
Efficient Parallel Implementation for Single
Block Orthogonal Dictionary Learning

Paul Irofti

Department of Automatic Control and Computers
University Politehnica of Bucharest

313 Spl. Independenţei, 060042 Bucharest, Romania

Abstract: Dictionary training for sparse representations involves dealing with large chunks of
data and complex algorithms that determine time consuming tasks. In this paper we propose
an improved parallel version for the single block orthogonal dictionary learning algorithm that
reduces the representation error and improves the execution time. Our solution targets OpenCL
capable graphical device units and focuses on full resource utilization and efficient memory
partitioning.

Keywords: sparse representation, dictionary design, parallel algorithm, GPU, OpenCL

1. INTRODUCTION

The sparse representations field is the basis for a wide
range of very effective signal processing techniques with
numerous applications for, but not limited to, audio and
image processing.

Such applications fall naturally within the realm of parallel
GPU-computing due to the data size and the way the
algorithms process it. When it comes to implementations,
recent years have shown a tendency towards OpenCL
mainly because of its portable nature and wide industry
support.

In this paper, we approach the problem of training dictio-
naries for sparse representations by learning from a repre-
sentative data set. The goal is that given a set of signals
Y ∈ Rp×m and a sparsity level s0 to find a dictionary
D ∈ Rp×n that minimizes the Frobenius norm of the
approximation error

E = Y −DX (1)
where X ∈ Rn×m is the associated sparse representations
matrix that uses s0 columns (or atoms) from D for sparse
coding each column (or data-item) from Y .

This is a difficult problem because both the dictionary
D and the sparse representations X are unknown and so
existing solutions like K-SVD (Aharon et al., 2006), AK-
SVD (Rubinstein et al., 2008), MOD (Engan et al., 1999),
UONB (Lesage et al., 2005), SBO (Rusu and Dumitrescu,
2013), approach this as an optimization problem solved via
alternative iterations. We express this as a minimization
of the Frobenius norm from (1) with an l0-norm sparsity
constraint:

1 This work was supported by the Romanian National Author-
ity for Scientific Research, CNCS - UEFISCDI, project number
PN-II-ID-PCE-2011-3-0400 and by the Sectoral Operational Pro-
gramme Human Resources Development 2007-2013 of the Min-
istry of European Funds through the Financial Agreement POS-
DRU/159/1.5/S/132395. E-mail: paul@irofti.net.

minimize
D,X

‖Y −DX‖2F
subject to ‖xi‖0 ≤ s0, ∀i

(2)

First the dictionary is fixed and the sparse representa-
tions are found by applying a greedy pursuit algorithm.
While the most popular algorithm for obtaining the sparse
representations seems to be Orthogonal Matching Pursuit
(OMP) (Pati et al., 1993), there are other algorithms that
provide a lower approximation error with an acceptable
increase in complexity such as Orthogonal Least Squares
(OLS)(Chen et al., 1989), Projection Based OMP (POMP)
and Look-Ahead OLS (LAOLS)(Chatterjee et al., 2012).

Next, keeping the representations fixed, the dictionary
is refined by updating or expanding its content. K-SVD
keeps a fixed dictionary size at each iteration and updates
each atom in sequence through the use of SVD after
which it also updates the affected representations. Its
approximate version (AK-SVD) avoids the cost of an SVD
decomposition for each atom by performing one round of
the power method to compute the singular vector. Given
that X is fixed, MOD approaches this problem by directly
solving the following l2 minimization:

‖Y −DX‖2 (3)

A broader explanation of the problem, earlier results and
applications are presented in Rubinstein et al. (2010);
Tosic and Frossard (2011).

While the generic dictionary learning problem doesn’t
impose any specific structure on the dictionary D, some
methods(Lesage et al., 2005; Rusu and Dumitrescu, 2013)
build the dictionary as a union of smaller blocks consisting
of ortonormal bases (ONBs) that transform the optimiza-
tion problem into:

minimize
D,X

‖Y − [Q1Q2 . . . QK]X‖2F
subject to ‖xi‖0 ≤ s0, ∀i

QT
j Qj = Ip, 1 ≤ j ≤ K

(4)

where the union of K ONBs denoted Qj ∈ Rp×p, with
j = 1 . . .K, represents the dictionary D.

