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Abstract: This paper deals with the problem of fault detection and isolation in water networks.
We consider classification strategies for sensor placement and subsequent dictionary learning
and classification for accurate fault detection and isolation. Various sensor placement strategies
are proposed and it is shown that faults with varying magnitudes are correctly identified in a
detailed emulation benchmark.
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1. INTRODUCTION

The underlying infrastructure which delivers the basic ser-
vices (electricity, transport, communication, etc.) of today
is becoming increasingly connected and automated. Con-
sequently, issues which are well-understood (and manage-
able) for small-sized systems have become challenging or
are still open for improvement in systems with structural
impediments for observation, control and communication
Siljak (2011); Ocampo-Martinez and Negenborn (2015).

A prime example is the analysis of abnormal behavior
in distributed water networks Perez et al. (2014); Ulan-
icki et al. (2007); Araujo et al. (2006). In particular, we
are interested in the fault detection and isolation (FDI)
of leakages. While apparently simple (since the leakage
directly manifests as a loss of pressure), a typical net-
work may have thousands of junctions but only a limited
number of sensors (expensive and hard to install) can be
placed. This means that usually a sensor cannot directly
measure a fault but rather its influence along the network
of junctions and pipes. Compounding the problem, the
network dynamics are nonlinear and thus impractical for
a model-based analysis.

In light of the previous remarks it is clear that the
placement of the sensors is of utmost importance as it
maximizes the chances of detecting and isolating a leakage.
The usual approach in the literature is either exhaustive
(where all possible combinations are tested) or heuristic.
For the latter, genetic algorithms are usually employed
Pérez et al. (2009); Casillas et al. (2013). Once the sensors
are placed, residual signals (usually the offset between an
expected/nominal pressure and the actual measurement)
are used to detect and isolate the fault Blanke et al. (2006).

Dictionary learning (DL)(Tosic and Frossard (2011)) for
sparse representations (SR) is a relatively new and active
research topic in the signal processing community with
multiple applications such as segmentation, compression,

detection, classification, and denoising which shows good
results when dealing with audio, image or video processing
across varied domains like tomography, magnetic reso-
nance imaging, facial recognition, and astronomy.

In this paper we investigate the application of DL tech-
niques for sensor placement and fault detection in water
distribution systems, which to our knowledge has not been
tried before.

At the core of our sensor placement strategy stands the
orthogonal matching pursuit(OMP)(Pati et al. (1993))
method, which is an almost ubiquitous greedy sparse
representation algorithm in the DL field, preferred for its
speed and theoretical guarantees (Davenport and Wakin
(2010); Dziwoki (2016)). This approach allows to select the
most “popular” nodes for sensor placement.

Next we approach FDI through DL with LC-KSVD (Jiang
et al. (2013)) which is the classification variant of the
popular K-SVD(Aharon et al. (2006)) algorithm that adds
labeling and discriminative properties to the dictionary
atoms.

More precisely, we consider the faults affecting a given
node as representing a class and train the dictionary such
that its atoms discriminate between these classes. The
active atoms for a certain class (fault) are seen as a
fault signature against which other residual signals will be
tested. I.e., the fault signature obtained permits to detect
the apparition of a fault and, subsequently, to isolate it
(as long as the signature is unique w.r.t. the other possible
faults).

In the simulations we consider multiple magnitudes and
discuss different sensor deployment strategies.

The rest of the paper is organized as follows. Section 2
provides a description of the problem. The main idea is
detailed in Section 3, additional results are presented in
Section 4 and the conclusions are drawn in Section 5.
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Fig. 1. Hanoi water network.

2. PROBLEM DESCRIPTION

A water network can be interpreted as a graph (N ,L)
where the nodesN = N t∪N j are either tanks or junctions
(the former are flow sources, the latter distribute the
existing flow to users and connecting pipes) and edges
lij ∈ L which are the pipes linking nodes (e.g., lij denotes a
pipe between i, j ∈ N ). For further use we note 1 |N j | = n.

