
Fault Handling in Large Water Networks with Online Dictionary Learning

Paul Iroftia,1,∗, Florin Stoicanb, Vicen Puigc

aDepartment of Computer Science and the Research Institute of the University of Bucharest (ICUB), Romania.
bDepartment of Automatic Control and Computers, University Politehnica of Bucharest, Romania

cUniversitat Politcnica de Catalunya, Institut de Robtica i Informtica Industrial (CSIC, UPC), Barcelona, Spain

Abstract

Fault detection and isolation in water distribution networks is an active topic due to the nonlinearities of flow propagation and
recent increases in data availability due to sensor deployment. Here, we propose an efficient two-step data driven alternative: first,
we perform sensor placement taking the network topology into account; second, we use incoming sensor data to build a network
model through online dictionary learning. Online learning is fast and allows tackling large networks as it processes small batches
of signals at a time. This brings the benefit of continuous integration of new data into the existing network model, either in the
beginning for training or in production when new data samples are gathered. The proposed algorithms show good performance in
our simulations on both small and large-scale networks.
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1. Introduction

Water distribution networks (along electricity, transport and
communication ones) are a critical infrastructure component.
Thus, modeling and observability issues are of paramount im-
portance and have to be handled through increases in connec-
tivity, automation and smart metering.

In particular, pipe leakages (assimilated hereinafter with fault
events) have to be detected and isolated as soon and as pre-
cisely as possible. While apparently straightforward (the leak-
age leads to a measurable loss of pressure), several issues con-
spire in increasing the scheme’s difficulty:

i) disparity between the number of nodes (hundreds /thou-
sands in a large-scale network) and of sensors (expen-
sive/hard to install, hence at most tens) [1, 2, 3];

ii) water network dynamics are strongly nonlinear and de-
mand uncertainties are significant [4, 5].

Hence, sensors have to be placed to provide network-wide rel-
evant information while pressure and flow information is ob-
tained either through emulation [6] or experimentally [7]. Such
data driven analysis naturally leads to heuristic implementa-
tions which come with specific caveats:

i) heuristic methods use the data agnostically and ignore in-
formation about network structure/particularities;

ii) network size may lead to implementations which clog the
resources or are bogged by numerical artifacts.

In light of the previous remarks, it is clear that the main is-
sues are sensor placement and subsequent fault detection and
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isolation (FDI) mechanism. For the former, we propose a novel
Gram-Schmidt graph-aware procedure and for the later we con-
sider a dictionary learning (DL) approach.

Specifically, we assign the faults affecting a given node to a
class and train a dictionary such that its atoms discriminate be-
tween these classes. The subsequent classification of a signal in
terms of the dictionary’s atoms serves as proxy for FDI. The ac-
tive atoms for a certain class are seen as a fault signature which
unambiguously asserts FDI (if the signature is unique w.r.t. the
other possible faults).

DL [8] is an active research topic in the signal processing
community providing machine learning algorithms that build
linear models based on the given (obtained from processes with
nonlinear dynamics) input data. Its applications to classification
tasks [9] in general and online classification [10] in particular
provide fast and memory efficient implementations well suited
for IoT devices and for online production usage. Furthermore,
DL methods are known to be robust to various types of noises
and perturbations [11], a key property for our application.

Our previous work [12, 13] has shown encouraging results
when adapting DL classification for FDI in water networks.
In this paper, we propose new methods that tackle large dis-
tribution networks and lift data dimensionality limitations by
employing online DL strategies (which process data in small
batches which translate into smaller computation complexities).
This leads to a small decrease of the FDI performance as com-
pared to a method handling the whole data set at once, however
this is quickly attenuated as more data is processed.

In simulations, we consider both the proof-of-concept bench-
mark “Hanoi network” and a generic large-scale network [14].
Furthermore, we use multiple demand profiles, fault magni-
tudes and discuss different sensor placement strategies and suc-
cess criteria.
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2. Preliminaries

A passive water network (i.e., without active elements like
pumps) consists of one or more tank nodes (whose heads2

remain constant) which feed a collection of junction nodes
through a network of interconnected pipes. From a modeling
perspective, the question is what are the flows through the pipes,
what are the heads through the junction nodes and how do these
variables depend on user demand (outflows from some or all of
the junction nodes) and unexpected events (in our case: pipe
leakages).

2.1. Steady-state behavior

The dynamics of the network are usually ignored. This is a
reasonable assumption as long as demand variation is slow and
unexpected events (e.g., leakages) are rare. In other words, any
transient-inducing event is sufficiently rare and the transients
themselves are sufficiently fast such that it is a fair approxi-
mation to consider the system at equilibrium [5]. Since water
is incompressible the relevant physical laws which apply are
those of mass and energy conservation. First, the inflows and
outflows passing throughout a junction node have to balance:

n∑
j=1

Bi jq j = ci (1)

where q j is the flow through pipe j, ci is the consumption of
node i and B is the adjacency matrix of the network, i.e., Bi j

takes one of the following values:

Bi j =


1, if pipe j enters node i;
0, if pipe j is not connected to node i;
−1, if pipe j leaves node i.

(2)

Next, the empiric Hazen-Williams formula [15] gives the head
flow variation between nodes i, j linked through a pipe with
index ` (we assume that the pipe of index ` links the i, j-th
nodes):

hi − h j =
10.67 · L`

C1.852
`
· D4.87

`

· q` · |q` |0.852 (3)

where L` is the length in [m], D` is the diameter in [m] and C`

is the adimensional pipe roughness coefficient; the flow q` is
measured in [m3/s].

Using (3) we express the flow in terms of the associated head
flow hi − h j:

q` = G0.54
i j (hi − h j)|hi − h j|

−0.46 (4)

where Gi j is the pipe conductivity, defined as

Gi j =
1

Ri j
=

C1.852
`
· D4.87

`

10.67 · L`
. (5)

2In the water network parlance, “head” denotes the height of the column of
water in a node wrt a common ground level.

Noting that the `-th line of the column vector −B>h returns
the difference hi − h j and combining (1) with (4) leads to the
nonlinear steady-state relations:

BG
[(
−B>h + B>f h f

)
×

∣∣∣−B>h + B>f h f

∣∣∣−0.46
]

= c, (6)

where G = diag (G`) and ‘×’ denotes the elementwise mul-
tiplication of two vectors (i.e., the i-th element of x × y is
[x × y]i = xiyi). Note the addition of term B>f h f which de-
scribes the influence of fixed-head nodes (the tanks which feed
the network). For further use, we denote with N the number of
junction nodes.