The union of orthonormal basis algorithm (UONB) and
the single block orthogonal (SBO) algorithm enforce this
structure on the dictionary by using singular value de-
composition (SVD) to create each orthonormal block. The
difference between the two is that for representing a single
data item the former uses atoms selected via OMP from all
bases, while the later uses atoms from a single orthoblock.
Because of its representation strategy, SBO uses more
dictionary blocks than UONB but also executes faster
while maintaining the same representation error.

We are interested in parallelizing SBO because it brings
data-decoupling through its single block representation
system and also because it doesn’t depend on OMP which
raised hard full GPU occupancy problems, even when
applying the partitioned global address space approach,
due to its high memory footprint(Irofti and Dumitrescu,
2014).

This article presents in section 2 an improved parallel
algorithm called P-SBO, followed by details of it’s OpenCL
implementation in section 3, and the numerical results
supporting it’s representation error and execution time
improvements in section 4.

2. THE P-SBO ALGORITHM

P-SBO builds the dictionary as a union of orthoblocks.
Each data-item from Y is constrained to use a single block
Q for its sparse representation x such that:

y ≈ Qx (5)

The representation of x results from computing the prod-
uct x = QT y and then hard-thresholding the s0 highest
absolute value entries. This is performed through partial
selection as described in algorithm 1.

Algorithm 1: SELECT

Data: unsorted list x ∈ Rn, partial selection k
Result: partially sorted list x

1 for i← 1 to k do
2 maxidx = i
3 maxval = x(i)
4 for j ← i + 1 to n do
5 if ‖x(j)‖ > ‖maxval‖ then
6 maxidx = j
7 maxval = x(j)

8 x(i)↔ x(maxidx)

Given a list x the algorithm proceeds to do in-place sorting
by finding the absolute maximum value (steps 4–7) and
placing it at the top of the list (step 8). This is repeated k
times (step 1) by performing the search on the remaining
entries from x (steps 2–3). Even though this has an O(kn)
complexity, which is asymptotically inefficient, in our case
k is small enough that it makes our choice sufficiently
efficient and trivial to implement.

The best orthonormal base j to represent a given signal y
is picked by computing the energy of the resulting repre-
sentation coefficients from x and selecting the orthobase
where the energy is highest:

j = argmax
i=1...K

s0∑
s=1

|QT
i y| (6)

It’s enough to compute the energy of the representations
because the norm is preserved by the orthogonal dictionary
blocks.

Following this method, each data-item from Y is repre-
sented by a single orthobase in a process that we’ll call
representation.

The alternative optimization iterations for performing dic-
tionary learning on a single orthonormal base is presented
in algorithm 2.

Algorithm 2: 1ONB

Data: signals set Y , initial dictionary Q0,
target sparsity s0, number of rounds R

Result: trained dictionary Q, sparse coding X

1 Q = Q0

2 for r ← 1 to R do
3 X = QTY
4 X(:, j) = SELECT(X(:, j), s0)

5 P = Y XT

6 UΣV T = SVD(P)

7 Q = UV T

By keeping a fixed dictionary Q, step 3 computes the new
representations X and step 4 performs hard-thresholding
through partial sorting to select the largest s0 values on
each column. Using the new matrix X, the dictionary
is refined (step 7) by using the product of the resulting
orthonormal matrices from the SVD computation in step
6. This orthogonal approximation ofX and Y is also called
Procrustes orthogonalization in the literature.

The results from Lesage et al. (2005) show that, with a
good initialization (step 1), good results can be reached by
just a few iterations (R < 5 in step 2). Also, a good starting
point when creating a new orthoblock is to use the left-
hand side orthonormal matrix of the SVD decomposition
of the given data set:

Y = UΣV → Q0 = U (7)

Based on the above, P-SBO is described in algorithm 3.

The method is split in two parts: the initialization phase
and the dictionary learning iterations.

The initialization phase builds a small start-up dictionary
consisting of K0 orthobases each trained with P0 sized
signal chunks that are used by 1ONB to initialize and train
a new orthobase (step 1). The resulting dictionary is used
by step 2 to perform data item representation which leads
to an initial sparse representation set.

