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Abstract

In these notes we present an abstract version of matching logic.
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1 Introduction

Applicative matching logic (AML) was introduced recently by Xiaohong Chen and Grigore Roşu
[1, 2] as a variant of matching logic (ML), developed by Grigore Roşu and collaborators [7, 6]. In
[3], the first author gives a theoretical introduction to AML. In these notes we develop an abstract
version of matching logic, based on the observation that different basic definitions and results from
[3] can be obtained in a much more general setting. As in the case of [3], Monk’s textbook [5] has
a huge influence on these notes.
We consider a language L for abstract matching logic that contains a countable set of element
variables, sets of set variables and constants, and finite sets of propositional constants, unary and
binary connectives, equality symbols, first-order quantifiers and second-order binders. Examples
of such languages are given in [4]. We define L-patterns, prove unique readability results, give
a recursion principle on patterns. In Section 3 we prove useful properties of L-contexts and in
Section 4 we define a general notion of congruence that is used in the next section to prove
important replacement theorems. In Sections 6-14 we define and prove properties of free, bound,
fresh element/set variables, substitution of free occurrences of element/set variables, bounded
substitution, variables free for patterns, positive and negative occurences of set variables. One of
the main results is the bounded substitution theorem (Section 9), whose proof is inspired by the
proof of [5, Theorem 10.59] for first-order logic. Finally, in Section 15, we study general proof
systems and define an abstract matching logic.
The general setting from these notes is applied by the author and Dafina Trufaş in [4] for first-order
matching logic with application (and definedness).
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corrections and suggestions for improvements.

2 Language

Definition 2.1. A language L for abstract matching logic consists of:

(i) a countable set EV ar of element variables;

(ii) a set SV ar of set variables;

(iii) a set Σ of constants;

(iv) a finite set PC of propositional constants;

(v) a finite set P1 of unary connectives;

(vi) a finite set P2 of binary connectives;

(vii) a finite set Equal of equality symbols;

(viii) a finite set Q of first-order quantifiers;

(ix) a finite set Q of second-order binders.

Furthermore, the following holds:

If Q ≠ ∅, then SV ar is a countable set.
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Each two of the sets EV ar, SV ar, Σ, PC , P1, P2, Equal, Q, Q are pairwise disjoint. We denote
element variables by x, y, z, x1, x2, . . . and set variables by X,Y, Z,X1, X2, . . ..

In the sequel, L is a language for abstract matching logic.

Definition 2.2. The set SymL of L-symbols is defined as

SymL = EV ar ∪ SV ar ∪ Σ ∪ PC ∪ P1 ∪ P2 ∪ Equal ∪Q ∪Q.

Definition 2.3. The set ExprL of L-expressions is the set of all expressions over SymL.

Definition 2.4. The set AtomicPatternL of atomic L-patterns is defined as follows:

AtomicPatternL = EV ar ∪ SV ar ∪ Σ ∪ PC .

Let Γ be a set of L-expressions. We say that

(i) Γ is closed to P1 if for every − ∈ P1 and every L-expression φ,

φ ∈ Γ implies − φ ∈ Γ.

(ii) Γ is closed to P2 if for every ◦ ∈ P2 and every L-expressions φ, ψ,

φ,ψ ∈ Γ implies ◦ φψ ∈ Γ.

(iii) Γ is closed to Equal if for every ∼∈ Equal and every L-expressions φ, ψ,

φ,ψ ∈ Γ implies ∼ φψ ∈ Γ.

(iv) Γ is closed to Q if for every Q ∈ Q, x ∈ EV ar and L-expression φ,

φ ∈ Γ implies Qxφ ∈ Γ.

(v) Γ is closed to Q if for every Q ∈ Q, X ∈ SV ar and L-expression φ,

φ ∈ Γ implies QXφ ∈ Γ.

Definition 2.5. The set PatternL of L-patterns is the intersection of all sets Γ of L-expressions
that have the following properties:

(i) Γ contains all atomic L-patterns.

(ii) Γ is closed to P1, P2, Equal, Q and Q.

We use the Polish notation in the definition of L-patterns as this notation allows us to obtain the
unique readability of L-patterns (see Proposition 2.8), a fundamental property.
L-patterns are denoted by φ,ψ, χ, . . ..
For any L-pattern φ, we use the following notations

EV ar(φ) = {x ∈ EV ar | x occurs in φ},
SV ar(φ) = {X ∈ SV ar | X occurs in φ}.

Proposition 2.6 (Induction principle on patterns).
Let Γ be a set of L-patterns satisfying the following properties:

(i) Γ contains all atomic L-patterns.

(ii) Γ is closed to P1, P2, Equal, Q and Q.
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Then Γ = PatternL.

Proof. By hypothesis, Γ ⊆ PatternL. By Definition 2.5, we get that PatternL ⊆ Γ.

Induction principle on patterns is used to prove that all patterns have a property P: we define Γ as
the set of all patterns satisfying P and apply induction on patterns to obtain that Γ = PatternL.

Definition 2.7 (Alternative definition for L-patterns). The L-patterns are the L-expressions
inductively defined as follows:

(i) Every atomic L-pattern is an L-pattern.

(ii) If φ is an L-pattern and − ∈ P1, then −φ is an L-pattern.

(iii) If φ and ψ are L-patterns and ◦ ∈ P2, then ◦φψ is an L-pattern.

(iv) If φ and ψ are L-patterns and ∼∈ Equal, then ∼ φψ is an L-pattern.

(v) If φ is an L-pattern, Q ∈ Q and x ∈ EV ar, then Qxφ is an L-pattern.

(vi) If φ is an L-pattern, Q ∈ Q and X ∈ SV ar, then QXφ is an L-pattern.

(vii) Only the expressions obtained by applying the above rules are L-patterns.

When the signature L is clear from the context, we shall write simply expression(s), pattern(s)
and we shall denote the set of expressions by Expr, the set of patterns by Pattern, the set of
atomic patterns by AtomicPattern, etc..

2.1 Unique readability

Proposition 2.8 (Unique readability of patterns).

(i) Any pattern has a positive length.

(ii) If φ is a pattern, then one of the following holds:

(a) φ = x, where x ∈ EV ar.

(b) φ = X, where X ∈ SV ar.

(c) φ = σ, where σ ∈ Σ.

(d) φ = P , where P ∈ PC .
(e) φ = −ψ, where − ∈ P1 and ψ is a pattern.

(f) φ = ◦ψχ, where ◦ ∈ P2 and ψ, χ are patterns.

(g) φ =∼ ψχ, where ∼∈ Equal and ψ, χ are patterns.

(h) φ = Qxψ, where Q ∈ Q, x ∈ EV ar and ψ is a pattern.

(i) φ = QXψ, where Q ∈ Q, X ∈ SV ar and ψ is a pattern.

(iii) Any proper initial segment of a pattern is not a pattern.

(iv) If φ is a pattern, then exactly one of the cases from (ii) holds. Moreover, φ can be written
in a unique way in one of these forms.

Proof. (i) Let Γ be the set of patterns of positive length. We prove that Γ = Pattern using the
Induction principle on patterns (Proposition 2.6).

(a) If φ is an atomic pattern, then its length is 1, so φ ∈ Γ.