2.2. Node consumption

Assuming that all the parameters of (6) are known (gathered
in the left side of the equation), there still remains the node con-
sumption c as a source of uncertainty. Historically user demand
data has been acquired sparsely or not at all. Most common ap-
proaches are to consider a consumption profile (usually with a
week-long period) and scale it wrt the total consumption in the
network:

ci(t) =
c̄i∑

j
c̄ j
· p(t) · qin(t) + ηi(t), (7)

where p(t) and qin(t) are the consumption profile and, respec-
tively, the total water fed to the network at time instant t; c̄i de-
notes the base demand for the i-th node and ηi(t) covers ‘nom-
inal’ (those occurring under healthy functioning) uncertainties
affecting the i-th node (without being exhaustive: normal user
variations, seasonal and holiday variations, small leakages).

The issue of interest is how to detect and isolate a pipe leak-
age. We note that a pipe leakage means a loss of flow and thus
a loss of head in the network’s nodes. We then interpret pipe
leakage as an additive term in the node consumption value3:

ci(t) =
c̄i∑

j
c̄ j
· p(t) · qin(t) + ηi + fi. (8)

For further use, we consider that the profile p(t) can take values
from a collection of P profiles {p1(t), . . . , pP(t)}.

Remark 1. This means that the active profile in (7)–(8) may be
unknown at measuring time. This additional uncertainty may
hide water losses due to pipe leakages. The preferred solution is
in practice to measure total water demand qin(t) at times when
user demand is minimal (middle of the night). At this time, de-
viations due to leakages represent a larger percentage from the
total consumption (wrt the uncertainty due to the profile). Thus,
a change from the expected value may signify that leakages are
present (in FDI parlance, a fault is detected). �

3Hereafter when we speak about isolating a leakage we refer to identifying
the node directly affected by the pipe leakage. The actual leakage isolation
means checking the pipes which enter into the node.

2



100
1350

900

11
50

14
50

45
0

85
0

85
0

80
0

95012003500 800 500 550

27
30

17
50

80
0

40
0 2200 1500 500

26
50

12
30

13
00

850300750

1500

20
00

16
00

150

860

950

1

23

4

5
6

7

8

9101112 13 14 15

16

17

18

19 20 21

22

23

242526

27

28

29

30

31

junction node

tank node

node with sensor

pipe connection

fault event

legend

Figure 1: Hanoi water network.

2.3. Leakage isolation and residual generation

The issue of leakage isolation still remains. To asses the leak-
age events we have to compare the “healthy” (nominal) behav-
ior, as given in (7), with the measured (and possibly faulty, as
given in (8)) behavior of the network’s nodes. This is done
through a residual signal which is [16]: i) constructed from
known quantities; ii) sensitive to a fault occurrence4; and iii)
robust, in as much as is possible, to normal variations.

For further use we make a couple of assumptions.

Assumption 1. We consider that there are no multiple fault oc-
currences in the network (i.e., the network is either under nom-
inal functioning or with a single node under fault). �

Assumption 2. Without loss of generality we assume that
the fault magnitude values are the same for each node and
are taken from a finite collection (M possible values from
{m1, . . .mM}). �

For further use we consider the nodes’ head as a proxy for
fault occurrences and use its nominal (h̄) and measured values
(ĥ) to construct the residual signal. The following aspects are
relevant:

• as per Remark 1, we consider an interval K in which the
head values remain relatively constant and average over it
to obtain the “steady-state” nominal / measured head val-
ues:

h̄ =
1
|K|

∑
k∈K

h̄[k], ĥ =
1
|K|

∑
k∈K

ĥ[k]. (9)

• the residual may be defined in absolute or relative form,
i.e.:

rA = ĥ − h̄, rR =
ĥ − h̄

h̄
. (10)

Whenever the residuals’ type (absolute or relative) are not
relevant we ignore the superscripts ‘A,R′.

4Hereinafter, to keep with the FDI context we denote a ‘leakage event’ as a
‘fault occurrence’.

• assuming that the i-th node is under fault with magnitude
m j and that the network functions under profile pk, we
note5 the head values with ĥk

i j and corresponding residual
with rk

i j.

For further use we gather all the residual vectors rk
i j into the

residual matrix6 R ∈ RN ×D:

R =

[
r1

11 r1
12 . . . r1

1M . . . rP
11 rP

12 . . . r
P
1M︸                                     ︷︷                                     ︸

f1

. . .

r1
N1 r1

N2 . . . r
1
NM . . . rP

N1 rP
N2 . . . r

P
NM︸                                        ︷︷                                        ︸

fN

]
(11)

Remark 2. The residual ordering inside the matrix is not es-
sential. It was chosen thus to make easier the grouping after
fault occurrence (all cases which correspond to a certain node
under fault are stacked consecutively). �

The Hanoi benchmark
To illustrate the aforementioned notions, we consider a often-

used benchmark in the literature: the Hanoi water network [17].
As seen in Fig. 1, the network characteristics are: one tank and
31 junction nodes linked through 34 pipes (each with its own
length and diameter); each junction node can be affected by a
leakage and some of the nodes will have sensors mounted on
them.

With the network profile (which multiplies each of the junc-
tion nodes’ base demand) given in Fig. 2a, we simulate the
nodes’ head under nominal functioning for one day (with 15
minutes sampling) through the EPANET software [6], as seen
in Fig. 2b. We observe that the empiric rule from Remark 1

5With this notation, the nominal head, h̄, would be denoted as h̄k̄ , where
pk̄ is the profile active when the nominal head was measured. Since the nom-
inal head remains constant (we cannot assume that k̄ is updated), we keep the
simpler notation h̄.

6Taking all possible combinations, the residual matrix has D = N · M · P
columns. For large-scale networks or if arbitrary selections of profiles, faults
and fault magnitudes are considered, the value of D, and consequently, the
arranging and content of R, may differ.
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Figure 2: The head response for a given profile in the Hanoi network.

holds: the head values remain steady around 3 AM, thus justify-
ing the choice of constructing the head values with information
from this time interval.