Algorithm 3: P-SBO

Initialization

1 Iteratively train K0 orthonormal blocks by randomly
selecting P0 signals from Y and applying 1ONB R times:
D = [Q1 . . . QK0]

2 Represent each data-item with only one of the previously
computed ONBs following (6)
Iterations

3 Construct the set of the worst W represented data items
and train K̃ new orthobases with this set. Add the new
bases to the existing union of ONBs.

4 Represent each data item with one ONB
5 Train each orthobase over its new data set
6 Check stopping criterion

The training iterations start by building K̃ new orthobases
for the worst W represented signals using algorithm 2 and
expanding the dictionary to include the new ONBs (step
3). Training K̃ > 1 orthobases per iteration improves the
SBO algorithm proposed in Rusu and Dumitrescu (2013)
by providing a better representation error and at the same
time reducing the execution time as can be seen in the
numerical experiments from section 4.

Given that the dictionary has changed, a new data-item
representation is needed and with that step 4 computes
a new set of sparse representations. Step 5 refines the
dictionary D by applying 1ONB on each orthobase over its
newly associated data set. The learning process is stopped
by either reaching a given target error or the permitted
maximum number of orthonormals.

3. PARALLEL SBO WITH OPENCL

In this section we will go through the main points behind
our parallel version, then give some details on the OpenCL
specifics.

3.1 Parallel representations

The sparse representations are completely independent
and so their computation is done in parallel by applying
(6) on each data-item. More specific, for each signal from
Y we compute the representations with every available
orthoblock and pick the one that has the highest energy.
As shown in Rusu and Dumitrescu (2013), computing the
energy is enough.

This task fits naturally on the map-reduce model. We
map the data in signal-orthobase pairs that produce the
energy of the resulting sparse representation. Each pair
computes the representation with the current dictionary
block j (x = QT

j y), does a hard-threshold on the largest
s0 items in absolute value, and outputs the energy E of the
resulting sparse coding. Parallelization is done in bulk by
performing the above for all ONBs at once in groups of m̃
signals. The result is that each data item has an associated
energy list of its representation with each block from the
dictionary. We reduce the list, for each signal in Y , to the
element with the largest energy leading to the choice of a
single representation block.

...

.

.

.

.

.

.

.

.

.

Y1

.

.

.

Q1 Q2 QK
...

E1,1 E1,2 E1,K

...Y2
E2,1 E2,2 E2,K

...
Ym

Em,1 Em,1 Em,K

. . .
Reduce

.

.

.

E1,max

E2,max

Em,max

Fig. 1. MapReduce for m̃ = 1 and K orthobases

3.2 Parallel dictionary training

Dictionary learning is performed by the operations of
1ONB described in algorithm 2. P-SBO makes use of
1ONB in three different contexts: once during the ini-
tialization phase (step 1), and twice during the training
iterations while learning a new dictionary for the W worst
represented signals (step 3) and while training the existing
dictionary over its new data set (step 5).

Due to the decoupled nature of the data, we add paral-
lelism at the dictionary level (each orthoblock is initialized
and trained in parallel) and we also further parallelize the
steps of each orthoblock training instance (see figure 2).
This approach allows us to execute the sequential opera-
tions inside 1ONB (mainly the SVD routines) in parallel
for each dictionary block.

If an initial orthonormal basis is not supplied, we generate
a new basis by using the singular value decomposition
as described in (7). This, along with the other SVD
operation from step 6 are executed in parallel for each
dictionary block. The alternative optimization iterations
(steps 3–6) train the orthonormal dictionary Q such that
‖Y − QX‖F is minimized or reduced. First, keeping a
fixed dictionary, the sparse representations are computed
in step 4. Since this is done via matrix multiplication
of large dimensions it can be easily parallelized through
the classic concurrent sub-block multiplication routines.
The target sparsity is obtained by hard-thresholding the
largest s0 absolute value entries (step 4). We compute the
thresholding in parallel for groups of m̃ signals by evenly
partitioning the global address space for each thread of
execution. Second, using the new matrix X, we update
the dictionary via the SVD decompositon (step 6) of
Y XT from step 5 by using the resulting orthonormal
matrices U and V (step 7). We perform the Y XT matrix
multiplication and the decomposition in parallel just as
we did before. Step 7 represents a matrix multiplication
of relatively small dimensions (p × p) for which analysis
showed that it is better to employ a partitioned global
address space strategy so that each thread performs a
few corresponding vector-matrix operations resulting in a
simultaneous update of all orthobases.

