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The p-norms

Lp spaces are a representative example of Banach spaces which are
both uniformly convex and uniformly smooth. In particular, for
every p > 1 and n ∈ N∗, one can define the corresponding p-norm
on the n-dimensional Euclidean space, ‖ · ‖p : Rn → R+, making it
into a normed space which we shall denote by Rn

p, by putting, for
every (x1, . . . , xn) ∈ Rn,

‖(x1, . . . , xn)‖p :=
( n∑

i=1
|xi |p

) 1
p

.

In particular, we shall denote ‖ · ‖2 simply by ‖ · ‖.
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Motivation: the work of Pinto

Recently, Pedro Pinto introduced the class of uniformly smooth
hyperbolic spaces as a nonlinear generalization of uniformly
smooth Banach spaces, similarly to how Leuştean (2007, 2010)
had nonlinearly generalized uniformly convex Banach spaces in the
form of UCW -hyperbolic spaces.

Theorem (Pinto 2024)
If X is a bounded complete uniformly smooth UCW -hyperbolic
space, then Reich’s theorem holds.

Question: Is there any example of such a space which is neither a
CAT(0) space, nor a convex subset of a normed space?
This is what I will answer today.



4

Hyperbolic spaces

Let’s recap the following definition, due to Kohlenbach (2005).

Definition
A W -hyperbolic space is a triple (X , d ,W ) where (X , d) is a
metric space and W : X 2 × [0, 1]→ X such that, for all x , y , z ,
w ∈ X and λ, µ ∈ [0, 1], we have that

1 d(z ,W (x , y , λ)) ≤ (1− λ)d(z , x) + λd(z , y);
2 d(W (x , y , λ),W (x , y , µ)) = |λ− µ|d(x , y);
3 W (x , y , λ) = W (y , x , 1− λ);
4 d(W (x , z , λ),W (y ,w , λ)) ≤ (1− λ)d(x , y) + λd(z ,w).

Clearly, any normed space may be made into a W -hyperbolic space
in a canonical way.

One generally denotes W (x , y , λ) by (1− λ)x + λy .
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CAT(0) spaces
CAT(0) spaces, which are the nonlinear generalization of Hilbert
spaces, are a particular case of W -hyperbolic spaces. If X is a
CAT(0) space, then, for any x , y , z ∈ X and λ ∈ [0, 1] we have
that

d2(z , (1−λ)x +λy) ≤ (1−λ)d2(z , x)+λd2(z , y)−λ(1−λ)d2(x , y).

A representative (nonlinear, as we shall see) example of a
(complete) CAT(0) space is the (hyperbolic) Poincaré upper
half-plane model, having as the underlying set

H := {(x1, x2) ∈ R2 | x2 > 0},

where, given the function arcosh : [1,∞)→ [0,∞), where for every
t ∈ [1,∞), arcosh t = ln(t +

√
t2 − 1), the distance function is

defined as follows: for any x = (x1, x2), y = (y1, y2) ∈ H, one sets

d(x , y) := arcosh
(

1 + (y1 − x1)2 + (y2 − x2)2

2x2y2

)
.
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The Poincaré half-plane continued
One may prove that geodesic lines of this space are of two types:
for every a ∈ R and r > 0, one has the semicircle

Ca,r = {(x1, x2) ∈ H | (x1 − a)2 + x2
2 = r 2},

while, for every a ∈ R, one has the ray

Ra = {(x1, x2) ∈ H | x1 = a}.

It may be then easily shown that for every two points there is
exactly one geodesic segment that joins them. The general formula
for the convex combination of two points is somewhat involved and
we shall omit it, instead giving only the specialized formula for the
midpoint, which shall be used later. For any x = (x1, x2),
y = (y1, y2) ∈ H, we have that

W
(

x , y , 1
2

)
=

x1y2 + x2y1
x2 + y2

,

√x2y2 ·
√

(x2 + y2)2 + (x1 − y1)2

x2 + y2

 .
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Smoothness in Banach spaces

We will now explore the class of uniformly smooth Banach spaces,
in order to better understand the way it was generalized by Pinto
to uniformly smooth hyperbolic spaces.

A Banach space X is called smooth if, for any x ∈ X with
‖x‖ = 1, we have that, for any y ∈ X with ‖y‖ = 1, the limit

lim
h→0

‖x + hy‖ − ‖x‖
h

exists, and uniformly smooth if the limit is attained uniformly in x
and y .
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Duality mappings and smoothness

Definition
Let X be a Banach space. We define the normalized duality
mapping of X to be the map J : X → 2X∗ , defined, for all x ∈ X ,
by

J(x) := {x∗ ∈ X ∗ | x∗(x) = ‖x‖2, ‖x∗‖ = ‖x‖}.

