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1.2.4 A. Sipoş, Effective results on a fixed point algorithm for families of
nonlinear mappings, accepted for publication in Annals of Pure and
Applied Logic, arXiv:1606.03895 [math.FA], 2016.
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1.4.3 A. Sipoş, Proof mining in Lp spaces, arXiv:1609.02080 [math.LO], 2016.
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• A. Sipoş, Codensity and Stone spaces, The Eighth Congress of Roma-
nian Mathematicians (special session Logic in Computer Science), Iaşi,
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4 Workshops/Conferences/ Scientific seminars

organized
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5 A description of the results

5.1 Effective results in nonlinear ergodic theory

Let us recall the Hilbert space formulation of the celebrated von Neumann
mean ergodic theorem.

Theorem 1. Let H be a Hilbert space and U : H → H be a unitary operator.
Then for all x ∈ H, the ergodic average xn = 1

n

∑n−1
i=0 U

ix converges strongly
to PFix(U)x, the projection of x on the set of fixed points of U .

Avigad, Gerhardy and Towsner [2] showed that we can not obtain in
general computable rates of convergence. In this situation, one can consider
the following equivalent reformulation of the Cauchy property of (xn):

∀k ∈ N ∀g : N→ N∃N ∈ N∀i, j ∈ [N,N + g(N)]
(
‖xi − xj‖ < 2−k

)
. (1)

This is known in logic as the no-counterexample interpretation [37, 38] of
the Cauchy property and it was popularized in the last years under the
name of metastability by Tao [60, 61]. In [61], Tao generalized the mean
ergodic theorem to multiple commuting measure-preserving transformations,
by deducing it from a finitary norm convergence result, expressed in terms of
metastability. Recently, Walsh [63] used again metastability to show the L2-
convergence of multiple polynomial ergodic averages arising from nilpotent
groups of measure-preserving transformations. Logical metatheorems [31]
show that from wide classes of mathematical proofs one can extract upper
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bounds Φ(ε, g) on ∃N in (1). Thus, taking ε > 0 instead of 2−k, we define a
rate of metastability as a functional Φ : (0,∞)× NN → N satisfying

∀ε > 0∀g : N→ N ∃N ≤ Φ(ε, g)∀i, j ∈ [N,N + g(N)] (‖xi − xj‖ < ε) . (2)

In [33] we obtained a quantitative version of the mean ergodic theorem
for uniformly convex Banach spaces [8], computing an effective uniform rate
of metastability for the ergodic average. Immediate consequences are the
results obtained by Avigad, Gerhardy and Towsner [2] for Hilbert spaces
and by Tao [61] for a particular dynamical system.

An important generalization of the von Neumann mean ergodic theorem
was obtained by Wittmann [64] in 1992.

Theorem 2. [64] Let C be a bounded closed convex subset of a Hilbert space
X, T : C → C a nonexpansive mapping and (λn)n≥1 be a sequence in [0, 1].
Assume that (λn) satisfies

lim
n→∞

λn = 0,
∞∑
n=1

|λn+1 − λn| <∞ and
∞∑
n=1

λn =∞. (3)

For any x, u ∈ C, define

x0 := u, xn+1 := λn+1u+ (1− λn+1)Txn. (4)

Then (xn) converges to PFix(T )u.

One can easily see that (xn) coincides with the ergodic average when T
is linear and λn = 1

n+1
. The iteration (xn) is known as the Halpern iteration,

as it was introduced by Halpern [23] for the special case u = 0. The Halpern
iteration can be defined similarly in more general spaces, like the geodesic
ones.