Further, we consider 9 additional perturbations (hence P =

10) of the nominal profile shown in Fig. 2a through the addi-
tion of uniform noise bounded in the range of ±2.5%. To il-
lustrate the fault effects we consider such an event at node 17
with fault magnitudes taken from {0, 4, 8, 12, 20}, hence M = 5.
Furthermore, for each fault magnitude we run P = 10 times the
EPANET software (once for each flow profile). The resulting
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Figure 3: Illustration of junction node 17 head variation while under fault and
with various flow profiles and fault magnitudes.

head values are shown (each group of plots with the same color

denotes the node’s value under the same fault magnitude but for
different profiles) in Fig. 3 where we can observe, as expected,
that the fault affects the node’s head value.

Taking K = [12, 18] and using it as in (9) to obtain the resid-
uals (10) leads to the plots shown in Fig. 4 (we consider the
absolute residual variant).
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Figure 4: Residual vectors in the Hanoi network.

As expected, node 17 (where the fault happens) is the most
affected. Still, measurable effects appear in nodes 14, 15 or 26.
This is noteworthy for the subsequent fault detection/isolation
analysis as it shows fault propagation throughout the network.

2.4. Problem Statement

The main idea is to detect and isolate fault occurrences (i.e.,
leakages) within the water network with a limited amount of
information (much fewer sensors than nodes). Due to its com-
plexity (network size, nonlinearities, demand uncertainty, etc.),
the problem is divided into two consecutive steps:

i) the sensor placement, i.e., where to place the limited num-
ber of sensors such that the subsequent fault detection and
isolation is maximized;

ii) the fault detection and isolation procedure which pro-
vides an estimation of the fault occurrences (their location
within the network).

The ideas, building on [12], are to provide a dictionary learning
framework within which to:

i) implement a Gram-Schmidt procedure which uses the
gathered data to propose candidate nodes for sensor place-
ment;

ii) onto the reduced residual data, apply an online dictionary
learning procedure which first trains a dictionary (an over-
complete basis for the residual signals) which is further
used to classify test residuals into one of the predefined
classes. Associating each class to a fault event means that
the classification step itself becomes the fault detection
and isolation mechanism.

Both elements exploit the network’s structure and manage its
numerical complexities: the network’s Laplacian penalizes
the sensor placement described in Section 3 and the online
DL implementation described in Section 4 allows to handle
large datasets (otherwise cumbersome or downright impossible
through other, offline, procedures).

4



3. Sensor Placement

Arguably, the main difficulty in maximizing the network’s
observability (and, thus, improve the FDI mechanism) comes
from inadequate sensor placement: no subsequent FDI mecha-
nism, (regardless of its prowess) can overcome the handicap of
inadequate input data.

The problem reduces in finding a sequence of indices I ⊂
{1 . . .N} with at most s elements from within the list of avail-
able node indices such that the FDI mechanism provides the
best results. As formulated, the problem has a two-layer struc-
ture: at the bottom, the FDI mechanism is designed for a certain
sensor selection and at the top, the sensor selection is updated
to reach an overall optimum. The nonlinearities and large scale
of the problem mean that we have to break it into its constituent
parts: first the sensors are placed (based on available data and/or
model information) and, subsequently, the FDI mechanism is
optimized, based on the already computed sensor placement.

While there are multiple approaches in the literature, the sen-
sor placement problem is still largely open. One reason is that
the degree to which a node is sensitive to a leak is roughly pro-
portional with the inverse of its distance from the leaky node.
Therefore, any selection strategy which does not use the entire
information provided by the network is biased towards clump-
ing sensor locations. On the other hand, analytic solutions
which consider the network as a whole are computationally ex-
pensive (or downright impractical).

These shortcomings have motivated many works for various
large-scale networks [18, 19] as well as for water networks
specifically [20, 2, 21]. While varied, the approaches can be
grouped into [4]: i) mixed-integer or greedy procedures which
solve some variation of the set cover problem; ii) evolutionary
algorithms which employ heuristic methods; and iii) topology-
based methods which make use of the underlying graph struc-
ture of the network.

In particular, from the class of greedy procedures we ana-
lyze two minimum cover variants (set/test covering) and from
the class of topology-based methods we propose an extended
Gram-Schmidt procedure with Laplacian regularization.

3.1. Minimum cover procedures
Let us consider the residual matrix R defined as in7 (11). To

this matrix corresponds the fault signature matrix M obtained
from the former by a binarization procedure [16]:

Mi j =

1, ∃k : s.t. k corresponds to fault j and |Rik | ≥ τ,

0, otherwise.
(12)

(12) should be read as follows: if any8 of the entries of the i-th
node which correspond to the active fault j are above a pre-
specified threshold τ then the fault j is detected by the node i
(i.e., Mi j = 1).

7In fact, we use only a subset of columns from (11), the so-called training
set, but for simplicity we abuse the notation.

8The “any” condition can be replaced with any selection criterion deemed
necessary (e.g., “all entries”, “the majority of the entries”).

With M, the fault signature matrix, given as in (12), we apply
the minimum set cover (MSC) procedure from [2], in a variation
of the mixed-integer form appearing in [4]:

arg max
γ j,αi

∑
j∈F

γ j (13a)

s.t.
∑
i∈N

Mi jαi ≥ γ j, j ∈ F (13b)∑
i∈N

αi ≤ s (13c)

0 ≤ γ j ≤ 1, j ∈ F (13d)
αi ∈ {0, 1}, i ∈ N . (13e)

F , N denote (in our case, F = N = {1, . . . ,N}) the list of
faults and nodes, respectively. Parameter s limits the number
of available sensors. Taking γ j = 1, (13) reduces to finding αi

such that (13b), (13c) and (13e) hold: (13b) ensures that each
fault j is detected by at least a node i; (13c) ensures that at most
s selections are made and (13e) ensures that the selection is un-
ambiguous (a node is either selected, αi = 1 or not, αi = 0).
This formulation may prove to be infeasible (there might be no
node selection which permits complete fault detection), thus re-
quiring the addition of the slack variables γ j, their constraining
in (13d) and subsequent penalization in the cost (13a).

As noted in [2], (13) maximizes fault detection but does not
guarantee fault isolation (an ideal solution to (13) would be to
find a unique node which detects all faults; this is, obviously,
unfortunate from the viewpoint of fault isolation). The solution
proposed in [2], at the cost of greatly expanding the problem
size, is to construct an auxiliary matrix M̃ ∈ {0, 1}|N|×(

|F |

2 ):

M̃i`( j1, j2) = Mi, j1 ·Mi, j2 , ∀ j1 , j2,with j1, j2 ∈ F , (14)

where `( j1, j2) is an index enumerating all distinct unordered
pairs ( j1, j2). The idea is to construct an ‘artificial’ fault f̃`( j1, j2)
and decide that node i is sensitive to it (i.e., M̃i`( j1, j2) = 1) iff
only one of the faults happening at j1 or j2 is detected by node
i. Replacing M with M̃, defined as in (14), in (13) leads to the
minimum test cover (MTC) procedure which maximizes fault
isolation performance.