2.1 Network dynamics

From our point of view, the characteristic of a junction
node i ∈ N j is its pressure pi(t). This characteristic is
influenced by the network structure, user demand and,
not in the least, by external perturbations (e.g., junction
leakages). While in theory the pressure evolution

ṗi(t) = gi1(pi(t)) + gi2(pj(t)), ∀j s.t. lij ∈ L (1)

can be described analytically, the associated nonlinear
dynamics are impractical to use (Casillas et al., 2013).

An idea is to measure the pressure values against some
known nominal value (usually taken in the middle of
the night when user demand can be ignored) in order
to detect abnormal behavior. Unfortunately, the sensors
used for measuring the pressure are expensive to buy
and install. Coupled with the fact that real-life networks
may have thousands of nodes it becomes clear that only
a limited number of junctions can be observed directly.
Consequently, the main question becomes how to place
this limited number of sensors such that leakage events
are correctly identified as much as possible.

To answer these questions, hereinafter we make use of the
EPANET software (Rossman (2000)), a standard tool for
water network emulation. As a particular benchmark (also
used routinely in the community) we consider the Hanoi
water network (Casillas et al. (2013)). An illustration of
this network is given in Fig. 1. The main characteristics are
as follows: one tank and 31 junction nodes linked through

1 Hereafter, notation |X| denotes the cardinality of set X, i.e., its
number of elements.

34 pipes (each of them with a certain length and diameter);
each junction node can be affected by a leakage (taking
values from within a predefined range) and some of the
nodes will have sensors mounted on them (see the figure
legend for a representation of each of these elements).

2.2 Fault scenarios

The junction node pressure can be affected by a node
leakage. We interpret such an event as a fault, that is,
a junction node i ∈ N j can be affected by a fault event

fi(t) ∈ {0, 2, 3, . . . 33} L/min (2)

where ‘0’ stands for healthy functioning and the remain-
ing non-zero values stand for faulty functioning with
various fault magnitudes 2 . For further use we partition
magnitudes (2) into three disjoint sets: {0}, Itrain =
{2, 4, . . . , 32} and Itest = {3, 5, . . . , 33}. We also note
m = |Itrain| = |Itest|.
A typical fault scenario consists of one (or multiple)
faults affecting junction nodes either directly or through
propagation. Hence, (1) becomes:

ṗi(t) = gi1(pi(t), fi(t)) + gi2(pj(t), fj(t)), ∀j s.t. lij ∈ L,
(3)

where fi(t) affects the current node and the terms pj(fj)
gather the influences of the other nodes (healthy or faulty),
as they are transmitted through the network’s pipes.

To detect and isolate a fault we require residual signals
(Blanke et al. (2006)) which emphasize the faults’ effect
and minimize other influences. Hence, for a junction node
ni we consider

ri(t) = pi(t)− p̄i (4)

where p̄i corresponds to a stationary pressure value, mea-
sured when the network is under healthy functioning
and the external disturbances are reduced to a minimum
(no user demand). For further use we define p(t) =

[. . . pi(t) . . .]
⊤ ∈ Rn, p̄ = [. . . p̄i . . .]

⊤ ∈ Rn and r(t) =

[. . . r(t) . . .]
⊤ ∈ Rn.

2 We have abused the notation and used fi(t) both as a fault signal
and as a magnitude measurement.
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Fig. 2. Fault detection and isolation via dictionary classification with sensor placement in the Hanoi water network.

3. MAIN IDEA

Since a model-based approach is impractical (due to the
network size and its underlying nonlinear dynamics) we
consider here a numerical approach. We use Fig. 2 to
illustrate the reasoning.

In the three stacked sub-plots of Fig. 2 we have illustrated
the residuals (4) for each of the 31 junction nodes for three
fault scenarios: leakage in nodes 5, 12 and 27 (not hap-
pening simultaneously), each of them for fault magnitudes
fi ∈ Itrain. As expected, the residual values are largest in
the node directly affected by the fault (red markers) and
increase proportionally with the fault magnitude.