5.1.1 Effective uniform rates of asymptotic regularity

The first step towards proving the weak or strong convergence of an iteration
consists in obtaining the so-called asymptotic regularity and this can be done
in a very general setting. Asymptotic regularity is a very important con-
cept, introduced by Browder and Petryshyn [10] in the 60’s for the Picard
iteration, but it can be defined in general for any iteration (xn) associated
with a mapping T on a metric space (X, d): (xn) is asymptotically regular
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if lim
n→∞

d(xn, Txn) = 0 for all x ∈ C. A rate of convergence of the sequence

(d(xn, Txn)) towards 0 will be called a rate of asymptotic regularity.
In the paper 1.1.1 we obtained quantitative results on the asymptotic

regularity of the Halpern iteration in CAT(0) spaces for general (λn), by
considering as a hypothesis both

∑∞
n=1 λn+1 = ∞ and the equivalent condi-

tion
∏∞

n=1(1−λn+1) = 0. As an immediate corollary, one obtains a quadratic
rate of asymptotic regularity, generalizing in this way the result proved for
Hilbert spaces by Kohlenbach [32].

Theorem 3. Assume that λn = 1
n+1

, n ≥ 1. Then for every ε ∈ (0, 1),

∀n ≥ Ψ(ε,M) (d(xn, Txn) ≤ ε) ,

where Ψ(ε,M) =

⌈
4M

ε
+

16M2

ε2

⌉
− 1, with M ∈ Z+ such that M ≥ dC.

The method used in 1.1.1 for CAT(0) spaces can not be applied in the
case of CAT(κ) spaces (with κ > 0). For these spaces, we computed an
exponential rate of asymptotic regularity in 1.2.1.

In the paper 1.1.6 this result is extended to finite families of nonexpan-
sive mappings and to (r, δ)-convex spaces, introduced by us as a general-
ization of CAT(κ) spaces and of the metric spaces with a convex geodesic
bicombing (examples of such spaces are the normed ones, Busemann spaces,
hyperconvex spaces or W -hyperbolic spaces in the sense of [30]). Immediate
consequences of our extension are the results in [42, 43].

The paper 1.1.12 shows that results on the asymptotic behaviour of an
alternative iterative method are immediate consequences of corresponding
results on the Halpern iteration. This alternative iterative method was in-
troduced for Banach spaces in [65] as a discretization of an approximating
curve considered in [7].

5.1.2 Effective uniform rates of metastability

In the papers 1.1.1, 1.1.2, 1.1.9 and 1.2.1 we obtain finitary versions, with
effective and highly uniform rates of metastability for generalizations of The-
orem 2 proved in [58, 57, 53].

These results constitute a significant extension of the actual context of
proof mining, as the proofs in [57, 58] make use of Banach limits, inspired
by Lorentz’ seminal paper [46], in which almost convergence was introduced.
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Reich [54] initiated the use of almost convergence in nonlinear ergodic theory,
while Bruck and Reich [13] applied for the first time Banach limits to the
subject of Halpern iteration. The existence of Banach limits is either proved
by applying the Hahn-Banach theorem to l∞ or via ultralimits, in both cases
the axiom of choice being needed.

In the paper 1.1.1 we develop a method to convert such proofs into more
elementary proofs which no longer rely on Banach limits and can be analyzed
by the existing logical machinery. The way Banach limits are used in these
proofs seems to be rather typical for other proofs in nonlinear ergodic theory.
Therefore, our method can be used to obtain similar results in those cases
too.

The following theorem, proved by Saejung [57] using Banach limits, gen-
eralizes Wittmann’s theorem to CAT(0) spaces.

Theorem 4. Let C be a bounded closed convex subset of a complete CAT(0)
space X and T : C → C a nonexpansive mapping. Assume that (λn) satisfies
(3). Then for any u, x ∈ C, (xn) converges to a fixed point of T .

While we can not expect to obtain effective rates of convergence for (xn),
the existence of an effective and highly uniform rate of metastability is guar-
anteed, after the elimination of Banach limits, by [30, Teorema 3.7.3].

Theorem 5. In the hypotheses of Theorem 4, let α be a rate of convergence

of (λn), β be a Cauchy modulus of sn :=
n∑
i=1

|λi+1 − λi| and θ be a rate of

divergence of
∞∑
n=1

λn+1.