(b) If φ,ψ ∈ Γ, hence they have positive length, then obviously the patterns −ψ (− ∈ P1),
◦φψ (◦ ∈ P2), ∼ φψ (∼∈ Equal), Qxφ (Q ∈ Q, x ∈ EV ar), QXφ ∈ Γ (Q ∈ Q,
X ∈ SV ar) have positive length, hence they are in Γ.
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(ii) Let Γ1 = {−ψ | − ∈ P1 and ψ ∈ Pattern}, Γ2 = {◦ψχ | ◦ ∈ P2 and ψ, χ ∈ Pattern},
Γ3 = {∼ ψχ |∼∈ Equal and ψ, χ ∈ Pattern}, Γ4 = {Qxψ | Q ∈ Q, x ∈ EV ar and ψ ∈
Pattern} and Γ5 = {QXψ | Q ∈ Q, X ∈ SV ar and ψ ∈ Pattern}. Define

Γ = EV ar ∪ SV ar ∪ Σ ∪ PC ∪ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5.

Then obviously, Γ ⊆ Pattern. We prove that Γ = Pattern using the Induction principle on
patterns (Proposition 2.6).

(a) As EV ar ∪ SV ar ∪ Σ ∪ PC ⊆ Γ, we have that Γ contains all atomic patterns.

(b) Let ψ, χ ∈ Γ, − ∈ P1, ◦ ∈ P2, ∼∈ Equal, Q ∈ Q, x ∈ EV ar, Q ∈ Q and X ∈ SV ar.
Then −ψ ∈ Γ1 ⊆ Γ, ◦ψχ ∈ Γ2 ⊆ Γ, ∼ ψχ ∈ Γ3, Qxψ ∈ Γ4 ⊆ Γ, and QXψ ∈ Γ5 ⊆ Γ.
Thus, Γ is closed to P1, P2, Equal, Q and Q.

(iii) As, by (i), patterns have positive length, it follows that we have to prove that for all n ≥ 1,

(P) if φ = φ0 . . . φn−1 is a pattern of length n, then for any 0 ≤ i < n− 1,

φ = φ0 . . . φi is not a pattern.

The proof is by induction on n.

n = 1: Then one cannot have 0 ≤ i < 0, hence (P) holds.

Assume that n > 1 and that (P) holds for any pattern of length < n. Let φ = φ0 . . . φn−1

be a pattern of length n. By (ii), we have the following cases:

(a) φ = −ψ, where − ∈ P1 and ψ is a pattern. Then φ0 = − and ψ = φ1 . . . φn−1. Let
0 ≤ i < n− 1 and assume, by contradiction, that φ0 . . . φi is a pattern. Applying again
(ii), it follows that φ0 . . . φi = −ψ1, where ψ1 = φ1 . . . φi is a pattern. Then ψ1 is a
proper initial segment of ψ. As the length of ψ is < n, we can apply the induction
hypothesis to get that ψ1 is not a pattern. We have obtained a contradiction.

(b) φ = ⊖ψχ, where ⊖ ∈ P2∪Equal and ψ, χ are patterns. Thus, φ0 = ⊖, ψ = φ1 . . . φk−1

and χ = φk . . . φn−1, where 2 ≤ k ≤ n− 1.

Let 0 ≤ i < n − 1 and assume, by contradiction, that φ0 . . . φi is a pattern. Applying
again (ii), it follows that φ0 . . . φi = ⊖ψ1χ1, where ψ1, χ1 are patterns. Thus, ψ1 =
φ1 . . . φp−1, χ

1 = φp . . . φi, where 2 ≤ p ≤ i. We have the following cases:

(1) p < k. Then ψ1 is a proper initial segment of ψ. As the length of ψ is < n, we can
apply the induction hypothesis to get that ψ1 is not a pattern. We have obtained
a contradiction.

(2) p = k. Then ψ1 = ψ and χ1 is a proper initial segment of χ. As the length of χ
is < n, we can apply the induction hypothesis to get that χ1 is not a pattern. We
have obtained a contradiction.

(3) p > k. Then ψ is a proper initial segment of ψ1. As the length of ψ1 is < n, we can
apply the induction hypothesis to get that ψ is not a pattern. We have obtained a
contradiction.

(c) φ = θψ, where ψ is a pattern and θ ∈ {Qx | Q ∈ FolQ, x ∈ EV ar} ∪ {QX | Q ∈
Q, X ∈ SV ar}. Then φ0φ1 = θ and ψ = φ2 . . . φn−1. Let 0 ≤ i < n − 1 and
assume, by contradiction, that φ0 . . . φi is a pattern. Applying again (ii), it follows
that φ0 . . . φi = θψ1, where ψ1 = φ2 . . . φi is a pattern. Then ψ1 is a proper initial
segment of ψ. As the length of ψ is < n, we can apply the induction hypothesis to get
that ψ1 is not a pattern. We have obtained a contradiction.

(iv) is an immediate consequence of (ii) and (iii).

Proposition 2.9. Let φ = φ0φ1 . . . φn−1 be a pattern and suppose that φi ∈ Q ∪ Q for some
i = 0, . . . , n− 1. Then there exists a unique j such that i < j ≤ n− 1 and φi . . . φj is a pattern.
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Proof. Let us prove first the uniqueness. Assume, by contradiction, that i < j < k ≤ n − 1 are
such that φi . . . φj and φi . . . φk are both patterns. As φi . . . φj is a proper initial segment of
φi . . . φk, it follows, by Proposition 2.8.(iii) that φi . . . φj is not a pattern. We have obtained a
contradiction.
Let us prove in the sequel the existence.
As, by Proposition 2.8.(i), patterns have positive length, it follows that we have to prove that for
all n ≥ 1,
(P) if φ = φ0 . . . φn−1 is a pattern of length n and φi ∈ Q ∪Q for some i = 0, . . . , n− 1,

then there exists j such that i < j ≤ n− 1 and φi . . . φj is a pattern.

The proof is by induction on n.
n = 1. Then φ = φ0 is an atomic pattern, so there exists no i satisfying the premise in (P), hence
(P) holds.
Assume that n > 1 and that (P) holds for any pattern of length < n. Let φ = φ0 . . . φn−1 be a
pattern of length n such that φi ∈ Q ∪ Q for some i = 0, . . . , n − 1. By Proposition 2.8.(ii), we
have the following cases:

(i) φ = −ψ, where − ∈ P1 and ψ is a pattern. Then φ0 = − and ψ = φ1 . . . φn−1. It follows
that i ≥ 1, hence φi occurs in ψ. As the length of ψ is < n, we can apply the induction
hypothesis to get the existence of j such that i < j ≤ n− 1 and φi . . . φj is a pattern.

(ii) φ = ⊖ψχ, where ⊖ ∈ P2∪Equal and ψ, χ are patterns. Thus, φ0 = ⊖, ψ = φ1 . . . φk−1 and
χ = φk . . . φn−1, where 2 ≤ k ≤ n− 1. We have the following cases:

(a) i ≤ k − 1. Then φi occurs in ψ. As the length of ψ is < n, we can apply the induction
hypothesis to get the existence of j such that i < j ≤ k − 1 and φi . . . φj is a pattern.

(b) i ≥ k. Then φi occurs in χ. As the length of χ is < n, we can apply the induction
hypothesis to get the existence of j such that i < j ≤ n− 1 and φi . . . φj is a pattern.

(iii) φ = θψ, where ψ is a pattern and θ ∈ {Qx | Q ∈ Q, x ∈ EV ar}∪{QX | Q ∈ Q, X ∈ SV ar}.
Then φ0φ1 = θ and ψ = φ2 . . . φn−1. As i ̸= 1, we have the following cases:

(a) i = 0. Then j = n− 1 and φi . . . φj = φ is a pattern.

(b) 2 ≤ i ≤ n − 1. Then φi occurs in ψ. As the length of ψ is < n, we can apply the
induction hypothesis to get the existence of j such that i < j ≤ n− 1 and φi . . . φj is a
pattern.