3.3 OpenCL implementation details

The OpenCL standard abstracts hardware into processing
elements (PE) that are grouped and executed in parallel
on compute units (CU) located on the OpenCL device

...Q0

Q1 Q2 QK

SVD SVD SVD

...X = QTY

SELECT

...Y XT

...USV SVD SVD SVD

Q = UV T

Fig. 2. The parallel execution of 1ONB for R = 1 rounds
and K orthobases. Each block represents a task and
each sub-block depicts a thread of execution within
that task.

(Group, 2012). Each PE has exclusive access to private
memory while sharing local memory with the PEs from the
same CU and global memory with all PEs on the device.

The OpenCL execution model consists of small functions
(kernels) that are executed by PEs in parallel in groups
that fit within one CU. One PE is occupied by one work-
item when executing one kernel. A group of PEs executing
the same kernel in parallel on a CU is called a work-group.

The set of PEs available on an OpenCL device can be
organized as an n-dimensional space particular to each
kernel’s needs. The n-dimensional space can also be split
into equal subsets of PEs representing work-groups that
will be scheduled for execution on the CUs available on
the device.

For example, in 2D we can denote the n-dimensional range
definition as NDR(〈xg, yg〉, 〈xl, yl〉). There are xg × yg
PEs, organized on work-groups of size xl × yl, running
the same kernel. The first tuple represents the global work
size (GWS) and the second the local work size (LWS).

A kernel’s efficiency can be measured by looking at the
resources it utilizes and the number of PEs and CUs
it occupies throughout its execution. OpenCL devices
execute one kernel at a time. Parallelism takes place at
the CU level and it’s affected by the size and the resources
needed by the work-groups. For example, if local memory
is exhausted before filling up all available PEs, within
a CU, with work-items, then a part of the CU will idle

while the rest executes the kernel leading to a sub-optimal
occupancy rate.

For GPU devices, work-items from one work-group are
further split by hardware and executed in parallel within
sub-groups called wavefronts or waves. The number of
wavefronts executed in parallel depends on the kernel
usage of vector general purpose registers (VGPR), local
data size (LDS) and the work-group size.

Matrix multiplication Steps 3 and 5 from the 1ONB
algorithm were implemented using the BLAS library for
OpenCL from AMD. The AMD kernels follow the clas-
sic GEMM BLAS model. Input matrices and the result
are stored in global memory. The operation first creates
matrix sub-groups and then does block-based full-matrix
multiplication on them. While the AMD implementation
doesn’t take full advantage of the hardware underneath,
it’s fast enough for our use-case. We compensate it poor
occupancy of the GPU resources (profiling our simulations
with AMD’s CodeXL showed 33.3% for the sub-grouping
and 25% for the block multiplication) by scheduling as
many GEMM operations at the same time as there are
orthobasis (P-SBO step 1 and step 5).

Representation Given k orthoblocks, all the operations
required for finding the best dictionary block for the sparse
representation of each data item from the signal set, P-
SBO step 2 and 4, were packed and implemented by a
single OpenCL kernel following the optimization problem
(6).

The input matrices as well as the resulting orthobase
representation index of each signal and its energy are
kept in global memory. We can keep the actual sparse
representations in private memory because only the energy
and base representation indices are needed by P-SBO.
During representation, the sparse signal storage is accessed
multiple times for each orthobase in order to compute x =
QT y. Keeping the memory private gains us low latency
times at the expense of an increased number of vector
general purpose registers used which, in turn, leads to a
lower occupancy level. Our numeric experiments showed
that lower latency outbids by far a partitioned global
memory, full-occupancy version of the kernel.

We designed the representation kernel following the map-
reduce paradigm. We map each work-item to a signal-
orthoblock couple. Each processing element is in charge
of sparse coding and computing the resulting energy of
a few m̃ signals using a single orthobase. The energy is
saved in a matrix in local memory at the signal-orthobase
coordinates corresponding to the work-item’s position in
the work-group. We keep 2-dimensional work-groups with
orthobases in the first dimension and signals on the second
as depicted on the left side of figure 1. And so we split
the signal set in m̃ sized chunks representing the number
of work-groups scheduled for processing on the compute-
units, corresponding to an NDR(〈k,m〉, 〈k, m̃〉) splitting.
The reduction on the columns of the energy matrix is
performed by each work-item with ID 0 in the orthobase
dimension (see the right-side of figure 1). Even though
this approach leaves most of the work-items idling when
reducing, the overhead of doing map-reduce in the same

kernel (opposed to doing it in two separate ones) is
insignificant in this case.