Then for all ε ∈ (0, 2) and g : N→ N,

∃N ≤ Σ(ε, g,M, θ, α, β) ∀m,n ∈ [N,N + g(N)] (d(xn, xm) ≤ ε),

where M ∈ Z+ is an upper bound on the diameter of C.

The rate of metastability Σ, extracted in Theorem 4.2 from 1.1.1 does
not depend on T , the starting point x ∈ C and depends weakly on C, via
its diameter. We remark that in practical cases, such as λn = 1

n+1
, the rates

α, β, θ are easy to compute. In the paper 1.1.9 we remark that the quanti-
tative analysis of Saejung’s proof has as a result the complete elimination of
any contribution of the use of Banach limits, which results in simpler bounds.
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In 1.1.2 we apply the same method of eliminating Banach limits from the
proof given by Shioji and Takahashi [58] to a generalization of Wittmann’s
theorem to Banach spaces with a uniformly Gâteaux differentiable norm.
Furthermore, we prove a logical metatheorem for uniformly smooth Banach
spaces.

The paper 1.2.1 is dedicated to the extraction of a uniform rate of metasta-
bility for the generalization of Wittmann’s theorem to CAT(κ) spaces (with
κ > 0). We use the same general method as in 1.1.1, but the proofs from
this paper are much more involved than the ones from 1.1.1. In the case
λn = 1

n+1
, we obtain a rate having a very simple logical form, similar with

the one described in [35]:

Σ(ε, g, κ,M) = Aε,κ,M

(
f̃ ∗

Bε,κ,M
(0) +

⌈
1

ε0

⌉)
,

computed in Corollary 3.5 from 1.2.1. Thus, the function g appears only in
the definition of f̃ ∗, the mappings Aε,κ,M , Bε,κ,M do not depend at all on g.

5.2 Quantitative results in nonlinear analysis and con-
vex optimization

In a series of papers, important classes of mappings (firmly nonexpansive, av-
eraged, reflections and relatively nonexpansive) are studied and proof mining
methods are applied to obtain effective results on the asymptotic behaviour
of the associated Picard or Krasnoselskii iterations.

Firmly nonexpansive mappings, introduced by Browder [9] in Hilbert
spaces and by Bruck [12] in Banach spaces, play a very important role in
nonlinear analysis and convex optimization, due to their correspondence with
maximal monotone operators proved by Minty [49]. Bruck’s definition ex-
tends immediately to W -hyperbolic spaces X. A mapping T : C ⊆ X → C
is called firmly nonexpansive if for all x, y ∈ C and for all λ ∈ (0, 1),

d(Tx, Ty) ≤ d((1− λ)x+ λTx, (1− λ)y + λTy). (5)

A first main result of the paper 1.1.8 is a fixed point theorem for firmly
nonexpansive mappings defined on unions of closed convex subsets of com-
plete UCW -hyperbolic spaces. These spaces [41, 44] are a class of uniformly
convex spaces generalizing both CAT(0) spaces and uniformly convex Banach
spaces. A second main result of the paper 1.1.8 generalizes results obtained
by Reich and Shafrir [55] in Banach spaces or in the Hilbert ball.
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Theorem 6. Let C be a subset of a W-hyperbolic space X and T : C → C
be a firmly nonexpansive mapping. Then for all x ∈ X and k ∈ Z+,

lim
n→∞

d(T n+1x, T nx) =
1

k
lim
n→∞

d(T n+kx, T nx) = lim
n→∞

d(T nx, x)

n
= rC(T ),

where rC(T ) := inf{d(x, Tx) | x ∈ C}.

In the paper 1.1.4, a quantitative version of Theorem 6 is proved, having
as an immediate consequence an exponential rate of asymptotic regularity
for the Picard iteration, the only one known even for Banach space. Using
different methods, inspired by [41], rates of asymptotic regularity for UCW -
hyperbolic spaces are computed in 1.1.8, which turn out to be quadratic for
CAT(0) spaces or polynomial for Lp spaces, 1 < p <∞.