Proposition 2.10. Let φ = φ0φ1 . . . φn−1 be a pattern and suppose that φi ∈ P2 ∪ Equal for
some i = 0, . . . , n − 1. Then there exist unique j, l such that i < j < l ≤ n − 1 and φi+1 . . . φj,
φj+1 . . . φl are patterns.

Proof. Let us prove first the uniqueness. Assume, by contradiction, that i < j < l ≤ n − 1
and i < j1 < l1 ≤ n − 1 are such that ψ = φi+1 . . . φj , χ = φj+1 . . . φl, ψ

1 = φi+1 . . . φj1 ,
χ = φj+1 . . . φl1 are patterns. If j ̸= j1, then either j < j1 or j1 < j, hence one of ψ, ψ1 is a
proper initial segment of the other one. By Proposition 2.8.(iii), we get that one of ψ, ψ1 is not a
pattern. We have obtained a contradiction. Thus, we must have j = j1. We prove similarly that
we must have l = l1.
Let us prove in the sequel the existence. As, by Proposition 2.8.(i), patterns have positive length,
it follows that we have to prove that for all n ≥ 1,

(P) if φ = φ0 . . . φn−1 is a pattern of length n and φi ∈ P2 ∪ Equal for some i = 0, . . . , n− 1,

then there exist j, l such that i < j < l ≤ n−1 and φi+1 . . . φj , φj+1 . . . φl are patterns.

The proof is by induction on n.
n = 1. Then φ = φ0 is an atomic pattern, so there exists no i satisfying the premise in (P), hence
(P) holds.
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Assume that n > 1 and that (P) holds for any pattern of length < n. Let φ = φ0 . . . φn−1 be a
pattern of length n such that φi ∈ P2 ∪ Equal for some i = 0, . . . , n−1. By Proposition 2.8.(ii),
we have the following cases:

(i) φ = −ψ, where − ∈ P1 and ψ is a pattern. We get that i ≥ 1, hence φi occurs in ψ. As the
length of ψ is < n, we can apply the induction hypothesis for ψ to get the conclusion.

(ii) φ = ⊖ψχ, where ⊖ ∈ P2∪Equal and ψ, χ are patterns. Thus, φ0 = ⊖, ψ = φ1 . . . φk−1 and
χ = φk . . . φn−1, where 2 ≤ k ≤ n− 1. We have the following cases:

(a) i = 0. Then we can take j = k − 1 and l = n− 1.

(b) i ∈ {1, . . . , k − 1}. Then φi occurs in ψ. As the length of ψ is < n, we can apply the
induction hypothesis for ψ to get the conclusion.

(c) i ≥ k. Then φi occurs in χ. As the length of χ is < n, we can apply the induction
hypothesis for χ to get the conclusion

(iii) φ = θψ, where ψ is a pattern and θ ∈ {Qx | Q ∈ Q, x ∈ EV ar}∪{QX | Q ∈ Q, X ∈ SV ar}.
Then φ0φ1 = θ and ψ = φ2 . . . φn−1. As φi does not occur in θ, we have that φi occurs in ψ.
As the length of ψ is < n, we can apply the induction hypothesis for ψ to get the conclusion.

2.2 Recursion principle on patterns

Proposition 2.11 (Recursion principle on patterns). Let D be a set and the mappings

G0 : AtomicPattern→ D,

G− : D × Pattern→ D for any − ∈ P1

G◦ : D2 × Pattern2 → D for any ◦ ∈ P2,

G∼ : D2 × Pattern2 → D for any ∼∈ Equal,

GQ : D × EV ar × Pattern→ D for any Q ∈ Q and x ∈ EV ar,

GQ : D × SV ar × Pattern→ D for any Q ∈ Q and X ∈ SV ar.

Then there exists a unique mapping

F : Pattern→ D

that satisfies the following properties:

(i) F (φ) = G0(φ) for any atomic pattern φ.

(ii) F (−φ) = G−(F (φ), φ) for any − ∈ P1 and any pattern φ.

(iii) F (◦φψ) = G◦(F (φ), F (ψ), φ, ψ) for any ◦ ∈ P2 and any patterns φ, ψ.

(iv) F (∼ φψ) = G∼(F (φ), F (ψ), φ, ψ) for any ∼∈ Equal and any patterns φ, ψ.

(v) F (Qxφ) = GQ(F (φ), x, φ) for any Q ∈ Q, x ∈ EV ar and any pattern φ.

(vi) F (QXφ) = GQ(F (φ), X, φ) for any Q ∈ Q, X ∈ SV ar and any pattern φ.

Proof. Apply Proposition 2.8.
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2.3 Subpatterns

Definition 2.12. Let φ be a pattern. A subpattern of φ is a pattern ψ that occurs in φ.

Notation 2.13. We denote by SubPattern(φ) the set of subpatterns of φ.

Proposition 2.14 (Definition by recursion).
The mapping

SubPattern : Pattern→ 2Pattern, φ 7→ SubPattern(φ)

can be defined by recursion on patterns as follows:

SubPattern(φ) = {φ} if φ is an atomic pattern,

SubPattern(−φ) = SubPattern(φ) ∪ {−φ} for any − ∈ P1,

SubPattern(◦φψ) = SubPattern(φ) ∪ SubPattern(ψ) ∪ {◦φψ} for any ◦ ∈ P2,

SubPattern(∼ φψ) = SubPattern(φ) ∪ SubPattern(ψ) ∪ {∼ φψ} for any ∼∈ Equal,

SubPattern(Qxφ) = SubPattern(φ) ∪ {Qxφ} for any Q ∈ Q and x ∈ EV ar,

SubPattern(QXφ) = SubPattern(φ) ∪ {QXφ} for any Q ∈ Q and X ∈ SV ar.

Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = 2Pattern and

G0(φ) = {φ} if φ is an atomic pattern,

G−(Γ, φ) = Γ ∪ {−φ} for any − ∈ P1,

G◦(Γ,∆, φ, ψ) = Γ ∪∆ ∪ {◦φψ} for any ◦ ∈ P2,

G∼(Γ,∆, φ, ψ) = Γ ∪∆ ∪ {∼ φψ} for any ∼∈ Equal,

GQ(Γ, x, φ) = Γ ∪ {Qxφ} for any Q ∈ Q and x ∈ EV ar,

GQ(Γ, X, φ) = Γ ∪ {QXφ} for any Q ∈ Q and X ∈ SV ar.

Then

(i) SubPattern(φ) = {φ} = G0(φ) if φ is an atomic pattern.

(ii) For − ∈ P1, we have that

SubPattern(−φ) = SubPattern(φ) ∪ {−φ} = G−(SubPattern(φ), φ).

(iii) For ◦ ∈ P2, we have that

SubPattern(◦φψ) = SubPattern(φ) ∪ SubPattern(ψ) ∪ {◦φψ}
= G◦(SubPattern(φ), SubPattern(ψ), φ, ψ).

(iv) For ∼∈ Equal, we have that

SubPattern(∼ φψ) = SubPattern(φ) ∪ SubPattern(ψ) ∪ {∼ φψ}
= G∼(SubPattern(φ), SubPattern(ψ), φ, ψ).

(v) For Q ∈ Q and x ∈ EV ar, we have that

SubPattern(Qxφ) = SubPattern(φ) ∪ {Qxφ} = GQ(SubPattern(φ), x, φ).

(vi) For Q ∈ Q and X ∈ SV ar, we have that

SubPattern(QXφ) = SubPattern(φ) ∪ {QXφ} = GQ(SubPattern(φ), X, φ).