Clearly, if each node would have a sensor, the leakage
localization would be easily decided. Assuming instead
a limited number of sensors (e.g., s = 4), the question
becomes which is the best node placement such that as
many as possible faults are detected and isolated 3 . The
sensor locations illustrated in the figure are {9 ,12, 15 and
30} and are obtained as the result of selecting the most
“popular” locations with a classification procedure. These
represent the measured subset of residuals and will be the
only information further used.

The solution, as detailed in the rest of the paper, is to
construct a dictionary of atoms (255 in this example)
over which we project the measured residual values with a
sparsity constraint. That is, each of the measured residuals
is expressed as a combination of a limited number of atoms
(i.e., active atoms). These active combinations are in fact a
fault signature which uniquely characterizes a certain fault
(and its magnitude). This is graphically depicted in the
right-most plot of Fig. 2: the blue solid markers denote all
atoms which are active for all possible fault magnitudes for
a given node. As it can be seen, there are clear differences
between the subsets of active atoms.

If we assume particular fault magnitudes, e.g, f5 = 11,
f12 = 29 and f27 = 17 L/min (black lines in the three
stacked left-plots) the uniqueness of the active atoms
becomes clear (the hollow black circles in the right-most
plot).

3 We are interested in isolating the fault-affected node, not about
the magnitude of the fault since, once the leakage is localized, the
repair team will in any case assess the magnitude.

3.1 Dictionary learning elements

In our study we use SR for sensor placement. Let y be an
observed dense signal and A an overcomplete feature base,
that is known and fixed, such that

minimize
x

y = Ax

subject to ∥x∥0 ≤ s,
(5)

where ∥.∥0 is the ℓ0 pseudo-norm counting the non-zero
elements of x and s is the sparsity constraint. To solve the
sparse representation problem in (5) we need to find the
support Is consisting of at most s columns from A and
the corresponding coefficients.

Dictionary learning improves SR by learning the base A
from (5) for specific signal classes. Starting from a large
set of training data Y ∈ Rp×m, the DL problem tries to
find an overcomplete base that is commonly denoted by
D ∈ Rp×n, with p < n, called dictionary, that can sparsely
represent each data-item by using just a few columns
(also called atoms) from the dictionary. Given the sparsity
constraint s, we formally express this as the optimization
problem

minimize
D,X

∥Y −DX∥2F
subject to ∥Xi∥0 ≤ s, i = 1 : m

∥Dj∥2 = 1, j = 1 : n,

(6)

where ∥.∥F is the Frobenius norm, X ∈ Rn×m are the
resulting sparse representations of the signals Y . We nor-
malize all atoms Dj to avoid the multiplication ambiguity
resulting from the DX factorization.

We can adapt the dictionary D to be better suited for
classification by specializing subgroups of atoms to act as
labels for a particular class (i.e., for a particular fault,
regardless of its magnitude). This is useful when perform-
ing fault detection for water network systems, but also for
analyzing various sensor placement scenarios. To that end,
LC-KSVD (Jiang et al. (2013)) obtains such discriminative
dictionaries by regularizing the objective in eq. (6):

minimize
D,X,A,W

∥Y −DX∥2F + α∥Q−AX∥2F+

+ β∥H −WX∥2F
subject to ∥Xi∥0 ≤ s, i = 1 : m

∥Dj∥2 = 1, j = 1 : n,

(7)



where the first penalty term adds consistent labeling
properties to the sparse entries of each sparse code Xi

and the second reduces classification error by learning the
linear operator W . Each column i of the binary matrix Q
has non-zero entries in the places where the input signal
Yi and the atom Di share the same label. Thus matrix A is
a linear transformation encouraging discrimination in the
sparse representations X. For minimizing the classification
error, H is built with its columns as standard basis vectors
ei where i is the class label of the corresponding training
signal from Y . The resulting matrix W represents the
classifier parameters.

3.2 Sensor placement algorithm

OMP iteratively solves (5) by selecting at each step the
atom that correlates the most with the current residual
and then projects the signal to the span of the selected
atoms. In the following OMP will be used for sensor
placement analysis.