This design choice and the way it affects occupancy can
be observed in figure 3 that shows how resource utilization
affects the number of simultaneous active wavefronts for
the representation kernel. As expected, keeping the sparse
representations in private memory increased the number
of VGPRs used that in turn limited the number of active
wavefronts to 6 as depicted in the center graph. The left
and right panes show that increasing the work-group size
to more than 192 work-items or expanding the LDS past
16KB would decrease the device occupancy even further.

Dictionary training The dictionary update process, P-
SBO step 1 and step 5, was split into parts and imple-
mented by multiple OpenCL kernels. We keep the input
matrices for the dictionary and the signal set in global
memory as well as the resulting sparse representations.
The dictionary bases are modified in-place.

Before starting the dictionary training phase in P-SBO’s
step 5, we group the signals in blocks based on the
dictionary-base used for their representations. This speeds-
up the training process by using coalesced memory in P-
SBO’s parallel implementation. We first build a list of
signals for each base Q and then we walk it contiguously
copying the signals using Q overwriting the matrix Y . This
is a cheap operation that brings a big performance boost
by helping data access times of the execution threads.
Copying proved to be up to 1000× more effective by
mapping the signal matrix in host memory and using
memcpy than plainly using clEnqueueCopyBuffer.

For the implementation of algorithm 2 we decided to
use a Numerical Recipes based implementation of the
SVD algorithm. We execute it in parallel through an
OpenCL kernel for each orthoblock on the GPU with an
NDR(〈k〉, 〈1〉) splitting. The matrix multiplications (steps
3 and 5), as discussed earlier, are processed by the BLAS
kernels from AMD.

The operations for partial selection (step 4 in 1ONB)
were packed and implemented as a separate OpenCL
kernel. The sparse signal set is kept in global memory
and each work-item is in charge of doing SELECT on m̃
signals. Numerical experiments on our hardware pointed
out that a splitting of NDR(〈m〉, 〈m̃ = 256〉) gives
the best performance results while keeping full GPU
occupancy.

Figure 4 shows how resources limit the number of active
wavefronts for the partial selection kernel. We can see that
using a work-group size within 128 and 256 work-items,
up to about 10 VGPRs and an LDS size of less than
10KB would permit the partial selection kernel to reach
full utilization of the GPU. Our kernel is marked with a
squared dot on the graphs from figure 4 and it’s clearly
within these limits.

Due to the small dimensions p of the block dictionaries,
using the BLAS library from AMD for processing step
7 of 1ONB for each orthobase didn’t cover the IO costs.
For that, we implemented a custom matrix multiplication
kernel that performs the operation in parallel for the
entire dictionary. And so, each work-group is in charge

of computing the updated orthobase corresponding to its
group-id, resulting in an NDR(〈k × m̃〉, 〈m̃〉) splitting.
Work-items within a work-group are performing vectorized
vector-matrix multiplication that calculate the lines of the
new orthobase corresponding to their local-id. Given that
Q ∈ Rp×p, the number of lines each work-item has to
compute is given by the ratio of p/m̃. For p dimensioned
k orthobases we found that a subunitary ratio of the form
NDR(〈k × m̃〉, 〈m̃ = p × 8〉) gives full occupancy on our
GPU.

Updating the energy of the newly created sparse repre-
sentations (needed in step 3 of the next P-SBO itera-
tion for building the worst represented signals set W) is
implemented by partitioning the global address space by
another OpenCL kernel. The representation matrix and
the associated energy set are kept in global memory. Each
work-item independently computes the energy for m/m̃
signals with no work-group cooperation resulting in an
NDR(〈m̃〉, 〈any〉) split. We found that full-occupancy is
reached on our hardware by using the NDR(〈K × l〉, 〈l =
192〉) partitioning, where K is the maximum allowed num-
ber of orthobases.