Thus, SubPattern : Pattern→ 2Pattern is the unique mapping given by Proposition 2.11.
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Lemma 2.15. Let φ, ψ be patterns such that ψ is a subpattern of φ. Then SubPattern(ψ) ⊆
SubPattern(φ).

Proof. Obviously. If χ ∈ SubPattern(ψ), then χ is a pattern that occurs in ψ. As ψ occurs in φ,
it follows that χ occurs also in φ. Thus, χ ∈ SubPattern(φ).

Lemma 2.16. Let φ, ψ, χ be patterns such that ψ, χ are subpattern of φ. Then one of the
following holds:

(i) (ψ is a subpattern of χ) or (χ is a subpattern of ψ).

(ii) Occurψ(φ) ∩Occurχ(φ) = ∅.

Proof. The proof is by induction on φ.

(i) φ is an atomic pattern. Then we must have ψ = χ = φ. The conclusion is obvious.

(ii) φ = −δ, where − ∈ P1 and δ is a pattern. If ψ = φ or χ = φ, then (i) holds. Assume that
ψ ̸= φ and χ ̸= φ. Then ψ, χ are subpatterns of δ. Applying the inductive hypothesis for δ,
we get that either (i) holds or Occurψ(δ) ∩Occurχ(δ) = ∅. It follows that

Occurψ(φ) ∩Occurχ(φ) = (Occurψ(δ) + 1) ∩ (Occurχ(δ) + 1) = ∅.

(iii) φ = ⊖δθ, where ⊖ ∈ P2 ∪ Equal and δ, θ are patterns. If ψ = φ or χ = φ, then (i) holds.
Assume that ψ ̸= φ and χ ̸= φ. Then ψ, χ ∈ SubPattern(δ) ∪ SubPattern(θ). We have the
following cases:

(a) ψ, χ are subpattern of δ. Applying the inductive hypothesis for δ, we get that either
(i) holds or Occurψ(δ) ∩Occurχ(δ) = ∅. It follows that

Occurψ(φ) ∩Occurχ(φ) = (Occurψ(δ) + 1) ∩ (Occurχ(δ) + 1) = ∅.

(b) ψ, χ are subpattern of θ. Applying the inductive hypothesis for θ, we get that either(i)
holds or Occurψ(θ) ∩Occurχ(θ) = ∅. It follows that

Occurψ(φ) ∩Occurχ(φ) = (Occurψ(θ) + ℓ(δ) + 1) ∩ (Occurχ(θ) + ℓ(δ) + 1) = ∅.

(c) ψ is a subpattern of δ and χ is a subpattern of θ. Then Occurψ(φ) ⊆ [1, ℓ(δ)− 1] and
Occurχ(φ) ⊆ [ℓ(δ), ℓ(φ)− 1]. Thus, (ii) holds.

(iv) φ = θδ, where δ is a pattern and θ ∈ {Qx | Q ∈ Q, x ∈ EV ar} ∪ {QX | Q ∈ Q, X ∈ SV ar}.
If ψ = φ or χ = φ, then (i) holds. Assume that ψ ̸= φ and χ ̸= φ. Then ψ, χ are
subpatterns of δ. Applying the inductive hypothesis for δ, we get that either (i) holds or
Occurψ(δ) ∩Occurχ(δ) = ∅. It follows that

Occurψ(φ) ∩Occurχ(φ) = (Occurψ(δ) + 2) ∩ (Occurχ(δ) + 2) = ∅.

3 L-contexts
Let L be a language for abstract matching logic and □ be a new symbol and let us denote

Sym□ = SymL ∪ {□}.

Definition 3.1.
The set CL of L-contexts is the intersection of all sets Γ of expressions over Sym□ that have the
following properties:
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(i) □ ∈ Γ.

(ii) For every − ∈ P1,

C□ ∈ Γ implies − C□ ∈ Γ.

(iii) For every ◦ ∈ P2 and every L-pattern φ,

C□ ∈ Γ implies ◦ C□φ, ◦φC□ ∈ Γ.

(iv) For every ∼∈ Equal and every L-pattern φ,

C□ ∈ Γ implies ∼ C□φ,∼ φC□ ∈ Γ.

(v) For every Q ∈ Q, x ∈ EV ar,

C□ ∈ Γ implies QxC□ ∈ Γ.

(vi) For every Q ∈ Q, X ∈ SV ar ,

C□ ∈ Γ implies QXC□ ∈ Γ.

Proposition 3.2. [Induction principle on L-contexts]
Let Γ be a set of L-contexts satisfying (i)-(vi) from Definition 3.1.
Then Γ = CL.

Proof. By hypothesis, Γ ⊆ CL. By Definition 3.1, we get that CL ⊆ Γ.

Proposition 3.3 (Unique readability of L-contexts).

(i) Any L-context has a positive length.

(ii) If C□ is an L-context, then one of the following hold:

(a) C□ = □.

(b) C□ = −D□, where D□ is an L-context and − ∈ P1.

(c) C□ = ◦D□φ, where D□ is an L-context, φ is an L-pattern and ◦ ∈ P2.

(d) C□ = ◦φD□, where D□ is an L-context, φ is an L-pattern and ◦ ∈ P2.

(e) C□ =∼ D□φ, where D□ is an L-context, φ is an L-pattern and ∼∈ Equal.

(f) C□ =∼ φD□, where D□ is an L-context, φ is an L-pattern and ∼∈ Equal.

(g) C□ = QxD□, where D□ is an L-context, Q ∈ Q and x ∈ EV ar.

(h) C□ = QXD□, where D□ is an L-context, Q ∈ Q, X ∈ SV ar.

(iii) Any proper initial segment of an L-context is not an L-context.

(iv) If C□ is an L-context, then exactly one of the cases from (ii) holds. Moreover, C□ can be
written in a unique way in one of these forms.

Proof. Similarly with the proof of Proposition 2.8.
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Proposition 3.4 (Recursion principle on L-contexts).
Let A be a set, □A ∈ A and the mappings

G− : A→ A for any − ∈ P1

G1
◦ : A× Pattern→ A for any ◦ ∈ P2,

G2
◦ : A× Pattern→ A for any ◦ ∈ P2,

G1
∼ : A× Pattern→ A for any ∼∈ Equal,

G2
∼ : A× Pattern→ A for any ∼∈ Equal,

GQ : A× EV ar → A for any Q ∈ Q and x ∈ EV ar,

GQ : A× SV ar → A for any Q ∈ Q and X ∈ SV ar.

Then there exists a unique mapping
F : CL → A

that satisfies the following properties:

(i) F (□) = □A.

(ii) F (−C□) = G−(F (C□)) for any L-context C□ and any − ∈ P1.

(iii) F (◦φC□) = G1
◦(F (C□), φ) for any L-context C□, any L-pattern φ and any ◦ ∈ P2.

(iv) F (◦C□φ) = G2
◦(F (C□), φ) for any L-context C□, any L-pattern φ and any ◦ ∈ P2.

(v) F (∼ φC□) = G1
∼(F (C□), φ) for any L-context C□, any L-pattern φ and any ∼∈ Equal.

(vi) F (∼ C□φ) = G2
∼(F (C□), φ) for any L-context C□, any L-pattern φ and any ∼∈ Equal.

(vii) F (QxC□) = GQ(F (C□), x) for any L-context C□, any Q ∈ Q and any x ∈ EV ar.

(viii) F (QXC□) = GQ(F (C□), X) for any L-context C□, any Q ∈ Q and any X ∈ SV ar

Proof. Apply Proposition 3.3.