In the papers 1.1.3 and 1.1.4 different algorithms for the convex feasibility
problem in geodesic spaces are studied. Thus, effective rates of asymptotic
regularity are obtained in 1.1.4 for the well-known alternating projections
method introduced by von Neumann, as well as for a method defined in
terms of weighted averages of nonexpansive retractions [19]. The paper 1.1.3
studies the convergence, in spaces of constant curvature, of the algorithm
AAR (Averaged Alternating Reflection), introduced by Bauschke, Combettes
and Luke [5].

The paper 1.1.7 obtains existence results of best proximity points for
cyclic and noncyclic relatively nonexpansive mappings in the context of Buse-
mann convex reflexive metric spaces. Moreover, polynomial bounds on the
existence of approximate fixed points for such mappings in UCW -hyperbolic
spaces are computed.

In 1.4.6 we initiate the study of quantitative versions of different gener-
alisations of the proximal point algorithm.

5.2.1 Fejér monotone sequences

The paper 1.2.6 provides in a unified way quantitative forms of strong conver-
gence results for numerous iterative procedures which satisfy a general type
of Fejér monotonicity where the convergence uses the compactness of the
underlying set. Fejér monotonicity is a key notion employed in the study of
many problems in convex optimization and programming, fixed point theory
and the study of inverse problems (see, for example, [4, 6, 62]).
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Let (X, d) be a metric space and F ⊆ X be a nonempty subset of X. An
iteration (xn) is Fejér monotone w.r.t. F if

d(xn+1, p) ≤ d(xn, p) for all n ∈ N and all p ∈ F.

We represent F as an intersection F =
⋂
k∈NAFk of approximations to F

with the property that AFk+1 ⊆ AFk ⊆ X for all k ∈ N. One prime example
is F := Fix(T ) and AFk := {p ∈ X | d(p, Tp) ≤ 1/(k + 1)}, where Fix(T )
denotes the fixed point set of some selfmap T : X → X. We say that (xn)
possesses approximate F -points if for all k ∈ N there exists n ∈ N such that
xn ∈ AFk.

The set F is called explicitly closed (w.r.t. the representation AFk) if

∀p ∈ X
(
∀N,M ∈ N(AFM ∩B (p, 1/(N + 1)) 6= ∅)→ p ∈ F

)
.

One can easily see that F is explicitly closed when all the sets AFk are closed
and that if F is explicitly closed, then F is closed.

The main contributions of the paper 1.2.6 are quantitative versions of
the following generalization of strong convergence results for Fejér monotone
sequences.

Theorem 7. Let X be compact, F explicitly closed and (xn) a sequence in
X which is Fejér monotone w.r.t. F and possesses approximate F -points.
Then (xn) converges to a point in F.

These quantitative versions are in the form of explicit rates of metastabili-ty.
The approach introduced in the paper 1.2.6 covers examples ranging from
the proximal point algorithm for maximal monotone operators to various
fixed point iterations for firmly nonexpansive, asymptotically nonexpansive,
strictly pseudo-contractions and other types of mappings. Many of these
results hold for geodesic spaces as W -hyperbolic spaces, UCW -hyperbolic
spaces and CAT(0) spaces.

5.3 The asymptotic behaviour of pseudo-contractions

Let H be a real Hilbert space, C ⊆ H a nonempty convex subset and T :
C → C be a mapping.

We say that T is a pseudo-contraction if for all x, y ∈ C,

‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖(x− Tx)− (y − Ty)‖2. (6)
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This class of nonlinear mappings was introduced in the 1960s by Browder and
Petryshyn [11]. Its significance lies in the following fact: an operator T is a
pseudo-contraction if and only if its complement U := Id − T is monotone,
i.e. for all x, y ∈ C we have that

〈Ux− Uy, x− y〉 ≥ 0.

Monotone operators arise naturally in the study of partial differential
equations: often such an equation can be written in the form U(x) = 0 (or
0 ∈ U(x) when considering multi-valued operators). Finding a zero of U is
equivalent to finding a fixed point of its complement T := Id − U , which is
a pseudo-contraction.

