in [9], [10].

Excepting MOD, all these DL algorithms update the atoms
one by one, in Gauss-Seidel style. The motivation is the
classical one: an updated atom, assumed to be better than its
previous value, can be used immediately for other updates.
We investigate here the Jacobi version of several algorithms,
where groups of atoms are updated simultaneously. We started
this work in [11], where our study was confined to AK-
SVD, aiming at reducing the dictionary design time on a GPU
architecture. However, extensive numerical evidence shows
that not only this strategy is not worse than the standard
sequential approach, but in many circumstances gives a smaller
representation error (1). This manuscript presents the Jacobi
atom updates (JAU) strategy in section II, its particular form
for a few of the best sequential methods in section III and the
above mentioned numerical evidence in section IV.

As a side remark, the name ”parallel atom updates” (PAU) is
at least as good as JAU to label our approach. Unfortunately,
this name was already used in [8] although the atoms are
updated sequentially there, using several AK-SVD update
sweeps. An idea similar with PAU is called more appropriately
”dictionary update cycles” in [5], in the context of K-SVD. An
algorithm that updates the atoms simultaneously is SimCO
[12]. However, optimal gradient descent is used there, which
makes the algorithm very different from ours and in particular
much more complex.

II. JACOBI ATOM UPDATES STATEGY

The general form of the proposed dictionary learning
method with Jacobi atom updates is presented in Algorithm 1.
At iteration k of the DL method, the two usual stages are
performed. In step 1, the current dictionary D(k) and the
signals Y are used to find the sparse representation matrix
X(k) with s nonzero elements on each column; we used OMP,
as widely done in the literature.

The atom update stage takes place in groups of ñ atoms. We
assume that ñ divides n only for the simplicity of description.
Steps 2 and 3 of Algorithm 1 perform a full sweep of the
atoms. All the ñ atoms from the same group are updated
independently (step 4), using one of the various available rules,
some of them discussed in the next section. Once a group is



Input: current dictionary D(k) ∈ Rp×n

signals set Y ∈ Rp×m

number of parallel atoms ñ
Output: next dictionary D(k+1)

Compute s-sparse representations X(k) ∈ Rn×m

such that Y ≈ D(k)X(k)

for ` = 1 to n/ñ do
for j = (`− 1)ñ+ 1 to `ñ, in parallel do

Update d
(k+1)
j

Normalize: d(k+1)
j ← d

(k+1)
j /‖d(k+1)

j ‖
end for

end for

Algorithm 1: General structure of a DL-JAU iteration

processed, its updated atoms are used for updating the other
atoms; so, atom d

(k+1)
j (column j of D(k+1)) is computed in

step 4 using d
(k+1)
i if

b(i− 1)/ñc < b(j − 1)/ñc, (2)

i.e. i < j and di not in the same group as dj , and d
(k)
i

otherwise. Putting ñ = 1 gives the usual sequential Gauss-
Seidel form. Taking ñ = n leads to a fully parallel update, i.e.
the form that is typically labeled with Jacobi’s name.

The specific atom update strategy of each algorithm is
contained in step 4 while step 5 is the usual normalization
constraint on the dictionary.

The proposed form has obvious potential for a smaller
execution time on a parallel architecture. We lightly touch this
issue here and provide comparative execution times from a few
experiments in section IV; the reader can consult [11] for an
analysis of the GPU implementation of AK-SVD. Our main
focus here is on the quality of the designed dictionary.

III. PARTICULAR FORMS OF THE ALGORITHM

Typically, the atom update problem is posed as follows. We
have the dictionary, denoted generically D, and the associated
representations matrix X and we want to optimize atom dj .
In the DL context, at iteration k of the learning process,
the dictionary is made of atoms from D(k) and D(k+1),
as explained by the phrase around equation (2). We denote
Ij the (column) indices of the signals that use dj in their
representation, i.e. the indices of the nonzero elements on the
j-th row of X . Excluding atom dj , the representation error
matrix (1), reduced to the relevant columns, becomes

F = EIj + djxj,Ij . (3)

The updated atom dj is the solution of the optimization
problem

min
dj∈Rp

‖F − dj xj,Ij‖2F (4)

The norm constraint ‖dj‖2 = 1 is usually imposed after
solving the optimization problem.