3.1 □ occurs exactly once in every L-context
Proposition 3.5. □ occurs exactly once in every L-context C□.

Proof. The proof is by induction on the context C□:

(i) C□ = □. Obviously.

(ii) C□ = −D□, where D□ is an L-context and − ∈ P1. By the induction hypothesis, □ occurs
exactly once in D□. Obviously, □ occurs exactly once in C□.

(iii) C□ = ⊖D□φ, where D□ is an L-context, φ is an L-pattern and ◦ ∈ P2 ∪ Equal. By the
induction hypothesis, □ occurs exactly once in D□. As φ is an L-pattern, □ does not occur
in φ. Thus, □ occurs exactly once in C□.

(iv) C□ = ⊖φD□, where D□ is an L-context, φ is an L-pattern and ◦ ∈ P2 ∪ Equal. By the
induction hypothesis, □ occurs exactly once in D□. As φ is an L-pattern, □ does not occur
in φ. Thus, □ occurs exactly once in C□.

(v) C□ = QxD□, whereD□ is an L-context, Q ∈ Q and x ∈ EV ar. By the induction hypothesis,
□ occurs exactly once in D□. Obviously, □ occurs exactly once in C□.

(vi) C□ = QXD□, where D□ is an L-context, Q ∈ Q, X ∈ SV ar. By the induction hypothesis,
□ occurs exactly once in D□. Obviously, □ occurs exactly once in C□.
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3.2 Replacement in an L-context
Definition 3.6. Let C□ be an L-context and δ be an L-pattern. We denote by C□[δ] the L-
expression obtained by replacing the unique occurrence of □ with δ.

Remark 3.7. C□[δ] = Replall□δ (C□).

Proposition 3.8 (Definition by recursion).
C□[δ] can be defined by recursion on L-contexts as follows:

□[δ] = δ,

(−C□)[δ] = −C□[δ] for any − ∈ P1

(◦C□φ)[δ] = ◦C□[δ]φ for any ◦ ∈ P2,
(◦φC□)[δ] = ◦φC□[δ] for any ◦ ∈ P2,
(∼ C□φ)[δ] = ∼ C□[δ]φ for any ∼∈ Equal,
(∼ φC□)[δ] = ∼ φC□[δ] for any ∼∈ Equal,
(QxC□)[δ] = QxC□[δ] for any Q ∈ Q and x ∈ EV ar,
(QXC□)[δ] = QXC□[δ] for any Q ∈ Q and X ∈ SV ar.

Proof. Let
F : CL → Fun(PatternL, ExprL), F (C□)(δ) = C□[δ].

Apply Proposition 3.4 with A = Fun(PatternL, ExprL), □A(δ) = δ and, for any f ∈ A, δ ∈
PatternL

G−(f)(δ) = −f(δ) for any − ∈ P1,
G1

◦(f, φ)(δ) = ◦f(δ)φ for any ◦ ∈ P2 and φ ∈ PatternL,
G2

◦(f, φ)(δ) = ◦φf(δ) for any ◦ ∈ P2 and φ ∈ PatternL,
G1

∼(f, φ)(δ) = ∼ f(δ)φ for any ∼∈ Equal and φ ∈ PatternL,
G2

∼(f, φ)(δ) = ∼ φf(δ) for any ∼∈ Equal and φ ∈ PatternL,
GQ(f, x)(δ) = Qxf(δ) for any Q ∈ Q, x ∈ EV ar,
GQ(f,X)(δ) = QXf(δ) for any Q ∈ Q and X ∈ SV ar.

Then

(i) F (□)(δ) = δ = □A(δ) for every L-pattern δ. It follows that F (□) = □A.

(ii) For − ∈ P1, we have that for any L-context C□ and any L-pattern δ,

F (−C□)(δ) = (−C□)[δ] = −C□[δ] = −F (C□)(δ) = G−(F (C□))(δ).

It follows that F (−C□) = G−(F (C□)).

(iii) For ◦ ∈ P2, we have that for any L-context C□ and any L-patterns φ, δ,

F (◦C□φ)(δ) = (◦C□φ)[δ] = ◦C□[δ]φ = ◦F (C□)(δ)φ = G1
◦(F (C□), φ)(δ),

F (◦φC□)(δ) = (◦φC□)[δ] = ◦φC□[δ] = ◦φF (C□)(δ) = G2
◦(F (C□), φ)(δ).

It follows that for any L-context C□ and any L-pattern φ, F (◦C□φ) = G1
◦(F (C□), φ) and

F (◦φC□) = G2
◦(F (C□), φ).

(iv) For ∼∈ Equal, we have that for any L-context C□ and any L-patterns φ, δ,

F (∼ C□φ)(δ) = (∼ C□φ)[δ] =∼ C□[δ]φ =∼ F (C□)(δ)φ = G1
∼(F (C□), φ)(δ),

F (∼ φC□)(δ) = (∼ φC□)[δ] =∼ φC□[δ] =∼ φF (C□)(δ) = G2
∼(F (C□), φ)(δ).

It follows that for any L-context C□ and any L-pattern φ, F (∼ C□φ) = G1
∼(F (C□), φ) and

F (∼ φC□) = G2
∼(F (C□), φ).
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(v) For Q ∈ Q, we have that for any x ∈ EV ar, any L-context C□ and any L-pattern δ,

F (QxC□)(δ) = (QxC□)[δ] = QxC□[δ] = QxF (C□)(δ) = GQ(F (C□), x)(δ).

It follows that for any x ∈ EV ar and any L-context C□, F (QxC□) = GQ(F (C□), x).

(vi) For Q ∈ Q, we have that for any X ∈ SV ar, any L-context C□ and any L-pattern δ,

F (QXC□)(δ) = (QXC□)[δ] = QXC□[δ] = QXF (C□)(δ) = GQ(F (C□), X)(δ).

It follows that for any X ∈ SV ar and any L-context C□, F (QXC□) = GQ(F (C□), X).

Thus, F is the unique mapping given by Proposition 3.4.

Proposition 3.9. For any L-context C□ and any L-pattern δ, C□[δ] is an L-pattern.

Proof. The proof is by induction on L-context C□, using Proposition 3.8.

Remark 3.10. Let C□, D□ be L-contexts such that Occur□(C□) = Occur□(D□).
If C□[δ] = D□[δ] for some L-pattern δ, then C□ = D□.

Proof. Apply Remark 3.7 and Lemma A.11.

Proposition 3.11. Let φ, δ be L-patterns such that δ is a subpattern of φ.

(i) For any occurrence of δ in φ, there exists an L-context C□ such that C□[δ] = φ.

(ii) If k is an occurrence of δ in φ and C□ is as in (i), then □ occurs uniquely at place k of C□

and C□ = Replδ□(φ; {k}). Thus, C□ is unique satisfying (i).

Proof. (i) If δ = φ, then we can take C□ = □. Assume in the sequel that δ ̸= φ. The proof is
by induction on φ, using the definition by recursion of subpatterns (Proposition 2.14).

(a) φ is an atomic L-pattern. Obviously, as the unique subpattern is φ.

(b) φ = −ψ, where ψ is an L-pattern and − ∈ P1. As δ ̸= φ, we have that the occurrence
of δ in φ is an occurrence of δ in ψ. Apply the induction hypothesis for ψ to get the
L-context D□ such that D□[δ] = ψ. Take C□ := −D□. Then

C□[δ] = −D□[δ] = −ψ = φ.