Table 1 provides an overview of the kernels n-dimensional
topology and resoure utilization while performing dictio-
nary learning with a training signals set of m = 16384 of
size p = 32 each with a target sparsity s0 = 4 and K = 16
orthoblocks.

Each column but the last represents a kernel (representa-
tion, partial selection, custom vector-matrix multiplication
and energy update, respectively). The last column shows
the device limits.

The table is split in two parts. The first part shows the
vector GPR usage per work-item, the LDS usage per
work-group, the flattened work-group size, the flattened
global work size, and the number of waves per work-group,
respectively for each kernel. We can see that the represen-
tation kernel uses a lot of VGPRs in comparisson with
the other kernels resulting in a reduced number of waves.
It’s also visible that it uses the highest number of work-
items due to the maping strategy described earlier. The
rest of the kernels require similar resources for execution,
maximizing the number of waves per work-group and thus
leading to full GPU occupancy.

In the lower part of the table we can see the constraint
imposed on the total number of active waves by each
resource utilization: VGPRs, local memory and local work
size, respectively. The last entry shows the resulting per-
centage of GPU occupancy. While local memory and work-
group size would allow for the simultaneous execution of
16 wavefronts, the VGPRs permit only 6 out of 24 thus
resulting in a 25% occupancy for the representation kernel.
For the rest of the kernels the constraints permit the
maximum number of waves to be executed. More so, in
the case of the vector-matrix kernel the reduced number
of used VGPRs would allow more active waves than the
device’s limit.

4. RESULTS AND PERFORMANCE

We used colored and gray scale bitmap images for the
training signals, taken from the USC-SIPI (Weber, 1997)

Fig. 3. Representation kernel occupancy for K = 24 orthobases

Fig. 4. Partial selection kernel occupancy for m = 16384 signals

Table 1. Kernel information and occupancy for
m = 16384, K = 16 and s0 = 4

Kernel Rep. Select GEMV Energy Limits
VGPRs 35 9 8 4 248
LDS 1024 0 0 0 32768
LWS 80 256 256 192 256
GWS 81920 16384 1280 3072 16777216
Waves 2 4 4 3 4
VGPRs 6 24 28 24 24
LDS 16 24 24 24 24
LWS 16 24 24 24 24

Occ.(%) 25 100 100 100 100

image database (e.g. barb, lena, boat, etc.). The images
were normalized and split into random 8× 8 blocks

As a rule, we chose the dimensions as powers of two
because this way the data objects and the work-loads are
easier divided and mapped across the NDRs without the
need for padding.

We tested our OpenCL implementation of P-SBO on an
ATI FirePro V8800 (FireGL V) card from AMD, running
at a maximum clock frequency of 825MHz, having 1600
streaming processors, 2GB global memory and 32KB local
memory. Also, the CPU tests for our C implementation

were made on an Intel i7-3930K CPU running at a maxi-
mum clock frequency of 3.2GHz.

4.1 Execution improvements

Tables 2 and 3 depict the differences in final representation
error, the total time spent on dictionary learning (tlearn)
and the time it takes to represent the data set with the
final dictionary (trep). We vary the total number of P-
SBO orthoblocks K = {8, 16, 32, 64} and compare with
PAK-SVD instances running with a dictionary of n =
{64, 96, 128, 256} atoms and K = 100 iterations using full
parallelization during the atoms update phase (n = ñ) for
which the numerical simulations in Irofti and Dumitrescu
(2014) gave the best representation error and the fastest
execution times. We compare the resulting approximations
by looking at the root mean square error

RMSE =
‖Y −DX‖F√

pm
(8)

which we express graphically in decibels.