AK-SVD. The K-SVD algorithm and its approximate version
AK-SVD [2] consider that xj,Ij is also a variable. Problem (4)

Input: current dictionary D ∈ Rp×n

signals set Y ∈ Rp×m

sparse representations X ∈ Rn×m

number of parallel atoms ñ
Output: next dictionary D
for ` = 1 to n/ñ do

E = Y −DX
for j = (`− 1)ñ+ 1 to `ñ, in parallel do

F = EIj + djxj,Ij
dj = FxT

j,Ij/(xj,Ijx
T
j,Ij )

dj ← dj/‖dj‖2
end for

end for

Algorithm 2: P-SGK Atom Updates

becomes a rank-1 approximation problem, solved by AK-SVD
with a single iteration of the power method:

d
(k+1)
j = F (x

(k)
j,Ij )

T /‖F (x
(k)
j,Ij )

T ‖2
x
(k+1)
j,Ij = FT d

(k+1)
j

(5)

Note that the representations are also changed.

SGK. DL for sparse representations as a generalization of
K-Means clustering (SGK) [6] solves directly problem (4).
This is a least squares problem whose solution is

d
(k+1)
j = FxT

j,Ij/(xj,Ijx
T
j,Ij ). (6)

The atom updates part of the general JAU scheme from
Algorithm 1 has the form described by Algorithm 2, named
P-SGK (with P from Parallel). The error E is recomputed in
step 2 before each group of atom updates, thus taking into
account the updated values of the previous groups. Steps 4
and 5 implement relations (3) and (6), respectively. Step 6, the
normalization, is identical with that from the general scheme.

To obtain the JAU version of AK-SVD (named PAK-SVD),
we replace step 4 by the operations from (5). Note that, for full
parallelism (ñ = n), P-SGK and PAK-SVD are identical, since
the atoms produced by (5) and (6) have the same direction.
For full parallelism the representations updated by PAK-SVD
are not used, while if ñ < n, some updated representations
affect the error matrix from step 2.

NSGK. The update problem (4) is treated in [7] in terms of
differences with respect to the current dictionary and represen-
tations, instead of working directly with D and X . Applying
this idea to SGK, the optimization problem is similar, but with
the signal matrix Y replaced by

Z = Y +D(k)X(k−1) −D(k)X(k) (7)

where X(k−1) is the sparse representation matrix at the
beginning of the k-iteration of the DL algorithm, while X(k)

is the matrix computed in the k-th iteration (e.g. in step 1 of
Algorithm 1). The P-NSGK algorithm (NSGK stands for New
SGK, the name used in [7]) is thus identical with P-SGK, with
step 2 modified according to (7).



TABLE I. BEST RMSE VALUES AFTER 200 ITERATIONS

n = 128 n = 256 n = 512
NSGK 0.0185 0.0168 0.0154

P-NSGK 0.0167 0.0154 0.0139
SGK 0.0201 0.0185 0.0166

P-SGK 0.0165 0.0153 0.0138
AK-SVD 0.0201 0.0184 0.0163

IV. NUMERICAL RESULTS

We give here numerical evidence supporting the advantages
of the JAU scheme. We compare the algorithms PAK-SVD,
P-SGK and P-NSGK with their sequential counterparts. We
report results obtained with the same input data for all the
algorithms; in particular, the initial dictionary is the same. The
sparse representations were computed via OMP.

Dictionary learning. The training signals were images taken
from the USC-SIPI [13] database (e.g. barb, lena, boat, etc.).
The images were normalized and split into random 8 × 8
blocks. The initial dictionary was built with random atoms.

In a first experiment, we used m = 16384 signals of
dimension p = 64 to train dictionaries with a target sparsity
of s = 8. Table I shows the lowest RMSE after k = 200
iterations, averaged over 10 runs, for three values of the
dictionary size n. Among the sequential algorithms, NSGK
is the best, confirming the findings from [7]. However, all
parallel algorithms are better than NSGK.