The condition of (not necessarily uniform) smoothness has been
proven to be equivalent to the fact that the normalized duality
mapping of the space, J : X → 2X∗ , is single-valued – and we shall
denote its unique section by j : X → X ∗.

Hilbert spaces are smooth, and in that case j(x)(y) is then simply
〈y , x〉, for any x , y in the space. Because of this, we may consider
the j to be a generalized variant of the inner product, sharing some
of its nice properties.
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Hyperbolic smoothness

This view of j as a generalization of the inner product led Pinto to
the following definition.

Definition (Pinto 2024)
A smooth hyperbolic space is a quadruple (X , d ,W , π), where
(X , d ,W ) is a W -hyperbolic space and π : X 2 × X 2 → R, such
that, for any x , y , u, v ∈ X (where an ordered pair of points
(a, b) ∈ X 2 is denoted by

−→
ab):

1 π(−→xy ,−→xy) = d2(x , y);
2 π(−→xy ,−→uv) = −π(−→yx ,−→uv) = −π(−→xy ,−→vu);
3 π(−→xy ,−→uv) + π(−→yz ,−→uv) = π(−→xz ,−→uv);
4 π(−→xy ,−→uv) ≤ d(x , y)d(u, v);
5 d2(W (x , y , λ), z) ≤ (1− λ)2d2(x , z) + 2λπ(−→yz ,

−−−−−−−−→
W (x , y , λ)z).
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Hyperbolic uniform smoothness

It is a classical result that, in uniformly smooth Banach spaces, the
duality mapping is norm-to-norm uniformly continuous on bounded
subsets. Bénilan proved that the norm-to-norm uniform continuity
on bounded subsets of an arbitrary duality selection mapping is in
fact equivalent to uniform smoothness.

Motivated by this fact, Pinto defined a uniformly smooth
hyperbolic space to be a smooth hyperbolic space (X , d ,W , π)
such that there is an ω : (0,∞)× (0,∞)→ (0,∞), called a
modulus of uniform continuity for π, having the property that, for
any r , ε > 0 and a, u, v , x , y ∈ X with d(u, a) ≤ r , d(v , a) ≤ r
and d(u, v) ≤ ω(r , ε), one has that

|π(−→xy ,−→ua)− π(−→xy ,−→va)| ≤ ε · d(x , y).
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Hyperbolic uniform convexity
As I said, the other relevant class of Banach spaces is that of
uniformly convex Banach spaces. We shall now turn to exploring
uniform convexity directly in the hyperbolic setting, as first
introduced by Leuştean.

Definition
If (X , d ,W ) is a W -hyperbolic space, then a modulus of uniform
convexity for (X , d ,W ) is a function η : (0,∞)× (0,∞)→ (0, 1]
such that, for any r , ε > 0 and any a, x , y ∈ X with d(x , a) ≤ r ,
d(y , a) ≤ r , d(x , y) ≥ εr , we have that

d
(x + y

2 , a
)
≤ (1− η(r , ε))r .

We call the modulus monotone if, for any r , s, ε > 0 with s ≤ r ,
we have η(r , ε) ≤ η(s, ε).
A UCW -hyperbolic space is a W -hyperbolic space that admits a
monotone modulus of uniform convexity.



12

Property (G)

The crucial property of uniform convexity that was used by
Kohlenbach and the speaker was the following, which we now reify
for the first time.
Definition
Let ψ : (0,∞)× (0,∞)→ (0,∞). We say that a W -hyperbolic
space (X , d ,W ) has property (G) with modulus ψ if, for any r ,
ε > 0 and any a, x , y ∈ X with d(x , a) ≤ r , d(y , a) ≤ r ,
d(x , y) ≥ ε, we have that

d2
(x + y

2 , a
)
≤ 1

2d2(x , a) + 1
2d2(y , a)− ψ(r , ε).

We have shown that uniformly convex Banach spaces have
property (G) with a modulus which is easily computable in terms
of the modulus of uniform convexity (the qualitative result
essentially goes back to Zălinescu). Also, CAT(0) may be easily
shown to have this property.
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Property (M)

We do not know (and we leave it as an open problem) whether,
generally, UCW -hyperbolic spaces have property (G); fortunately,
Pinto identified the following weaker property of them (which,
again, we now reify for the first time) as being enough for the
proof to go through.