While other approaches exist in the literature, the MSC and
MTC procedures presented above are representative in that they
highlight some common issues which lead to a degradation of
the subsequent FDI mechanism:

i) Arguably, the application of a threshold as in (12) discards
potentially useful information.

ii) The sensor placement procedures are usually either model
or data-based. Hybrid ones which make use of both are
rarely encountered.

In the following subsection we propose an iterative method
which combines unadulterated data (measured/simulated resid-
ual values corresponding to multiple fault occurrences) with
model information (the graph structure of the network) to de-
cide on an optimal sensor selection.

5



3.2. Graph-aware Gram Schmidt procedure

Recalling that I ⊂ {1 . . .N} denotes the collection of sensor
nodes indices, we note that the submatrix RI ∈ Rs×D will be
the only data available for performing FDI. Thus, we want the
low-rank RI matrix to approximate as best as possible the full-
rank matrix R. Further, if we look at sensor placement as an
iterative process, then for each new sensor that we place we get
access to the contents of one new row from R.

Let r>i denote row i of matrix R. In order to achieve good
matrix approximation we want to make sure that, when plac-
ing a new sensor in node i, the new row r>i contains as much
new information as possible about the water network. In other
words, we want the projection of r>i on the currently selected
rows RI to be minimal:

i = arg min
j<I

∥∥∥projRI r>j
∥∥∥

2
. (15)

In this context, the entire iterative process can be seen as a mod-
ified Gram-Schmidt orthogonalization process where we create
a sequence of s orthogonal vectors chosen from a set of N, se-
lected as in (15).

While the process induced by (15) might be good enough for
matrix approximation, ignoring the water network’s structure
(even if implicitly present in the numerical data gathered in the
residual matrix R) is suboptimal.

Considering the underlying undirected weighted graph (via
its Laplacian matrix), we are able to compute the shortest path
between all nodes using Dijkstra’s algorithm [22]. Thus, we
update (15) to take into consideration the distances from the
candidate node to the nodes from the existing set to encourage
a better sensor placement spread across the network.

Let δI, j ∈ R|I| be the vector whose elements represent the
distance between node j and each of the nodes from set I. The
penalized row selection criteria becomes

i = arg min
j<I

∥∥∥projRI r>j
∥∥∥

2
+ λ

∑
i∈I

1
δi, j

(16)

where λ ∈ R is a scaling parameter. For λ = 0 (16) is equivalent
to (15).

The penalty mechanism works as follows: if the projection
is small and the sum of distances from node j to the nodes of
I is large, then the distance penalty is small also and node j is
a good candidate. On the other hand, if the sum of distances is
small then the penalty grows and the possibility of selecting j
decreases.

The result is a data topology-aware selection process, that
encourages a good distribution of sensors inside the network in
order to facilitate FDI. We gather the instructions necessary for
sensor placement in Algorithm 1.

First, we select the row whose energy is largest (step 1) and
place the first sensor there (step 2). We place the normalized
row in the first column of matrix U (step 3) where we will
continue to store the orthogonal vector sequence as discussed
around (15). This auxiliary matrix helps us with future projec-
tions computations. From this initial state, step 4 loops until

Algorithm 1: Gram-Schmidt Sensor Placement

Data: training residuals R ∈ RN×D,
shortest path between nodes ∆ ∈ RN×N ,
sensors s ∈ N,
distance penalty λ ∈ R

Result: sensor nodes I

1 Find dominant row: i = arg max
k

∥∥∥r>k
∥∥∥

2, 1 ≤ k ≤ N

2 Initial set: I = {i}

3 Orthogonal rows: U =

[
r>i
‖r>i ‖

]
4 for k = 2 to s do
5 Compute inner-products P = RIc (RI)>

6 Project on the selection sub-space: S = PU>
7 Compute projection norms:

n =
[∥∥∥s>1

∥∥∥
2

∥∥∥s>2
∥∥∥

2 . . .
∥∥∥s>n−k

∥∥∥
2

]
8 Distance penalty: n j = n j + λ

∑
i∈I δ

−1
i, j , j ∈ Ic

9 i = arg min n j, j ∈ Ic

10 I = I ∪ {i}
11 u = r>i − s>i
12 U =

[
U u

‖u‖

]
13 end

we place the remaining sensors. We begin iteration k by pro-
jecting the candidate rows Ic onto the existing selection (step
5). The pi, j element represents the projection of the candidate
row i on the selected node j. Step 6 completes the projection by
multiplying the inner-products with the corresponding orthog-
onal vectors. These two steps are required by (15) to compute
the projection of all rT

j on the selected rows I. Next, we store
in vector n the projection norm of each candidate row (step 7).
We are given the shortest path between any two nodes in ma-
trix ∆, where δi, j represents the distance from node i to node
j. In step 8, we penalize the projections by summing up the
inverse of the distance from candidate node j to each of the se-
lected nodes. Node i corresponding to the smallest element in
n is found (step 9) and added to the set I. Steps 11 and 12
perform the Gram-Schmidt orthogonalization process: first the
redundant information is removed from the row i (by substract-
ing the projection on the old set) and then the resulting vector
is normalized and added to the orthogonal matrix U.

Remark 3. The algorithm computations are dominated by the
large matrix multiplications in steps 5 and 6. At step k, we need
to perform 2Dk(N − k) operations in order to obtain the matrix
S. The rest of the instructions require minor computational ef-
forts in comparison. This results in a complexity of O(s2ND)
for the entire loop. �

Remark 4. Arguably, the weights appearing in the Laplacian
graph should be proportional with the headloss between two
linked nodes. This is not trivial since the headloss depends non-
linearly on pipe length, diameter and roughness coefficient, see
(3). �
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Sensor placement in the Hanoi network

Using the example from Section 2, we now consider the three
methods introduced earlier (MSC, MTC and Graph-GS) to gen-
erate sensor placements. We limit to the nominal profile case
and compute the fault signature matrix M as in (12), for τ = 3.
The result is illustrated in Fig. 5 where a bullet at coordinates
(i, j) means that the i-th node detects the j-th fault for at least
one of its magnitudes. Arguably, instead of considering “any”
we may consider that “all” or “most” of the fault magnitudes
have to be detected at the node in order to consider it “fault-
affected”. Ultimately, classifying a node as being fault-affected
is a mater of choice depending on the problem’s particularities.

f1 f6 f11 f16 f21 f26 f31
n1

n6

n11

n16

n21

n26

n31

Figure 5: Illustration of the fault signature matrix for the Hanoi water network.