(c) φ = ⊖ψχ, where ψ, χ are L-patterns and ⊖ ∈ P2 ∪ Equal. As δ ̸= φ, we have two
cases:

(1) The occurrence of δ in φ is an occurrence of δ in ψ. Apply the induction hypothesis
for ψ to get the L-context D□ such that D□[δ] = ψ. Take C□ := ⊖D□χ. Then

C□[δ] = ⊖D□[δ]χ = ⊖ψχ = φ.

(2) The occurrence of δ in φ is an occurrence of δ in χ. Apply the induction hypothesis
for χ to get the L-context D□ such that D□[δ] = χ. Take C□ := ⊖ψD□. Then

C□[δ] = ⊖ψD□[δ] = ⊖ψχ = φ.

(d) φ = Qxψ, where ψ is an L-pattern, Q ∈ Q and x ∈ EV ar. As δ ̸= φ, we have that the
occurrence of δ in φ is an occurrence of δ in ψ. Apply the induction hypothesis for ψ
to get the L-context D□ such that D□[δ] = ψ. Take C□ := QxD□. Then

C□[δ] = QxD□[δ] = Qxψ = φ.

14



(e) φ = QXψ, where ψ is an L-pattern, Q ∈ Q and X ∈ SV ar. As δ ̸= φ, we have that
the occurrence of δ in φ is an occurrence of δ in ψ. Apply the induction hypothesis for
ψ to get the L-context D□ such that D□[δ] = ψ. Take C□ := QXD□. Then

C□[δ] = QXD□[δ] = QXψ = φ.

(ii) By (i) and Remark 3.7, we have that

φ = C□[δ] = Replall□δ (C□) = Repl□δ (C□; {k}).

Apply Lemma A.13 with a := C□, b := □, c := δ, a∗ := φ and k to get that

C□ = Replδ□(φ; {k}).

4 L-congruences
Let L be a language and Cong be a binary relation on the set PatternL of L-patterns.

Definition 4.1. We say that Cong is an L-congruence if it satisfies the following conditions:

(i) Cong is compatible with P1, that is for any − ∈ P1 and any L-patterns φ1, φ2,

φ1Congφ2 implies −φ1Cong−φ2.

(ii) Cong is compatible with P2, that is for any ◦ ∈ P2 and any L-patterns φ1,φ2, ψ,

φ1Congφ2 implies ◦φ1ψCong ◦φ2ψ and ◦ψφ1Cong ◦ψφ2.

(iii) Cong is compatible with Equal, that is for any ∼∈ Equal and any L-patterns φ1,φ2, ψ,

φ1Congφ2 implies ∼ φ1ψCong∼ φ2ψ and ∼ ψφ1Cong∼ ψφ2.

(iv) Cong is compatible with Q, that is for every Q ∈ Q, x ∈ EV ar and any L-patterns φ1,
φ2,

φ1Congφ2 implies Qxφ1CongQxφ2.

(v) Cong is compatible with Q, that is for every Q ∈ Q, X ∈ SV ar and any L-patterns φ1,
φ2,

φ1Congφ2 implies QXφ1CongQXφ2.

Lemma 4.2.
Let Cong be a transitive L-congruence. Then for any ⊖ ∈ P2 ∪Equal and any L-patterns φ1,φ2,
ψ1,

φ1Congφ2 and ψ1Congψ2 imply ⊖φ1ψ1Cong⊖φ2ψ2.

Proof. Assume that φ1Congφ2 and ψ1Congψ2. It follows that

⊖φ1ψ1Cong⊖φ2ψ1 and ⊖φ2ψ1Cong⊖φ2ψ2.

Since Cong is transitive, it follows that ⊖φ1ψ1Cong⊖φ2ψ2.
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5 Replacement theorems

Let Cong be an L-congruence.
Theorem 5.1 (Replacement Theorem for L-contexts).
For any L-context C□ and any L-patterns φ,ψ,

φCongψ implies C□[φ]CongC□[ψ].

Proof. The proof is by induction on the L-context C□. Let φ,ψ be L-patterns such that φCongψ.

(i) C□ = □. Then C□[φ] = φ and C□[ψ] = ψ.

By hypothesis, φCongψ, hence C□[φ]CongC□[ψ].

(ii) C□ = −D□, where D□ is an L-context and − ∈ P1. By the induction hypothesis, we have
thatD□[φ]CongD□[ψ]. AsCong is compatible with P1, we get that−D□[φ]Cong−D□[ψ],
that is C□[φ]CongC□[ψ].

(iii) C□ = ⊖D□χ, where D□ is an L-context, χ is an L-pattern and ⊖ ∈ P2 ∪ Equal. By the
induction hypothesis, we have that D□[φ]CongD□[ψ]. As Cong is compatible with P2 and
Equal, we get that ⊖D□[φ]χCong⊖D□[ψ]χ, that is C□[φ]CongC□[ψ].

(iv) C□ = ⊖χD□, where D□ is an L-context, χ is an L-pattern and ⊖ ∈ P2 ∪ Equal. By the
induction hypothesis, we have that D□[φ]CongD□[ψ]. As Cong is compatible with P2 and
Equal, we get that ⊖χD□[φ]Cong⊖χD□[ψ], that is C□[φ]CongC□[ψ].

(v) C□ = QxD□, where D□ is an L-context, Q ∈ Q and x ∈ EV ar. By the induction hy-
pothesis, we have that D□[φ]CongD□[ψ]. As Cong is compatible with Q, we get that
QxD□[φ]CongQxD□[ψ], that is C□[φ]CongC□[ψ].

(vi) C□ = QXD□, where D□ is an L-context, Q ∈ Q and X ∈ SV ar. By the induction
hypothesis, we have that D□[φ]CongD□[ψ]. As Cong is compatible with Q, we get that
QXD□[φ]CongQXD□[ψ], that is C□[φ]CongC□[ψ].

Theorem 5.2 (Replacement Theorem - one occurrence).
Let φ,ψ, χ, θ be L-patterns such that φ is a subpattern of χ and θ is obtained from χ by replacing
an occurrence of φ with ψ. Then θ is an L-pattern and, moreover,

φCongψ implies χCong θ.

Proof. Asume that k is the occurrence of φ in χ that is replaced with ψ. Then

θ = Replφψ(χ; {k}).
By Proposition 3.11, there exists an L-context C□ such that □ occurs uniquely at place k of C□

and
χ = C□[φ] = Replall□φ (C□) = Repl□φ (C□; {k}).

Thus,
θ = Replφψ(Repl

□
φ (C□; {k}); {k}).

Apply Lemma A.12 with a := C□, b := □, c := φ, d := ψ and k to get that

θ = Repl□ψ (C□; {k}) = Replall□ψ (C□) = C□[ψ].

It follows, by Proposition 3.9, that θ is an L-pattern and, by Theorem 5.1, that χCong θ.

Theorem 5.3 (Replacement Theorem).
Let φ,ψ, χ, θ be L-patterns such that φ is a subpattern of χ and θ is obtained from χ by replacing
one or more occurrences of φ with ψ. Then θ is an L-pattern and

φCongψ implies χCong θ.

Proof. It follows immediately from Theorem 5.2 by induction on the number of occurrences of φ
in χ that are replaced with ψ.
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6 Free, bound, fresh element variables

Assume that EV ar ̸= ∅ and Q ≠ ∅.

Definition 6.1. Let φ = φ0φ1 . . . φn−1 be a pattern and x ∈ EV ar.

(i) We say that Q ∈ Q is a quantifier on x at place i of φ with scope ψ if φi = Q,
φi+1 = x and ψ = φi . . . φj is the unique pattern given by Proposition 2.9.