JAU versus MOD. We now compare the performance in rep-
resentation error of the JAU algorithms with the intrinsically
parallel algorithm named method of optimal directions (MOD)
[3], which updates the dictionary D with the least-squares
solution of the linear system DX = Y . For completeness we
also include the sequential versions on which JAU algorithms
are built. All algorithms performed DL for k = 200 iterations.
Each data point from figures 1–4 represents an average of 10
runs of the same algorithm with the same data dimensions but
with training sets composed of different image patches.

To see how sparsity influences the end result, Figure 1
presents the final errors for several sparsity levels when
performing DL for dictionaries of n = 128 atoms on training
sets of size m = 8192. We notice that for all three algorithms
(NSGK, SGK and AK-SVD) the JAU methods perform similar
to MOD at lower sparsity constraints, but as we pass s = 8
our proposed parallel strategy is clearly better. The sequential
versions always come in last.

Figure 2 presents the final errors for DL keeping fixed m =
12288, s = 12 and varying the number of atoms. Again, the
JAU versions are the winners for all three algorithms. Out of
the sequential algorithms, NSGK is the only one that manages
to out-perform MOD, while the others lag behind coming in
last.

In Figure 3 we kept fixed n = 256 and s = 10 and
performed DL with training sets going from m = 4096 to
m = 16384 signals. JAU stays ahead of MOD almost always,

0.018

0.020

0.022

0.024

0.026

0.028

0.030

0.032

0.034

0.036

4 6 8 10

R
M

SE

NSGK

6 8 10
Sparsity

SGK

6 8 10 12

AK-SVD

Fig. 1. Final errors for different sparsity constraints. Red: sequential versions;
green: JAU algorithms; black: MOD.

0.013
0.014
0.015
0.016
0.017
0.018
0.019
0.020
0.021
0.022
0.023
0.024
0.025

192 320 448

R
M

SE

NSGK

192 320 448
Atoms

SGK

192 320 448

AK-SVD

Fig. 2. Final errors for varied dictionary sizes. Red: sequential versions;
green: JAU algorithms; black: MOD.

except for small signal sets where the results are similar. The
sequential versions are once again the poorest performers.

Finally, we present in Figure 4 the error improvement at
each iteration for all algorithms, for several sparsity levels,
with n = 128, m = 8192. We can see that the JAU
versions can jump back and forwards, especially during the
first iterations. This is likely due to the fact that, initially,
parallel updates do not necessarily progress towards the nearest
local minimum. However, this may be globally beneficial
and ultimately produce a lower representation error. Even
though the JAU convergence is not as smooth as MOD or
the sequential versions, it has a consistent descendent trend.

Execution times. We used OpenCL for our GPU imple-
mentation of the JAU algorithms on an ATI FirePro V8800
card, running at a maximum clock frequency of 825MHz,
having 1600 streaming processors, 2GB global memory and
32KB local memory. For the sequential versions we used a
C implementation that kept identical instructions wherever
possible in order to show the improvements in execution time



0.017

0.018

0.019

0.020

0.021

0.022

0.023

5 8 10 12 14

R
M

SE

NSGK

5 8 10 12 14
Thousands of Signals

SGK

5 8 10 12 14

AK-SVD

Fig. 3. Final errors for varied training set sizes. Red: sequential versions;
green: JAU algorithms; black: MOD.

0.033
0.035
0.037

NSGK SGK

s = 4

AK-SVD

0.028
0.031
0.034 s = 6

0.024
0.028
0.032

R
M

SE s = 8

0.022
0.026
0.030 s = 10

0.018
0.024
0.030

50 100 150 50 100 150
Iterations

s = 12

50 100 150 200

Fig. 4. Error evolution at different sparsity constraints. Red: sequential
versions; green: JAU algorithms; black: MOD.

brought by the JAU strategy. The sequential tests were run on
an Intel i7-3930K CPU working at 3.2GHz.