While PAK-SVD can produce a slightly better error than
P-SBO, the time difference is significant with P-SBO being
up to 203.8 times faster than PAK-SVD at dictionary
learning and 1068.4 times faster at producing sparse repre-
sentations. Even though P-SBO’s dictionary size is larger,

Table 2. PAK-SVD performance for m =
32768, p = 64, s0 = 8 with ñ = n andK = 100.

n 64 96 128 160 256
tlearn(s) 366.8 396.7 416.5 438.4 642.4
trep(s) 0.3467 0.3753 0.8207 0.5889 2.2436
RMSE 0.0271 0.0246 0.0242 0.0230 0.0216

Table 3. Parallel SBO performance for m =
32768, p = 64, s0 = 8 with K0 = 5 and R = 6

K 8 16 24 32 64
tlearn(s) 1.8 6.7 12.3 20.9 85.4
trep(s) 0.0020 0.0021 0.0022 0.0021 0.0021
RMSE 0.0268 0.0245 0.0240 0.0238 0.0235

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

8192 12288 16384 20480 24576 32768

lo
g 1

0
(t
im

e(
s)
)

Signals

Matlab
CPU

OpenCL

Fig. 5. Execution times for K = 64, s0 = 8, p = 64.

the total memory footprint is smaller than PAK-SVD
because of OMP’s high memory requirements.

Turning our focus towards different P-SBO implementa-
tions, we see in figure 5 that the OpenCL implementation
gives better results than the Matlab and C counterparts.
Keeping a fixed number of orthonormal bases K = 64 and
representing signal sets from as low as m = 8192 up to
m = 32768, the parallel version performs 3.4 times faster
than the Matlab implementation and 10.3 times faster
than the single CPU C implementation.

Figure 6 describes the performance results with a fixed
signal set of m = 24576 and a variable dictionary size
starting from K = 8 orthoblocks up to K = 64. Again
we can see that the OpenCL version performs a lot better
than the other implementations, giving speed-ups up to 7
times.

Looking at figure 7 we see that the target sparsity s0
doesn’t really affect running times. We kept a fixed signal
set m = 32768 and a fixed dictionary of K = 48, and we
varied the sparsity from s0 = 4 to s0 = 12 on a fixed signal
dimension of p = 64.

4.2 Training multiple K̃ bases

The representation error and execution improvement of
P-SBO over SBO is depicted in table 4 where we varied
the value of K̃ in the Matlab implementation of P-SBO
starting from K̃ = 1 to K̃ = 64. We used an identical
training signals set of m = 32768 items of size p = 64

0

0.5

1

1.5

2

2.5

8 12 16 24 32 48 64

lo
g 1

0
(t
im

e(
s)
)

Bases

Matlab
CPU

OpenCL

Fig. 6. Execution times for m = 24576, s0 = 4, p = 32.

1.6

1.8

2

2.2

2.4

2.6

2.8

4 6 8 10 12

lo
g 1

0
(t
im

e(
s)
)

Sparsity

Matlab
CPU

OpenCL

Fig. 7. Execution times for m = 32768, K = 48, p = 64.

Table 4. P-SBO performance for m = 32768,
p = 64, s0 = 8 with K0 = 5, R = 6

K̃

W
8192 4096 2048

t(s) RMSE t(s) RMSE t(s) RMSE
1 379 0.0222 399 0.0224 361 0.0226
2 192 0.0212 192 0.0216 187 0.0221
4 101 0.0208 98 0.0213 96 0.0217
8 57 0.0207 57 0.0213 56 0.0218
16 32 0.0206 32 0.0213 30 0.0218
32 18 0.0209 19 0.0214 18 0.0219
64 12 0.0215 12 0.0218 - -

each with a sparsity constraint of s0 = 8 and R = 6 ONB
training rounds. The representation error is improving as
K̃ grows until it reaches a point where the training set is
too small for properly training an orthobase and so the
error starts to slightly depreciate. The result is consistent
with different sizes of the worst reconstruction set W .

Figure 8 shows the error evolution of the P-SBO algorithm
as new bases are trained and added to the union of
ONBs for different values of K̃. We can see that the
representation error improves and drops a lot faster as
we increase the number of orthobases trained at step 3 in
algorithm 3.

As the number of orthobases trained for the worst-
reconstructed signals set W increases the number of train-

-34

-33.5

-33

-32.5

-32

-31.5

-31

8 16 24 32 40 48 56 64

R
M

SE

Bases

K̃ = 1
K̃ = 2
K̃ = 4
K̃ = 8

K̃ = 16

Fig. 8. P-SBO error evolution for m = 32768, p = 64,
W = 8192, s0 = 8, K0 = 5, R = 6.