In our water network, given a network of n nodes, we want
to isolate the fault as best as possible with a few given
sensors that we conveniently denote with s.

Recalling the definition of (4) and the related terms,
taking the m fault magnitudes from Itrain, we organize the
residuals as columns inside the residue matrix R ∈ Rn×nm

R = [r1,1 r1,2 . . . r1,m | . . . |rn,1 rn,2 . . . rn,m] . (8)

The matrix is divided into n blocks, in which each column
represents the residuals for each of the m fault magnitudes
(i.e., ri,j is the residual associated with a fault of magni-
tude ‘j’ affecting the i-th node).

Recalling Fig.2, R reflects the network topology with most
pressure changes taking place in the affected node and
its closest neighbours, while distant nodes have small or
insignificant fluctuations. Thus the significant entries, or
support, of each column from R are almost the same within
one node block and their value varies based on the fault
magnitude.

The simulated data in R was collected as if we had a
pressure sensor in every network node. When dealing with
less ideal scenarios s ̸= n, for each column r of R we use
OMP to find its vector approximation x by reformulating
(5) as

minimize
x

∥r − Inx∥22
subject to ∥x∥0 ≤ s.

(9)

Using the standard basis as the fixed dictionary comes
naturally: when s = n we get pressure data from each
node x = r and, when s < n, OMP selects a subset of unit
vectors from In that model r best, which is equivalent to
performing sensor placement for this specific data-item.
The end result is a matrix X ∈ Rn×nm whose columns use
at most s atoms from In to approximate the corresponding
vectors from R.

Graphically, the result of the iterative application of (9)
leads to Fig. 3. The i-th row corresponds to the i-th atom
(or in other words “sensor placed at the i-th position”)
and the number of non-zero entries tells how many times
it has been used in the description of the residuals from
(8). Conversely, the j-th column puts in evidence the

s = 4 most significant atoms which approximate the
corresponding residual signal from (8).
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Fig. 3. Dictionary classification for sensor placement (the
case s = 4).

As seen in the figure, each residual “proposes” a different
combination of sensor placements. The decision on how to
select overall the “best” s sensors can be taken in multiple
ways. In here we considered:

(1) Count how many times each atom appears and select
the first ‘s’ most common;

(2) From each block of m columns (corresponding to the
m different magnitudes affecting a given node) take
the most ‘s’ frequently used atom; of the ‘n ·s’ atoms,
select again the first ‘s’.

Applying these selection procedures to the example from
Fig. 3 leads in case 1 to sensor placement in nodes
{15, 12, 30, 9} and in case 2 to {22, 26, 12, 31}. Fig. 4
illustrates the selected nodes (filled circle denotes case
(1) and hollow circle denotes case (2)). We observe that
repeating for various number of sensors (s = 2 : 10) there
is significant variation in the node selection with respect
to the number of sensors (and between the two selection
procedures considered).
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Fig. 4. Node placement selection for different number of
sensors.

3.3 Fault detection and isolation implementation

The fault detection and isolation step requires again the
tools of Section 3.1. This time we obtain simultaneously
both the dictionary and the indices of its active atoms
for a given measured residual as in (7). For training
we use the measured residual matrix (the rows from (8)
which correspond to sensor placements, as obtained in
Section 3.2). This will lead, as the result of optimization
problem (7), to a dictionary which discriminates between
31 classes (one per each fault).

For illustration purposes we use parameters α = 4, β = 2,
dictionary size n = 248 and number of active atoms is 30



per measured residual. In Fig 5 we show the active (solid
circle) atoms for each residual vector. In the detail plot we
can see the active atoms for the faults corresponding to
node 17. As it can be seen, the active atoms remain largely
unchanged (regardless of the fault magnitude) and the
resulting support is unique with respect to the other faults
(i.e., the combination of atoms {8, 29, 36, 38, 41, 113, 179}
uniquely characterizes the fault in node 17).
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Fig. 5. Active atoms for residual vectors in the Hanoi
network (with detail for the fault 17).