Applying the MSC procedure as in (13) leads to the sen-
sor selection {1, 13, 20, 26, 31}. Constructing the extended sig-
nature matrix M̃ as in (14) and using it for the MTC proce-
dure leads to the sensor selection {6, 16, 17, 19, 24}. Lastly, the
Graph-GS approach retrieves the selection {1, 2, 3, 10, 28} for
the parameter λ = 104. In all cases, we assumed s = 5 (note
that the MSC/MTC procedures may select fewer than s nodes
since (13c) is an inequality).

The MSC and MTC procedures are able to run for this proof-
of-concept network but the required number of binary variables
increases in lock-step with the number of junction nodes for
MSC and exponentially for MTC (e.g., in this particular exam-
ple, 31 and, respectively,

(
31
2

)
= 465). The computation times

are negligible here but they increase significantly in the case of
large systems (as further seen in Section 5). Lastly, by counting
the cases for which γ j = 0 from (13) we estimate the number
of fault detection errors in MSC (3 cases) and of fault isolation
errors in MTC (34 cases). On the other hand, the Graph-GS
procedure is much less sensitive to problem size and can han-
dle easily large problems.

Fig. 6 illustrates the selections resulted for each method (cir-
cle, bullet and ’X’ symbols for MTC, MSC and Graph-GS) for
sensor numbers ranging from 2 to 10.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2
3
4
5
6
7
8
9
10
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Figure 6: Illustration of sensor selection for various methods.

A word of caution is in order: regardless of method, the per-
formance of a sensor selection is not truly validated until the
FDI block is run and its output is compared with the actual fault
occurrences. This is the scope of Section 4.

4. Dictionary Learning and Classification Strategies

Dictionary learning (DL) [8] is an active field in the signal
processing community with multiple applications such as de-
noising, compression, super-resolution, and classification. Re-
cent studies have also shown good results when dealing with
anomaly detection in general [23, 24, 25], and particularly when
applied to the FDI problem in water networks [12, 13].

Dictionary Learning
Starting from a sample Y ∈ Rs×D, our aim is to find an over-

complete base D ∈ Rs×B, called the dictionary, with whom we
can represent the data by using only a few of its columns, also
called atoms. Thus, we express the DL problem as

min
D,X
‖Y − DX‖2F (17a)

s.t. ‖x`‖0 ≤ s0, ` = 1 : D (17b)∥∥∥d j

∥∥∥ = 1, j = 1 : B, (17c)

where X ∈ RB×D are the sparse representations corresponding
of the Y signals. (17b) dictates that each column y` ∈ Y has
a sparse represention x` that uses at most s atoms from D (i.e.
y` is modeled as the linear combination of at most s0 columns
from D). (17c) is there to avoid the multiplication ambiguity
between D and X (i.e., it allows to interpret the atoms as direc-
tions that the sparse representations follow. Thus, the elements
in X act as scaling coefficients of these directions).

Remark 5. Solving (17) is difficult because the objective is
non-convex and NP-hard. Existing methods approach the prob-
lem through iterative alternate optimization techniques. First
the dictionary D is fixed and we find the representations X, this
is called the sparse representation phase and is usually solved
by greedy algorithms among which Orthogonal Matching Pur-
suit (OMP) [26] is a fast, performant and popular solution.
Next, we fix the representations and we find the dictionary. This
is called the dictionary training or dictionary refinement phase
and most algorithms solve it by updating each atom at a time
(and sometimes also the representations using it) while fixing
the rest of the dictionary. Popular routines are K-SVD [27] and
Approximate K-SVD (AK-SVD)[28]. A few iterations of the rep-
resentation and dictionary training steps usually bring us to a
good solution. �

Dictionary classification
The choice of the s nonzero elements of a given column x`

(also called the representation support), highlights the partici-
pating atoms. These form a specific pattern which allows us to
emit certain statements about the data which led to it. For exam-
ple, let us assume that we can split the input data Y into distinct
classes. Then, it follows naturally that signals from a certain
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class will probably use a characteristic pattern more than the
signals from the other classes. Thus, we can classify a signal as
being part of certain classes by just looking at the atoms used in
its representation. In its direct form (17), the dictionary learn-
ing and classification suffers (at least from the viewpoint of FDI
analysis) from a couple of shortcomings:

i) the procedure is not discriminative: the learned dictionary
may in fact lead to classifications with overlapping pat-
terns of atom selection;

ii) problem dimensions can grow fast as the number of net-
work nodes increases.

Let c be the number of classes9 and let us assume, without
any loss of generality, that Y is sorted and can be split into c
sub-matrices, each containing the data-items of a single class:
Y = [Y1 Y2 . . . Yc]. An alternative method to (17) called Label
consistent K-SVD (LC-KSVD) [9] adds extra penalties to (17)
such that the atoms inherit class discriminative properties and,
at the same time, trains a classifier W to be used afterwards,
together with D, to perform classification.

Let H ∈ Rc×D be the data labeling matrix with its columns
corresponding to the ones in Y. If y j belongs to class i then
h j = ei, where ei is the i-th column of the identity matrix.
Let matrix Q ∈ RB×D be the discriminative matrix whose row
numbers correspond to the dictionary atoms and whose column
numbers correspond to the training signals. Column q j has ones
in the positions corresponding to the atoms associated with the
class that y j belongs to and zeros elsewhere. Usually atoms
are split equally among classes. When the training signals are
sorted in class order, matrix Q consists of rectangular blocks of
ones arranged diagonally. LC-KSVD solves the optimization
problem

min
D,X,W,A

‖Y − DX‖2F + α ‖H −WX‖2F + β ‖Q − AX‖2F (18)

where the first term is the DL objective (17). The second term
connects the label matrix H to the sparse representations X
through matrix W. We can view this as a separate DL prob-
lem where the training data are the labels and the dictionary is
in fact a classifier. The trade-off between small representation
error and accurate classification is tuned by parameter α. The
third term learns A such that the linear transformation of X ap-
proximates Q. Depending on the way we built Q (see above),
this enforces that, first, only a few number of atoms can char-
acterize a class and, second, these atom combinations can not
appear and are different from those for other classes.