Let (αn)n∈N, (βn)n∈N be sequences in [0, 1]. The Ishikawa iteration [25]
starting with an x ∈ C is defined by:

x0 := x, xn+1 := (1− αn)xn + αnT (βnTxn + (1− βn)xn). (7)

In the special case where βn := 0 for all n ∈ N, we obtain the well-known
Mann iteration [47, 21]:

x0 := x, xn+1 := (1− αn)xn + αnT (xn). (8)

If, furthermore, αn = α ∈ [0, 1] for all n ∈ N, the Mann iteration becomes
the Krasnoselskii iteration [36].

Ishikawa proved the following strong convergence result.

Theorem 8. [25] Let H be a Hilbert space, C ⊆ H a convex compact subset
and T : C → C be an L-Lipschitzian pseudo-contraction. Suppose that (αn),
(βn) satisfy the following conditions:

lim
n→∞

βn = 0,
∞∑
n=0

αnβn =∞ and αn ≤ βn for all n ∈ N.

Then, for all x ∈ C, the Ishikawa iteration starting with x converges strongly
to a fixed point of T .

The main result of the paper 1.2.5 is a finitary, quantitative version of
Theorem 8, which computes a uniform rate of metastability for the Ishikawa
iteration. In order to obtain this result, we apply methods developed in 1.2.6
for the strong convergence of Fejér monotone sequences.
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Let b ∈ N be an upper bound on the diameter of C and γ be a modulus
of total boundedness for C (defined in the paper 1.2.6). In the particular
case αn = βn = 1√

n+1
, we obtain that for all k ∈ N, g : N → N, there exists

N ≤ Σb,γ,L(k, g) such that

∀i, j ∈ [N,N + g(N)]

(
‖xi − xj‖ ≤

1

k + 1
and ‖xi − Txi‖ ≤

1

k + 1

)
,

where Σb,γ,L : N× NN → N is defined as follows:

Σb,γ,L(k, g) := K0 + (Σ0)b,L(P0, k, h),

where (Σ0)b,L(0, k, g) := 0 and

(Σ0)b,L(n+ 1, k, g) := 42(b2+1)
(

max{2k+1,8b(8k20+16k0+10)gM ((Σ0)b,L(n,k,g))}+1
)2
,

with K0 :=
(⌈

1 +
√

2L2 + 4
⌉

+ 1
)2

, h(n) := g(K0 + n), gM(n) = max
0≤i≤n

g(i),

k0 :=

⌈
dLe(4k + 4)− 1

2

⌉
şi P0 := γ

(⌈√
8k2

0 + 16k0 + 9
⌉)

.

A very important class of pseudo-contractions are the strict pseudo-
contractions, introduced also in [11]. If 0 ≤ κ < 1, then T is a κ-strict
pseudo-contraction if for all x, y ∈ C,

‖Tx− Ty‖2 ≤ ‖x− y‖2 + κ‖x− Tx− (y − Ty) ‖2. (9)

Nonexpansive mappings coincide with 0-strict pseudo-contractions.
In the paper 1.1.10 we apply methods of proof mining to obtain a uniform

effective rate of asymptotic regularity for the Mann iteration associated to
κ-strict pseudo-contractions on convex subsets of Hilbert spaces. The rate of
of asymptotic regularity is quadratic for the Krasnoselskii iteration.

The Mann iteration associated to a κ-strict pseudo-contraction in the
more general class of uniformly convex and 2-uniformly smooth Banach
spaces is studied in the paper 1.2.3. Using a generalization of a result of
Browder and Petryshyn [11, Theorem 2], one obtains much simpler proofs of
the weak convergence theorems due to Marino and Xu [48] and Zhou [66]. A
rate of asymptotic regularity for this iterations is also computed.