(ii) We say that x occurs bound at place k of φ if φk = x and there exist Q ∈ Q and
i ≤ j ≤ n − 1 such that k ∈ (i, j] and Q is a quantifier on x at place i of φ with scope
ψ = φi . . . φj.

(iii) If φk = x but x does not occur bound at place k of φ, we say that x occurs free at place
k of φ.

(iv) x is a bound variable of φ (or that x occurs bound in φ) if there exists k such that x
occurs bound at place k of of φ.

(v) x is a free variable of φ (or that x occurs free in φ) if there exists k such that x occurs
free at place k of φ.

(vi) A bound occurrence of x in φ is a k ∈ [0, n− 1] such that x occurs bound at place k in φ.

(vii) A free occurrence of x in φ is a k ∈ [0, n− 1] such that x occurs free at place k in φ.

Notation 6.2. Let us denote, for every pattern φ,

FV (φ) = {x ∈ EV ar(φ) | x is free in φ},
BV (φ) = {x ∈ EV ar(φ) | x is bound in φ},

NotFV (φ) = EV ar(φ) \ FV (φ),

NotBV (φ) = EV ar(φ) \BV (φ),

F reshF (φ) = EV ar \ FV (φ),

F reshB(φ) = EV ar \BV (φ),

Lemma 6.3. (i) EV ar(φ) = FV (φ) ∪BV (φ).

(ii) FV (φ) and BV (φ) are not disjoint, in general, as x ∈ EV ar can be both free and bound in
a pattern φ.

(iii) NotFV (φ) ⊆ BV (φ).

(iv) FreshF (φ) = (EV ar \ EV ar(φ)) ∪NotFV (φ).

(v) FreshB(φ) = (EV ar \ EV ar(φ)) ∪NotBV (φ).

Proof. We have that

FreshF (φ) = EV ar \ FV (φ) =

(
EV ar(φ) ∪

(
EV ar \ EV ar(φ)

))
\ FV (φ)

(16)
=

(
EV ar \ EV ar(φ)

)
∪
(
EV ar(φ) \ FV (φ)

)
= (EV ar \ EV ar(φ)) ∪NotFV (φ),

F reshB(φ) = EV ar \BV (φ) =

(
EV ar(φ) ∪

(
EV ar \ EV ar(φ)

))
\BV (φ)

(16)
=

(
EV ar \ EV ar(φ)

)
∪
(
EV ar(φ) \BV (φ)

)
= (EV ar \ EV ar(φ)) ∪NotBV (φ).
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Notation 6.4. Let us denote, for every pattern φ and element variable x,

FreeOccurx(φ) = the set of all free occurrences of x in φ,

BoundOccurx(φ) = the set of all bound occurrences of x in φ.

The following lemma contains some obvious useful properties.

Lemma 6.5. (i) x ∈ FV (φ) iff FreeOccurx(φ) ̸= ∅.

(ii) x ∈ FreshF (φ) iff FreeOccurx(φ) = ∅.

(iii) x ∈ BV (φ) iff BoundOccurx(φ) ̸= ∅.

(iv) x ∈ FreshB(φ) iff BoundOccurx(φ) = ∅.

(v) FreeOccurx(φ) ∩BoundOccurx(φ) = ∅.

(vi) Occurx(φ) = FreeOccurx(φ) ∪BoundOccurx(φ).

(vii) FreeOccurx(φ) = Occurx(φ) \ BoundOccurx(φ) and BoundOccurx(φ) = Occurx(φ) \
FreeOccurx(φ).

Proposition 6.6 (Definition by recursion of FV ).
The mapping

FV : Pattern→ 2EV ar, φ 7→ FV (φ)

can be defined by recursion on patterns as follows:

FV (φ) = EV ar(φ) if φ is an atomic pattern,

FV (−φ) = FV (φ) for any − ∈ P1,

FV (◦φψ) = FV (φ) ∪ FV (ψ) for any ◦ ∈ P2,

FV (∼ φψ) = FV (φ) ∪ FV (ψ) for any ∼∈ Equal,

FV (Qxφ) = FV (φ) \ {x} for any Q ∈ Q and x ∈ EV ar,

FV (QXφ) = FV (φ) for any Q ∈ Q and X ∈ SV ar.

Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = 2EV ar and

G0(φ) = EV ar(φ),

G−(V, φ) = V for any − ∈ P1,

G◦(V1, V2, φ, ψ) = V1 ∪ V2 for any ◦ ∈ P2,

G∼(V1, V2, φ, ψ) = V1 ∪ V2 for any ∼∈ Equal,

GQ(V, x, φ) = V \ {x} for any Q ∈ Q and x ∈ EV ar,

GQ(V,X, φ) = V for any Q ∈ Q and X ∈ SV ar.

Then

(i) FV (φ) = EV ar(φ) = G0(φ) if φ is an atomic pattern.

(ii) For − ∈ P1, we have that

FV (−φ) = FV (φ) = G−(FV (φ), φ).

(iii) For ◦ ∈ P2, we have that

FV (◦φψ) = FV (φ) ∪ FV (ψ) = G◦(FV (φ), FV (ψ), φ, ψ).
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(iv) For ∼∈ Equal, we have that

FV (∼ φψ) = FV (φ) ∪ FV (ψ) = G∼(FV (φ), FV (ψ), φ, ψ).

(v) For Q ∈ Q and x ∈ EV ar, we have that

FV (Qxφ) = FV (φ) \ {x} = GQ(FV (φ), x, φ).

(vi) For Q ∈ Q and X ∈ SV ar, we have that

FV (QXφ) = FV (φ) = GQ(FV (φ), X, φ).

Thus, FV : Pattern→ 2EV ar is the unique mapping given by Proposition 2.11.

Remark 6.7 (Definition by recursion of BV ).
The mapping

BV : Pattern→ 2EV ar, φ 7→ BV (φ)

can be defined by recursion on patterns as follows:

BV (φ) = ∅ if φ is an atomic pattern,

BV (−φ) = BV (φ) for any − ∈ P1,

BV (◦φψ) = BV (φ) ∪BV (ψ) for any ◦ ∈ P2,

BV (∼ φψ) = BV (φ) ∪BV (ψ) for any ∼∈ Equal,

BV (Qxφ) = BV (φ) ∪ {x} for any Q ∈ Q and x ∈ EV ar,

BV (QXφ) = BV (φ) for any Q ∈ Q and X ∈ SV ar.

Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = 2EV ar and

G0(φ) = ∅,
G−(V, φ) = V for any − ∈ P1,

G◦(V1, V2, φ, ψ) = V1 ∪ V2 for any ◦ ∈ P2,

G∼(V1, V2, φ, ψ) = V1 ∪ V2 for any ∼∈ Equal,

GQ(V, x, φ) = V ∪ {x} for any Q ∈ Q and x ∈ EV ar,

GQ(V,X, φ) = V for any Q ∈ Q and X ∈ SV ar.

Then

(i) BV (φ) = ∅ = G0(φ) if φ is an atomic pattern.

(ii) For − ∈ P1, we have that

BV (−φ) = BV (φ) = G−(BV (φ), φ).

(iii) For ◦ ∈ P2, we have that

BV (◦φψ) = BV (φ) ∪BV (ψ) = G◦(BV (φ), BV (ψ), φ, ψ).

(iv) For ∼∈ Equal, we have that

BV (∼ φψ) = BV (φ) ∪BV (ψ) = G∼(BV (φ), BV (ψ), φ, ψ).