After the learning process is over, in order to classify a signal
y, we need to first compute its representation with dictionary D,
again by using OMP or a similar algorithm, and then find the
largest entry of Wx whose position j corresponds to the class
that y belongs to

j = arg max
i=1:c

(Wx)i. (19)

9Given that the data-items in Y are already labeled, we already know to
which class they belong to.

Remark 6. While (18) introduces additional variables it is,
qualitatively, similar with (17) as it can be reduced to a similar
formulation. Indeed, (18) can be reformulated as a “composite
dictionary learning problem”

min
D,X,W,A

∥∥∥∥∥∥∥∥
 Y
√
αH
√
βQ

 −
 D
√
αW
√
βA

 X

∥∥∥∥∥∥∥∥
2

F

, (20)

where D,W,A are learned from data provided by Y,H and
Q, respectively. Note that in this particular instance, after the
learning process A is discarded as it indirectly instilled dis-
criminative properties to dictionary D. �

4.1. Online learning
When dealing with large scale distribution networks the

problem dimensions explode. Typical water networks may have
hundreds or even thousands of nodes. Take as an example the
case of a network with 5, 000 nodes. If each node represents
one class, with 3 atoms per class we end up with a 15,000 col-
umn dictionary. Training on 30,000 signals, we end up with a
15, 000 × 30, 000 representations matrix. The computations in-
volved become prohibitive on most systems. To accommodate
large-scale scenarios we propose an online learning alternative.

Online DL handles one signal at a time, thus most operations
become simple vector multiplications. At time t, we are given
signal y which we use to update the current dictionaries D(t),
W(t) and Q(t). In order to speed-up results, a pre-training phase
can be ensured where (18) is performed on a small batch of sig-
nals. The TODDLeR algorithm [10] adapts objective (18) for
online learning using the recursive least squares approach [29].
Besides signal classification, its goal is to learn from all incom-
ing signals: labeled or not. TODDLeR ensures that the model
is not broken through miss-classification by regulating the rate
of change each signal brings

min
D,x,W,A

‖y − Dx‖22 + α‖h −Wx‖22 + β‖q − Ax‖22

+ λ1 ‖W −W0‖
2
F + λ2 ‖A − A0‖

2
F .

(21)

For convenience, we dropped the (t) superscripts above. The
problem does not have a closed-form solution and is solved in
two steps. First, we solve the (18) problem for a single vec-
tor using the first three terms in (21). As shown in [10], this
translates to updating D, W, A through a simple rank-1 update
based on the y and its sparse representation x. Keeping every-
thing fixed in (21) except for W and A respectively, leads to the
following two objectives

f (W) = ‖h −Wx‖22 + λ1 ‖W −W0‖
2
F (22)

g(A) = ‖q − Ax‖22 + λ2 ‖A − A0‖
2
F (23)

meant to temper the updates brought by y to the dictionaries in
the first step. Equations (22) and (23) are simple least-squares
problems. By looking at f and g as generalized Tikhonov regu-
larizations, it was motivated in [10] that good parameter choices
are λ1,2 = ‖G‖2 or λ1 = ‖W0‖2, λ2 = ‖A0‖2. Here G = XXT

is the Gram matrix of the pre-train representations that is then
rank-1 updated in the online phase by each incoming signal
G + xxT .
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4.2. FDI mechanism
Recall that the DL procedure classifies an input vector wrt

a set of a priori defined classes. Thus, assimilating a fault to
a class means that the classification step of the DL procedure
actually implements fault detection and isolation. The details
are provided in Algorithm 2.

Algorithm 2: FDI Mechanism

Data: restriction of the residual matrix RI ∈ Rs×D

Result: estimated class set L̂

1 partition indices into pre-train, train and test:
Ipt ∪ Itr ∪ Ite = {1 . . .D}, Ipt ∩ Itr = ∅, Ipt ∩ Ite = ∅,
Itr ∩ Ite = ∅

2 pre-train D, A,W as in (18) for labelled data RIpt

I

3 for r ∈ RIpt

I
do

4 update online D, A,W as in (21) for labelled residual

vector r ∈ RIpt

I

5 end
6 init the estimated class collection: L̂ = ∅

7 for r ∈ RIte
I

do
8 update online D, A,W as in (21) for unlabelled residual

vector r ∈ RIte
I

9 retrieve estimated active class ˆ̀ as in (19)
10 update the estimated class set L̂ = L̂ ∪ { ˆ̀}
11 end

Considering the residual matrix R from (11) and the sensor
selection I obtained in Section 3, we arrive to sub-matrix RI.
To this we associate the fault labels L (the active fault index for
each of the columns of RI).

Step 1 of the algorithm divides the residuals and associated
labels into disjoint ‘pre-train’, ‘train’ and ‘test’ collections Ipt,
Itr, Ite. These are used in steps 2, 4 and 8 to construct and
respectively update the dictionary. Step 9 handles the actual
FDI procedure by selecting the class best fitted to the current
test residual (r ∈ RIte

I
). The class estimations are collected in

L̂, at step 10 and compared with the actual test fault labels10

LIte to assess the success criterion of the FDI mechanism S =

(|L̂ ∩ LIte |/|LIte |) · 100.

Remark 7. Arguably, it makes sense tweaking criterion S to
count for near misses: the classification is successful not only
if the correct node is identified but also if one of its neighbors
is returned by the classification procedure. �

Remark 8. By construction, (19) returns the index correspond-
ing to the largest value in the vector Wx. This ignores the rela-
tive ranking of the classifiers, as it does not attach a degree of
confidence for the selected index (i.e., large if there is a clear
demarcation between classifications and small if the values are
closely grouped. �

10The test fault labels are available since the analysis is carried out in simu-
lation, in reality, the residuals obtained at runtime do not have such a label.

Illustration of the FDI mechanism

In our experiments each network node represents one class.
During DL we used an extra shared dictionary to eliminate the
commonalities within class-specific atoms [8]. This lead to c =

32 classes for which we allocated 3 atoms per class leading
to n = 3c dictionary atoms. An initial dictionary was obtained
through pre-training on 2480 signals. Afterwards we performed
online training on 2170 signals. Cross-validation showed good
results when using α = 4 and β = 16. When updating W and
A we used λ1,2 = ‖G‖2. With the resulting dictionaries we
tested the FDI mechanism online on 4650 unlabeled signals.
Applying the Graph-GS method for sensor selection, the rate of
success was S = 80.09%.