0

50

100

150

200

250

300

350

400

8 16 24 32 40 48 56 64

T
im

e
(s

)

Bases

K̃ = 1
K̃ = 2
K̃ = 4
K̃ = 8

K̃ = 16

Fig. 9. P-SBO execution times for m = 32768, p = 64,
W = 4096, s0 = 8, K0 = 5, R = 6.

ing iterations (P-SBO steps 3–6) shrinks resulting in faster
execution times. This improvement is depicted in figure 9
where we show the elapsed time after each training stage
when running P-SBO with the same inputs and the same
constraints but with different values of K̃.

5. CONCLUSIONS

We provided an improved algorithm that reduces the
representation error and cuts the execution time and we
also proposed an efficient parallel implementation of the
P-SBO algorithm. Dictionary updates are performed by
refining each of the orthonormal bases concurrently. Also,
we completely parallelized, in a map-reduce manner, the
pursuit of finding the single best orthobase for representing
a given signal. Our implementation was done in OpenCL
and tested on the GPU.

Our parallel version achieves a good trade-off between
algorithm complexity and data-set approximations com-
pared to PAK-SVD due to the different representation
approach and the low-memory footprint of P-SBO’s rep-
resentation strategy leading to better GPU occupancy
confirmed in our numerical results that show a speed-up

of about 200 times for dictionary learning while provid-
ing an improved representation quality. Despite its much
larger dictionary size, P-SBO has a significantly lower
representation time (simulations show about 1000 times
speed improvement), which makes it appealing for real
time applications. Also, simulations showed that P-SBO
can perform about 33 times faster on the same data than
SBO while also providing an improved dictionary resulting
in better sparse representations.

REFERENCES

Aharon, M., Elad, M., and Bruckstein, A. (2006). K-SVD:
An Algorithm for Designing Overcomplete Dictionaries
for Sparse Representation. Signal Processing, IEEE
Transactions on, 54(11), 4311–4322. doi:10.1109/TSP.
2006.881199.

Chatterjee, S., Sundman, D., Vehkapera, M., and
Skoglund, M. (2012). Projection-based and look-ahead
strategies for atom selection. Signal Processing, IEEE
Transactions on, 60(2), 634–647.

Chen, S., Billings, S.A., and Luo, W. (1989). Orthogonal
least squares methods and their application to non-
linear system identification. International Journal of
control, 50(5), 1873–1896.

Engan, K., Aase, S., and Husoy, J. (1999). Method of
optimal directions for frame design. In IEEE Int. Conf.
Acoustics Speech Signal Proc., volume 5, 2443–2446.

Group, K.O.W. (2012). The OpenCL Specification, Ver-
sion 1.2, Revision 19. Khronos Group.

Irofti, P. and Dumitrescu, B. (2014). GPU parallel imple-
mentation of the approximate K-SVD algorithm using
OpenCL. In 22nd European Signal Processing Confer-
ence, 1–5.

Lesage, S., Gribonval, R., Bimbot, F., and Benaroya, L.
(2005). Learning unions of orthonormal bases with
thresholded singular value decomposition. In Acous-
tics, Speech, and Signal Processing, 2005. Proceedings.
(ICASSP ’05). IEEE International Conference on, vol-
ume 5, v/293–v/296 Vol. 5. doi:10.1109/ICASSP.2005.
1416298.

Pati, Y.C., Rezaiifar, R., and Krishnaprasad, P.S. (1993).
Orthogonal matching pursuit: Recursive function ap-
proximation with applications to wavelet decomposi-
tion. In Conference Record of The Twenty-Seventh
Asilomar Conference on Signals, Systems and Comput-
ers, 1–3.

Rubinstein, R., Bruckstein, A., and Elad, M. (2010).
Dictionaries for Sparse Representations Modeling. Proc.
IEEE, 98(6), 1045–1057.

Rubinstein, R., Zibulevsky, M., and Elad, M. (2008).
Efficient Implementation of the K-SVD Algorithm using
Batch Orthogonal Matching Pursuit. Technical Report
- CS Technion.

Rusu, C. and Dumitrescu, B. (2013). Block orthonormal
overcomplete dictionary learning. In 21st European
Signal Processing Conference, 1–5.

Tosic, I. and Frossard, P. (2011). Dictionary Learning.
IEEE Signal Proc. Mag., 28(2), 27–38.

Weber, A. (1997). The USC-SIPI Image Database.