Definition
Let ψ : (0,∞)× (0,∞)→ (0,∞). We say that a W -hyperbolic
space (X , d ,W ) has property (M) with modulus ψ if, for any r ,
ε > 0 and any a, x , y ∈ X with d(x , a) ≤ r , d(y , a) ≤ r ,
d(x , y) ≥ ε, we have that

d2
(x + y

2 , a
)
≤ max(d2(x , a), d2(y , a))− ψ(r , ε).

The main results of Pinto may be expressed by saying that Reich’s
theorem and its consequences hold for uniformly smooth
hyperbolic spaces having property (M).
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Products of hyperbolic spaces
Let n ∈ N∗ and fix n metric spaces (X1, d1), . . . , (Xn, dn). Put
X :=

∏n
i=1 Xi and define d : X × X → R, by putting, for any

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X ,

d(x , y) :=
( n∑

i=1
d2

i (xi , yi )
) 1

2

.

It is a classical result that (X , d) is also a metric space.

Now fix W1, . . . ,Wn such that, for each i , (Xi , di ,Wi ) is a
W -hyperbolic space. Define W : X 2 × [0, 1]→ X by putting, for
any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X and λ ∈ [0, 1], and for
any i ,

W (x , y , λ)i := Wi (xi , yi , λ).

Proposition
(X , d ,W ) is a W -hyperbolic space.
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Products and property (G)

Proposition
Assume that, for each i, (Xi , di ,Wi ) has property (G). Then
(X , d ,W ) has property (G).

Proof
For each i , let ψi be a modulus for the property (G) of
(Xi , di ,Wi ). Define ψ : (0,∞)× (0,∞)→ (0,∞) by putting, for
any r , ε > 0, ψ(r , ε) := mini ψi

(
r , ε√

n

)
. We will show that

(X , d ,W ) has property (G) with modulus ψ.
Let r , ε > 0 and a, x , y ∈ X with d(x , a) ≤ r , d(y , a) ≤ r ,
d(x , y) ≥ ε. Assume that, for every i , di (xi , yi ) < ε/

√
n. Then

ε2 ≤ d2(x , y) =
n∑

i=1
d2

i (xi , yi ) < n · ε
2

n = ε2,

a contradiction. Thus, there is a j ∈ {1, . . . , n} such that
dj(xj , yj) ≥ ε/

√
n.
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Products and property (G)

Proof (cont’d)
We have, using a basic property for the first inequality, that

1
2d2(x , a) + 1

2d2(y , a)− d2
(x + y

2 , a
)

=
n∑

i=1

(
d2

i (xi , ai ) + d2
i (yi , ai )

2 − d2
i

(xi + yi
2 , ai

))

≥
d2

j (xj , aj) + d2
j (yj , aj)

2 − d2
j

(xj + yj
2 , aj

)
≥ ψj

(
r , ε√

n

)
≥ ψ(r , ε).
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Products and convexity

Proposition
Assume that, for each i, (Xi , di ,Wi ) is a UCW -hyperbolic space.
Then (X , d ,W ) is a UCW -hyperbolic space.

Proof
For each i , let ηi be a monotone modulus of uniform convexity for
(Xi , di ,Wi ). Define η, η̌ : (0,∞)× (0, 2]→ (0,∞) by putting, for
any r > 0 and any ε ∈ (0, 2],

η(r , ε) := min
(
{ηi (r , ε) | i ∈ {1, . . . , n}} ∪

{1
2

})

η̌(r , ε) := min
(

ε4

4608n4 · η
2
(

r , ε√
n

)
,
ε2

16n · η
(

r , ε√
n

))
.

We showed that η̌ is a monotone modulus of uniform convexity for
(X , d ,W ).
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Products and property (M)

Proposition
Assume that, for each i, (Xi , di ,Wi ) has property (M). Then
(X , d ,W ) has property (M).

Proof
For each i , let ψi be a modulus for the property (M) of
(Xi , di ,Wi ). Define ψ, ψ̌ : (0,∞)× (0,∞)→ (0,∞) by putting,
for any r , ε > 0,

ψ(r , ε) := min
i

ψi (r , ε)

and
ψ̌(r , ε) := min

(
ψ2(r , ε/

√
n)

64n2r 2 ,
ψ(r , ε/

√
n)

2

)
.