For illustration, we show in Fig. 7 the full (blue line with bul-
let markers) residual signal corresponding to class 22 (i.e., the
case where 22th node is under fault) and the actually-used data
(red diamond markers), at nodes with sensors (those with in-
dices from {1, 2, 3, 10, 28}). The actual classification was done
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Figure 7: Illustration of fault detection and isolation.

as in (19) and resulted in a classifier vector x whose non-zero
values are {7e − 6,−1.2e − 4,−7e − 5, 0.99, 1e − 3}, at indices
{45, 46, 52, 64, 93}. Clearly, the most relevant atom in the de-
scription is the one with index 64 which lies in the subset
{63, 64, 65} corresponding to class 22. The classification Wx
produces an indicator vector where the first and second largest
values are 0.999 and 1e − 5 thus showing that the procedure
unambiguously produces the correct response (see Remark 8).

Further, we consider not only the success rate as defined in
step 12 of Algorithm 2 but also count the cases where the fault is
identified in the correct node’s neighbors and in the neighbors’
neighbors (as per Remark 7). This leads to an increase from
80, 09% to 90.69% and 98.92%, respectively, for the success
rate.

Lastly, using the MSC sensor selection procedure we arrive
to success rates 60.95%, 78.11% and 88.56% which proved to
be significantly lower than the Graph-GS selection method. The
MTC method, even for this small-scale network does not pro-
vide a solution.

Direct comparisons of results are somewhat difficult even
when using the same network due to differences in flow profile,
leakage values and the presence or absence of disturbances. As
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a qualitative indication of our relative performance we compare
with the results of [17], that uses a well-accepted approach in
model-based leak localization. Using a performance indicator
(defined by eqs. (14, 17,18) in [17]) which increases linearly
with the distance (in the topological sense) between the actual
node under fault and the estimated one, we arrive at a value
of 0.453, larger than the results shown, e.g., in Table 3 of [17]
which range from 0.02 to 0.157. The results are reasonably
close if we take into account our more realistic setup: more fault
magnitudes (and some of them significantly smaller and hence
harder to detect than the ones used in [17]) and the presence
of noise-affected flow profiles (in [17] only a nominal profile
is used). Note that the approach in [17] is using the hydraulic
model of the network for leak localization, thus requiring much
more information than the data-driven method proposed here.
So, these similar leak localization results makes the proposed
method competitive against model-based methods without re-
quiring a detailed and well-calibrated model of the network.

From a computational viewpoint, our method is signifi-
cantly better in the sensor selection step ([17] executes a semi-
exhaustive search through a genetic algorithm whereas we solve
an almost-instantaneous Gram-Schimidt procedure) and com-
parable in FDI performance (for us a quadratic optimization
problem, for [17] a sensitivity matrix computation).

Further, we compare our FDI method with the standard linear
learning methods from [30]. We do this both to compare with
state-of-the art classifiers and because the methods from [17]
do not scale reasonably for large-scale networks.

5. Validation over a generic large-scale water network 11

To illustrate the DL-FDI mechanism, we test it over a large-
scale generic network obtained via the EPANET plugin Water-
NetGen [14]. To generate the network we considered 200 junc-
tions, 1 tank and 253 pipes interconnecting them into a single
cluster, as shown in Fig. 8.

5.1. Setup

To test our algorithms, we first take a nominal profile of node
demands and perturb it with ±5% around its nominal values.
Further, we consider that fault events are denoted by non-zero
emitter12 values in the EPANET emulator. With the notation
from Algorithm 2 we run the EPANET software to obtain resid-
ual vectors (in absolute form) as follows:

i) 2400 = 200 × 12 pre-train residuals; under the nominal
profile, for each fault event we consider emitter values
from the set of even values {8, 10, . . . , 30};

ii) 2400 = 200 × 12 train residuals; for each node we con-
sider 12 random combination of profile (from the set
{1, 2, . . . , 10}) and of emitter value (from the set of odd
values {9, 11, . . . , 31});

11Code available at https://github.com/pirofti/ddnet-online
12In the EPANET software, to each junction node corresponds an emitter

value which denotes the magnitude of the node leakage.
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Figure 8: Large-scale generic water network

iii) 3200 test residuals; we select random combinations of
profile, fault and emitter values (taken from the sets
{1, 2, . . . , 10}, {1, 2, . . . , 200} and {1, 2, . . . , 31}, respec-
tively).

For further use we also divide the graph into 17 communities
using the community detection tool [31]. For illustration we
depict in Fig. 8 three of these (semi-transparent blue blobs).

The first step is to apply the sensor placement Algorithm 1 to
retrieve the sub-matrix Rpt which gathers the pre-train residuals,
taken at indices corresponding to sensor placements. The result
is visible in Fig. 8 where we plotted (red circles) the first 20 sen-
sor selections. Note that, due to the particularities of the Graph-
GS method, each lower-order sensor selection is completely
included within any larger-order sensor selection, e.g., select-
ing 5 sensors gives the collection {14, 21, 135, 142, 192} which
is a subset of {14, 21, 41, 113, 117, 135, 137, 142, 170, 192}, ob-
tained when selecting 10 sensors.

As a first validation we consider that each node fault is a
distinct class and apply the DL-FDI mechanism described in
Algorithm 2 to detect and isolate them. We quantify the success
of the scheme in three ways, by counting all the cases where:
S1) the estimated node equals the actual node under fault;
S2) the estimated node is, at most, the neighbor of the node

under fault13;
S3) the estimated node is, at most, the once-removed neigh-

bour of the node under fault.
The three previous criteria can be interpreted as 0, 1 and 2-
distances in the network’s Laplacian. Arbitrary, n-distance,

13Arguably this criterion imposes no performance penalty. The fault event is
in fact a pipe leakage and associating the fault with a node is a simplification
usually taken in the state of the art. In reality, if a node is labelled as being
faulty, the surrounding ones need to be checked anyway.

10
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neighbors can be considered but their relevance becomes pro-
gressively less important.