We present three experiments in Figure 5 where we vary
the sparsity constraint, the number of atoms in the dictionary
and the number of signals in the training set. Again, we
used k = 200 iterations for all methods. For the sparsity
experiment we used n = 128 and m = 8192. When studying
the dictionary impact on the execution performance we kept
fixed m = 12288 and s = 6 and varied the number of
atoms. Finally, we increased the signal set with fixed n = 256,
s = 10.

In all our experiments the JAU versions showed important
improvements in execution time, with speed-up as high as
10.6 times for NSGK, 10.8 times for SGK and 12 times for
AK-SVD. This was to be expected, since JAU algorithms are
naturally parallel in the atom update stage.

V. CONCLUSIONS

We have shown that several dictionary learning algorithms,
like AK-SVD [2], SGK [6] and NSGK [7], benefit from

2.4
2.8
3.2
3.6

2.4
2.8
3.2
3.6

lo
g 1

0
(t
im

e(
s)
)

2.4
2.8
3.2
3.6

6 8 10
Sparsity

192 320 448
Atoms

N
SG

K
SG

K

5 8 10 12 14

A
K

-S
V

D

Signals

Fig. 5. Execution times. Red: sequential versions; green: JAU algorithms.
Number of signals is in thousands.

adopting Jacobi (parallel) atom updates instead of the usual
Gauss-Seidel (sequential) ones. We have also shown that the
new Jacobi algorithms outperform their sequential standard
versions and also other types of algorithms like MOD [3],
having a clearly better behavior with lower execution times.

REFERENCES

[1] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An Algorithm for
Designing Overcomplete Dictionaries for Sparse Representation,” IEEE
Trans. Signal Proc., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[2] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient Implementation
of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit,”
Tech. Rep. CS-2008-08, Technion Univ., Haifa, Israel, 2008.

[3] K. Engan, S.O. Aase, and J.H. Husoy, “Method of Optimal Directions
for Frame Design,” in IEEE Int. Conf. Acoustics Speech Signal Proc.,
1999, vol. 5, pp. 2443–2446.

[4] Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad, “Orthogonal Match-
ing Pursuit: Recursive Function Approximation With Applications to
Wavelet Decomposition,” in 27th Asilomar Conf. Signals Systems
Computers, Nov. 1993, vol. 1, pp. 40–44.

[5] L.N. Smith and M. Elad, “Improving Dictionary Learning: Multiple
Dictionary Updates and Coefficient Reuse,” IEEE Signal Proc. Letters,
vol. 20, no. 1, pp. 79–82, Jan. 2013.

[6] S. K. Sahoo and A. Makur, “Dictionary Training for Sparse Repre-
sentation as Generalization of K-Means Clustering,” Signal Processing
Letters, IEEE, vol. 20, no. 6, pp. 587–590, June 2013.

[7] M. Sadeghi, M. Babaie-Zadeh, and C. Jutten, “Dictionary Learning for
Sparse Representation: a Novel Approach,” IEEE Signal Proc. Letter,
vol. 20, no. 12, pp. 1195–1198, Dec. 2013.

[8] M. Sadeghi, M. Babaie-Zadeh, and C. Jutten, “Learning Overcomplete
Dictionaries Based on Atom-by-Atom Updating,” IEEE Trans. Signal
Proc., vol. 62, no. 4, pp. 883–891, Feb. 2014.

[9] R. Rubinstein, A.M. Bruckstein, and M. Elad, “Dictionaries for Sparse
Representations Modeling,” Proc. IEEE, vol. 98, no. 6, pp. 1045–1057,
June 2010.

[10] I. Tosic and P. Frossard, “Dictionary Learning,” IEEE Signal Proc.
Mag., vol. 28, no. 2, pp. 27–38, Mar. 2011.

[11] P. Irofti and B. Dumitrescu, “GPU Parallel Implementation of the
Approximate K-SVD Algorithm Using OpenCL,” in EUSIPCO, Lisbon,
Portugal, 2014.

[12] W. Dai, T. Xu, and W. Wang, “Simultaneous Codeword Optimization
(SimCO) for Dictionary Update and Learning,” Signal Processing, IEEE
Transactions on, vol. 60, no. 12, pp. 6340–6353, 2012.

[13] A.G. Weber, “The USC-SIPI Image Database,” 1997.