We showed that (X , d ,W ) has property (M) with modulus ψ̌.
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Products and smoothness

Now fix π1, . . . , πn such that, for each i , (Xi , di ,Wi , πi ) is a
smooth hyperbolic space. Define π : X 2 × X 2 → R by putting, for
any x = (x1, . . . , xn), y = (y1, . . . , yn), u = (u1, . . . , un),
v = (v1, . . . , vn) ∈ X ,

π(−→xy ,−→uv) :=
n∑

i=1
πi (−→xi yi ,

−−→ui vi ).

Proposition
(X , d ,W , π) is a smooth hyperbolic space.
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Products and uniform smoothness

Proposition
Assume that, for each i, (Xi , di ,Wi , πi ) is a uniformly smooth
hyperbolic space. Then (X , d ,W , π) is a uniformly smooth
hyperbolic space.

Proof
For each i , let ωi be a modulus of uniform continuity for πi . Define
ω : (0,∞)× (0,∞)→ (0,∞) by putting, for any r , ε > 0,
ω(r , ε) := mini ωi

(
r , ε√

n

)
. We will show that ω is a modulus of

uniform continuity for π.
Let r , ε > 0 and a, u, v , x , y ∈ X with d(u, a) ≤ r , d(v , a) ≤ r
and d(u, v) ≤ ω(r , ε). We want to show that

|π(−→xy ,−→ua)− π(−→xy ,−→va)| ≤ ε · d(x , y).

It is immediate that, for each i , di (ui , vi ) ≤ ω(r , ε) ≤ ωi
(

r , ε√
n

)
,

and, thus, |πi (−→xi yi ,
−−→ui ai )− πi (−→xi yi ,

−→vi ai )| ≤ ε√
n · di (xi , yi ), so



21

Products and uniform smoothness

Proof (cont’d)

|π(−→xy ,−→ua)− π(−→xy ,−→va)|

=
∣∣∣∣∣

n∑
i=1

(
πi (−→xi yi ,

−−→ui ai )− πi (−→xi yi ,
−→vi ai )

)∣∣∣∣∣
≤

n∑
i=1

∣∣πi (−→xi yi ,
−−→ui ai )− πi (−→xi yi ,

−→vi ai )
∣∣

≤ ε√
n

n∑
i=1

di (xi , yi )

= ε√
n · 〈(1, . . . , 1), (d1(x1, y1), . . . , dn(xn, yn))〉

≤ ε√
n · ‖(1, . . . , 1)‖ · ‖(d1(x1, y1), . . . , dn(xn, yn))‖

= ε√
n ·
√

n ·
( n∑

i=1
d2

i (xi , yi )
) 1

2

= ε · d(x , y).
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The example

From the above results, it follows that H× R2
3 is a uniformly

smooth UCW -hyperbolic space and, thus, Reich’s theorem and its
consequences hold for it. This space:

is not a CAT(0) space
because R2

3 can be seen as a convex subset of H×R2
3 and it is

not a CAT(0) space
because a Banach space is a CAT(0) space iff it is Hilbert

is not a convex subset of a normed space (with the canonical
convexity structure)

because H can be seen as a convex subset of H× R2
3 and it is

not a convex subset of a normed space
this is what remains to be shown! – on the next slide
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The last proof

Proof
If it were a convex subset of a normed space, for any x , y , z ∈ X
and any λ ∈ [0, 1], d(W (x , z , λ),W (y , z , λ)) = (1− λ)d(x , y).
We will now exhibit x , y , z ∈ H and λ ∈ [0, 1] such that
d(W (x , z , λ),W (y , z , λ)) < (1− λ)d(x , y). Take x := (0, 1),
y := (1, 1), z := (0, 2), λ := 1/2. Then W (x , z , λ) = (0,

√
2) and

W (y , z , λ) = (2/3, 2
√

5/3), so

d(x , y) = arcosh(3/2) = ln((3 +
√

5)/2)

and

d(W (x , z , λ),W (y , z , λ)) = arcosh(7/(2
√

10)) = ln(
√

10/2).

We have to show that ln(
√

10/2) < ln((3 +
√

5)/2)/2, but this
follows from the immediate strict inequality

(
√

10/2)2 < (3 +
√

5)/2.
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These results may all be found in:

P. Pinto, A. Sipoş, Products of hyperbolic spaces.
arXiv:2408.14093 [math.MG], 2024.
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Thank you for your attention.