The aforementioned community partitioning is another way
of solving the FDI problem: each class corresponds to a com-
munity, i.e., any fault within the the community is labelled as
being part of the same class. This approach leads to an addi-
tional success criterion:
S4) the estimated class corresponds to the the community

within which the fault appears.
In our simulations we set the parameters in (21) as follows:

α = 4 and β = 16 for the classification dictionaries as found via
cross-validation [10, 9]; for the update regularization we initial-
ized λ1,2 = 8 and proceeded with automated parameter tuning
λ1,2 = ‖G‖2. TODDLeR was pre-trained, as earlier described,
by first running LC-KSVD [9] on a small dataset in order to
obtain an initial dictionary D and representations X. LC-KSVD
used 20 iterations of AK-SVD [28] to train the atoms block be-
longing to each class and then 50 more iterations on the entire
dictionary.

To asses our method we compare it with linear classifiers
such as k-NN, SVM, and Naı̈ve-Bayes, as commonly used for
this type of problem (see, e.g., [30]). We mention that, even
though these are also linear learning methods, they operate in
bulk, by processing the entire dataset at once. This becomes
prohibitive for large distribution networks and it is indeed the
reason why we consider here an online method which provides
reduced memory footprint and faster execution times.

5.2. Results
Running Algorithm 2 for a number of selected (as in Algo-

rithm 1) sensors ranging from 5 to 30 we obtain the success
rates shown in Fig. 9a.

Several remarks can be drawn. First, and as expected, an in-
crease in sensors, generally leads to an increase in performance.
Still, care should be taken with the numbers considered: we
note that even a small number (5) gives a good success rate and
that after around ≥ 15 sensors the performance improvements
taper off. Second, the classification failures appear to be ‘near-
misses’ as can be seen when comparing the S1), S2) and S3) cri-
teria. The S2) and S3) values approach fast 100% which means
that the difference (in the topological sense) between the esti-
mated and the actual node under fault is small). In fact, having
24 or more sensors selected means that (as illustrated by the S3)
criterion) the estimated fault location is never further away than
2 nodes from the actual fault location. Reducing the number of
classes as in criterion S4) significantly reduces the computation
time but also leads to a marked decrease in performance (which
does not appear to improve with an increase in the number of
sensors). We consider this to be due to the uniform distribution
of the nodes in the synthetic network considered here. We ex-
pect that applying this method in a typical residential water net-
work (where dense neighborhoods are linked within the larger
network by few long pipes) will provide better results.

To asses our method we compare it with linear classifiers
commonly used for this type of problem (see, e.g., [30]).
Specifically, we consider the k-NN and SVM classifiers and il-
lustrate the results in Fig. 9b: we consider criterions S1, 2 and
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Figure 9: FDI success rates for a large-scale water network

3) with blue diamond, red triangle and green square markers
and plot the success rates for our implementation (DL-FDI), k-
NN and SVM with solid, dashed and respectively, dotted lines.

Performance-wise, k-NN proves slightly better at small num-
ber of sensors but DL-FDI proves superior for larger values.
SVM, on the other hand is better for small numbers of sensors
and comparable with DL-FDI at larger values. Time-wise, k-
NN is significantly more rapid than DL-FDI and SVM is orders
of magnitude slower than either of them.

We note however that both k-NN and SVM consider all train-
ing data simultaneously and that the model they provide is
fixed, whereas DL-FDI is implemented in its online form where
residuals from the training and testing steps are fed to the algo-
rithm one by one and the model is continuously updated. This
means that k-NN and SVM are more sensitive to problem di-
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mension and that at some point the memory requirements be-
come prohibitive (which is not the case for our online DL-FDI
implementation).

We also implemented the Bayesian method proposed in [30]
but encountered numerical issues when using more than two
sensors. In this method, each fault is associated a probability
density map but it proved impractical to construct one from the
available data.

5.3. DL-FDI in-depth analysis for 10 sensors
As stated earlier, the FDI is a classification procedure which

exploits the discriminative and sparsity properties of the asso-
ciated dictionary.
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Figure 10: Illustration of dictionary discrimination and sparsity properties (with
detail for class 140)

To highlight these properties we illustrate in Fig. 10 the active
dictionary atoms obtained for the case of 10 sensors for each
of the test residuals considered (a marker at coordinates (i,j)
means that in the classification of the i-th residual appears the
j-th atom). Note that for a better illustration we re-ordered the
test residuals such that the faults appear contiguously.

To better illustrate the approach we take the test residuals
corresponding to class 140 (faults affecting node 140), which in

Fig. 10 correspond to residuals indexed from 2270 to 2290 and
show them into the middle inset. We note that a reduced number
of atoms ({38, 132, 420}) describe the residuals, hence proving
the sparsity of the representation. The bottom inset plots the
values of the classifier for each of the considered test residuals.
We note that the classification returns 3 times class 44 (miss-
classification) and 18 times class 140 (correct classification) –
recall that, as per (19), the largest value in Wx indicates the
class. For this particular class the success rates are around the
average shown in Fig. 9a, specifically, S1) is 18 · 100/21 =

85.71%, S2) and S3) are 21 · 100/21 = 100% since node 44 is
the neighbor of node 140.

The diagonal effect in Fig. 10 is the result of how matrix Q
was built. Recall that the lines in Q correspond to the atoms
in D and its columns to the signals in Y and that we set ele-
ment qi j if atom i should represent signal j belonging to class
c. This indirectly states that atom i has to represent signals of
class c. The signals in Fig. 10 were resorted in class-order thus
the atom index of the class-specific atoms (dictated by Q) also
changes every 20 or so residuals resulting in the ascending di-
agonal aspect. This is in fact the visual confirmation of the fact
that our discrimination strategy worked as residuals might use
atoms from the entire dictionary, but they always use at least
one from their given class.

6. Conclusions

We have shown that data-driven approaches can be used suc-
cessfully for sensor placement and subsequent fault detection
and isolation in water networks. Performing sensor placement
through a Gramm-Schmidt-like procedure constrained by the
network Laplacian and then using the resulting sensor data
for online dictionary learning has allowed us to move forward
from [12] and tackle large networks. Adaptive learning and
classification [10] provides the benefit of a continuous integra-
tion of new data into the existing network model, be it for learn-
ing or testing purposes.

The results have shown good accuracy and pointed towards
some promising directions of study such as: network parti-
tioning into communities, adapting online dictionary learning
to further integrate the network structure (e.g. by enforcing
graph smoothness [32]) and providing synergy between the
three phases: placement, learning, FDI (e.g. allow a flexible
placement scheme where the learning iteration is allowed to
change the sensor nodes based on current classification results).
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