With the fault signatures thus obtained it is now possible
to test whether different residual signals can be correctly
classified (i.e, if the fault affecting them is correctly iso-
lated). To do so, and similarly with (8), we construct
residuals (4) but this time for fault magnitudes taken from
Itest. We depict in Fig. 6 the projection of the residual
corresponding to fault f17 = 17 and observe that the
signature of active atoms closely resembles the signature
obtained for fault f17 in Fig. 5. That is, the active atoms
are {29, 38, 113 and 179} with weights {−0.128, 0.0027,
0.0013, 3.5619} (in the figure we scaled x 7→ log |x| to
better highlight the weights of the active atoms) which
are 4 of the 7 atoms characterizing the class of fault f17.
Therefore we can conclude that the test residual indeed
corresponds to this fault.
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Fig. 6. Active atoms for residual vector corresponding to
fault f17 = 17.

Up to now we have illustrated the fault detection and
isolation for a specific number of sensors (s = 4). We
are interested to test the performance of the training and
subsequent classification for a varying number of sensors
and placement strategies. To this end, we consider the
data from Fig. 4 and obtain the results shown in Table 1,
where the number of sensors varies (s ∈ {2 . . . 10}) and the
percentage of successful FDI is shown for each of the two
sensor placement strategies described in Section 3.2.

s 2 3 4 5 6 7 8 9 10

(1) 73.0 88.3 85.9 88.7 80.4 85.9 89.3 87.7 80.0

(2) 57.9 86.1 86.3 83.3 86.5 89.5 88.9 90.9 89.5

Table 1. Successful FDI percentage for sensor placement
cases 1 and 2.

We proceed with an overview of the steps required for
the initial network setup and for performing online fault
detection and isolation.

The first part is described by Algorithm 1 which handles
sensor placement and dictionary learning for fault detec-
tion and isolation. Step 1 uses one of the two strategies
for sensor placement, described earlier, to obtain the set
of nodes Is where the given s sensors will be mounted.
We then construct the training data RIs by eliminating
the rows from the residual matrix R corresponding to
the nodes without sensors. Step 2 is required so that RIs
mimics the data we will receive from the sensors when the
water system is running. Step 3 trains the dictionary D
and the linear classifier W based on the residues RIs , using
parameters α and β for tweaking the DL regularization as
described around eq. (7).

Algorithm 1: Placement and FDI learning

Data: training residuals R ∈ Rn×nm

parameters s, α, β
Result: dictionary D, classifier W , sensor nodes Is

1 Select s sensor nodes Is based on matrix R as in
Section 3.2;

2 Let RIs be the restriction of R to the rows in Is;
3 Use RIs , α and β to learn D and W from (7);

Algorithm 2 is used for fault detection and isolation.
Given mn residuals obtained with (4) from the s placed
sensors, we start by computing the discriminative sparse
representations Xk using the learned dictionary D for each
residue Rk (step 2). Step 3 applies the linear classifier W
and produces the label vector Lk ∈ Rn. The position c
of its largest entry corresponds to the predicted class (or
node) where the fault took place (Step 3).

Algorithm 2: Fault detection and isolation

Data: testing residuals R ∈ Rs×mn

dictionary D, classifier W
Result: prediction P ∈ NK

1 for k = 1 to mn do
2 Use OMP in (5) to obtain Xk using Rk and D ;
3 Label: Lk = WXk ;
4 Classify: Pk = argmaxc Lk ;
5 end



4. ADDITIONAL RESULTS

While the previous scheme has given satisfactorily results
we are interested in additional use cases. Some of them are
discussed below.

4.1 Network partitioning

From a practical point of view (i.e., repairing a detected
leakage) it makes sense to divide the network into parts
combining adjacent nodes. Taking into account the length
of the pipes we consider then the partitioning (also de-
picted in Fig. 1, dashed contours):

{1, 2, 3, 4, 16, 17, 18}, {5, 6, 7, 8, 13, 14, 15}, {9, 10, 11, 12},
{19, 20, 21, 22}, {23, 24, 25, 26, 27, 28, 29, 30, 31}.