The paper 1.2.4 studies the parallel algorithm, used by Lopez-Acedo and
Xu [45] to approximate common fixed points of finite families of k-strict

14



pseudo-contractions. The main result of this paper is an effective rate of
asymptotic regularity for this algorithm. It is also proved that this result
is guaranteed by logical metatheorems for classical and semi-intuitionistc
systems [30, 20].

5.4 Proof mining in Lp spaces

The paper 1.4.3 obtains an equivalent characterization of Lp spaces that is
used to axiomatize these spaces into a higher-order logical system. This
axiomatization allows us to prove a logical metatheorem for Lp spaces, an
application of this metatheorem being the derivation of the standard modulus
of uniform convexity. The research from 1.4.3 has as a point of departure
the recent results of Günzel and Kohlenbach [22] on proof mining and the
positive-bounded logic introduced by Henson [24].

5.5 Dilation structures

The paper 1.4.1 presents a description of sub-riemannian geometry with the
help of dilation structures and it is based mainly on [14], with numerous
improvements, as Theorem 8.10 giving an intrinsic characterization of rie-
mannian metric spaces, Section 2.5 Curvdimension and curvature or the ex-
tended proof of Theorem 8.8 on the Γ-convergence of the length functionals
for tempered dilation structures.

The paper 1.1.5 introduces and studies graphic lambda calculus, which
consists in a class of graphs endowed with moves between them. Graphic
lambda calculus can be used for representing terms and reductions from
untyped lambda calculus, its main move being called graphic beta move for
its relation to the beta reduction in lambda calculus. This formalism can also
be used for computations in emergent algebras [15] or for tangle diagrams.
The paper 1.1.5 is a massive revision of the descriptions from [16, 17, 18] and
Section 5 of the paper is based on [15].

The paper 1.4.5 presents a geometric Ruzsa triangle inequality in metric
spaces with dilations.
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5.6 Uniformly convex geodesic spaces in geometric group
theory and ergodic theory

A geodesic space X is said to be weakly uniformly convex if there exists a
mapping η : X × (0,∞) × (0, 2] → (0, 1] such that for any a ∈ X, r > 0,
ε ∈ (0, 2], every x, y ∈ X and all geodesic segments [x, y] we have that,

d(a, x) ≤ r
d(a, y) ≤ r
d(x, y) ≥ εr

 ⇒ d (a,m(x, y)) ≤ (1− η(a, r, ε))r. (10)

Such a mapping η is referred to as a modulus of weak uniform convexity. This
notion was used by Reich and Shafrir [56] in the setting of hyperbolic spaces.
If the modulus η does not depend on a ∈ X, hence η : (0,∞)×(0, 2]→ (0, 1],
X is called uniformly convex. This class of spaces was studied, for example,
in [41, 34, 44].

Karlsson and Margulis [26] proved, in the setting of complete Busemann
convex geodesic spaces satisfying a uniform convexity condition, an ergodic
theorem that focuses on the asymptotic behavior of integrable cocycles of
nonexpansive mappings over an ergodic measure-preserving transformation.
Their result generalises the multiplicative ergodic theorem of Oseledec [52].
The paper 1.1.11 shows that one can relax the uniform convexity assumption
used in [26] to the one of weak uniform convexity, obtaining thus a more
general result.

Barycenters in geodesic spaces have been studied by various authors as-
suming different regularity conditions on the space [51, 27, 39]. Applications
of different notions of barycenters to ergodic theory were given by Austin [1]
and Navas [50]. The paper 1.4.4 extends to uniformly convex geodesic spaces
a result on the existence of barycenters, proved by Sturm [59] for CAT(0)
spaces.

5.7 Codensity and Stone spaces

In the paper 1.2.2, the author explicitly computes some categories of topo-
logical spaces important for algebraic logic as images of canonical codensity
monads. The method was introduced by Kock [28] and applied by Leinster
[40] to obtain the category of ultraproducts.
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[42] L. Leuştean, Rates of asymptotic regularity for Halpern iterations of
nonexpansive mappings, J. Universal Comp. Sci. 13 (2007), 1680-1691.
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