In this case, the fault is associated with the nodes of
a partition (hence we have 5 composite faults, one per
each partition). Implementation-wise this means that the
dictionary from (7) is not trained to discern between the
nodes of a partition (since they are of the same class).
Note that the dictionary training takes into account the
partitioning, it is not simply a grouping of nodes to cover
observed wrong FDI labeling (i.e., the dictionary atoms are
re-computed and the number of classes is changed from 31
to 5). The result of applying the procedure 4 as in Table 1
leads to the results of Table 2:

s 2 3 4 5 6 7 8 9 10

(1) 96.2 94.2 97.0 97.2 97.2 96.6 85.1 96.2 100.0

(2) 94.0 95. 96.2 96.4 95.6 96.2 96.2 96.0 98.2

Table 2. Successful FDI percentage for sensor placement
cases 1 and 2 – with network partitioning.

As it can be seen, the success coefficient is significantly
larger. The drawback is of course that the fault cannot be
localized to a single node.

4.2 Staggered sensor deployment

Another aspect of practical interest is the sensor deploy-
ment. Assuming that some of the network nodes already
have sensors, the question arises of how to place the
additional sensors such that overall the FDI accuracy
increases. This is tested by considering two scenarios: i)
place s = s′ + s′′ in one step and ii) place s′ and after, the
remaining s′′. We take s′ = 4 and s′′ = 3 and observe that
in case (i) the selected nodes are {9, 28, 12, 31, 24, 7, 25}
with an FDI accuracy of 89.7% whereas in case (ii) we
obtain {9, 30, 12, 15} and then {29, 8, 10} with an overall
FDI accuracy of 89.3%. We note that the selections differ
but still the accuracy FDI is nearly the same.

5. CONCLUSION

We have shown that classification and dictionary learn-
ing can be adapted to the the twin problems of sensor
placement and leakage isolation in a water network. The
results have shown good accuracy and pointed towards
some promising directions of study like: network partition-
ing, tweaking of the dictionary learning procedure, and
alternative sensor placement strategies.
4 The sensor selections are the same as in the first case since this
part of the algorithm does not change.

ACKNOWLEDGEMENTS

This work was supported by the Romanian National
Authority for Scientific Research, CNCS - UEFISCDI,
project number PN-II-RU-TE-2014-4-2713.

REFERENCES

Aharon, M., Elad, M., and Bruckstein, A. (2006). K-
SVD: An Algorithm for Designing Overcomplete Dic-
tionaries for Sparse Representation. Signal Process-
ing, IEEE Transactions on, 54(11), 4311–4322. doi:
10.1109/TSP.2006.881199.

Araujo, L., Ramos, H., and Coelho, S. (2006). Pressure
control for leakage minimisation in water distribution
systems management. Water Resources Management,
20(1), 133–149.

Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M.
(2006). Diagnosis and fault-tolerant control. Springer.

Casillas, M.V., Puig, V., Garza-Castanón, L.E., and
Rosich, A. (2013). Optimal sensor placement for leak
location in water distribution networks using genetic
algorithms. Sensors, 13(11), 14984–15005.

Davenport, M.A. and Wakin, M.B. (2010). Analysis
of orthogonal matching pursuit using the restricted
isometry property. IEEE Transactions on Information
Theory, 56(9), 4395–4401.

Dziwoki, G. (2016). Averaged properties of the residual
error in sparse signal reconstruction. IEEE Signal
Processing Letters, 23(9), 1170–1173.

Jiang, Z., Lin, Z., and Davis, L.S. (2013). Label consis-
tent K-SVD: Learning a discriminative dictionary for
recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(11), 2651–2664.

Ocampo-Martinez, C. and Negenborn, R. (2015). Trans-
port of Water versus Transport over Water. Springer.

Pati, Y.C., Rezaiifar, R., and Krishnaprasad, P.S. (1993).
Orthogonal matching pursuit: Recursive function ap-
proximation with applications to wavelet decomposi-
tion. In Conference Record of The 27th Asilomar Con-
ference on Signals, Systems and Computers, 1–3.
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