(v) For Q ∈ Q and x ∈ EV ar, we have that

BV (Qxφ) = BV (φ) ∪ {x} = GQ(BV (φ), x, φ).
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(vi) For Q ∈ Q and X ∈ SV ar, we have that

BV (QXφ) = BV (φ) = GQ(BV (φ), X, φ).

Thus, BV : Pattern→ 2EV ar is the unique mapping given by Proposition 2.11.

Remark 6.8 (Definition by recursion of NotFV ).
The mapping

NotFV : Pattern→ 2EV ar, φ 7→ NotFV (φ)

can be defined by recursion on patterns as follows:

NotFV (φ) = ∅ if φ is an atomic pattern,

NotFV (−φ) = NotFV (φ) for any − ∈ P1,

NotFV (◦φψ) = NotFV (φ) ∩NotFV (ψ) for any ◦ ∈ P2,

NotFV (∼ φψ) = NotFV (φ) ∩NotFV (ψ) for any ∼∈ Equal,

NotFV (Qxφ) = NotFV (φ) ∪ {x} for any Q ∈ Q and x ∈ EV ar,
NotFV (QXφ) = NotFV (φ) for any Q ∈ Q and X ∈ SV ar.

Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = 2EV ar and

G0(φ) = ∅,
G−(V, φ) = V for any − ∈ P1,

G◦(V1, V2, φ, ψ) = V1 ∩ V2 for any ◦ ∈ P2,

G∼(V1, V2, φ, ψ) = V1 ∩ V2 for any ∼∈ Equal,

GQ(V, x, φ) = V ∪ {x} for any Q ∈ Q and x ∈ EV ar,

GQ(V,X, φ) = V for any Q ∈ Q and X ∈ SV ar.

Then

(i) NotFV (φ) = ∅ = G0(φ) if φ is an atomic pattern.

(ii) For − ∈ P1, we have that

NotFV (−φ) = NotFV (φ) = G−(NotFV (φ), φ).

(iii) For ◦ ∈ P2, we have that

NotFV (◦φψ) = NotFV (φ) ∩NotFV (ψ) = G◦(NotFV (φ), NotFV (ψ), φ, ψ).

(iv) For ∼∈ Equal, we have that

NotFV (∼ φψ) = NotFV (φ) ∩NotFV (ψ) = G∼(NotFV (φ), NotFV (ψ), φ, ψ).

(v) For Q ∈ Q and x ∈ EV ar, we have that

NotFV (Qxφ) = EV ar(Qxφ) \ FV (Qxφ) =

(
EV ar(φ) ∪ {x}

)
\
(
FV (φ) \ {x}

)
(14)
=

((
EV ar(φ) ∪ {x}

)
\ FV (φ)

)
∪ {x}

(15)
=

(
EV ar(φ) \ FV (φ)

)
∪ {x} = NotFV (φ) ∪ {x} = GQ(NotFV (φ), x, φ)

(vi) For Q ∈ Q and X ∈ SV ar, we have that

NotFV (QXφ) = NotFV (φ) = GQ(NotFV (φ), X, φ).
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Thus, NotFV : Pattern→ 2EV ar is the unique mapping given by Proposition 2.11.

Lemma 6.9. Let φ be a pattern and x ∈ EV ar such that x occurs bound in φ.
Then there exists a subpattern Qxψ (with Q ∈ Q) of φ such that x does not occur bound in ψ.

Proof. The proof is by induction on φ, using the definition by recursion of subpatterns (Proposition
2.14) and the definition by recursion of bounded variables (Proposition 6.7).

(i) φ is an atomic pattern. Then x does not occur bound in φ.

(ii) φ = −δ, where δ is a pattern and − ∈ P1. Then x occurs bound in δ. Apply the induction
hypothesis for δ to get a subpattern Qxψ (with Q ∈ Q) of δ such that x does not occur
bound in ψ. We have that δ is a subpattern of φ, hence, by Lemma 2.15, SubPattern(δ) ⊆
SubPattern(φ). Thus, Qxψ is a subpattern of φ such that x does not occur bound in ψ.

(iii) φ = ⊖δχ, where δ, χ are patterns and ⊖ ∈ P2 ∪ Equal. We have two cases:

(a) x occurs bound in δ. Apply the induction hypothesis for δ to get a subpattern Qxψ
(with Q ∈ Q) of δ such that x does not occur bound in ψ. We have that δ is a
subpattern of φ, hence, by Lemma 2.15, SubPattern(δ) ⊆ SubPattern(φ). Thus, Qxψ
is a subpattern of φ such that x does not occur bound in ψ.

(b) x occurs bound in χ. Apply the induction hypothesis for χ to get a subpattern Qxψ
(with Q ∈ Q) of χ such that x does not occur bound in ψ. We have that χ is a
subpattern of φ, hence, by Lemma 2.15, SubPattern(χ) ⊆ SubPattern(φ). Thus, Qxψ
is a subpattern of φ such that x does not occur bound in ψ.

(iv) φ = Qxδ, where δ is a pattern, Q ∈ Q and x ∈ EV ar. We have two cases:

(a) x does not occur bound in δ. Then we can take Qxψ = φ, hence ψ = δ.

(b) x occurs bound in δ. Apply the induction hypothesis for δ to get a subpattern Qxψ
(with Q ∈ Q) of δ such that x does not occur bound in ψ. We have that δ is a
subpattern of φ, hence, by Lemma 2.15, SubPattern(δ) ⊆ SubPattern(φ). Thus, Qxψ
is a subpattern of φ such that x does not occur bound in ψ.

(v) φ = QXδ, where δ is a pattern, Q ∈ Q and X ∈ SV ar. Then x occurs bound in δ. Apply
the induction hypothesis for δ to get a subpattern Qxψ (with Q ∈ Q) of δ such that x
does not occur bound in ψ. We have that δ is a subpattern of φ, hence, by Lemma 2.15,
SubPattern(δ) ⊆ SubPattern(φ). Thus, Qxψ is a subpattern of φ such that x does not
occur bound in ψ.

7 Substitution of free occurrences of element variables

Assume that EV ar ̸= ∅ and Q ≠ ∅.
Let x ∈ EV ar and φ, δ be patterns.

Definition 7.1. We define Subfxδ φ to be the expression obtained from φ by replacing every free
occurrence of x in φ with δ.

Remark 7.2.
Subfxδ φ = Replxδ (φ;FreeOccurx(φ)).

Proposition 7.3 (Definition by recursion).
The mapping

Subfxδ : Pattern→ Expr, Subfxδ (φ) = Subfxδ φ
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can be defined by recursion on patterns as follows:

Subfxδ (z) =

{
δ if x = z

z if x ̸= z
if z ∈ EV ar,

Subfxδ (φ) = φ if φ ∈ SV ar ∪ Σ ∪ PC ,
Subfxδ (−φ) = −Subfxδ (φ) for any − ∈ P1,

Subfxδ (◦φψ) = ◦Subfxδ (φ)Subfxδ (ψ) for any ◦ ∈ P2,

Subfxδ (∼ φψ) = ∼ Subfxδ (φ)Subf
x
δ (ψ) for any ∼∈ Equal,

Subfxδ (Qzφ) =

{
Qzφ if x = z

QzSubfxδ (φ) if x ̸= z
for any Q ∈ Q and z ∈ EV ar,

Subfxδ (QXφ) = QXSubfxδ (φ) for any Q ∈ Q and X ∈ SV ar.

Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = Expr and

G0(φ) =

{
δ if φ = x

φ if φ ∈ (EV ar \ {x}) ∪ SV ar ∪ Σ ∪ PC

G−(θ, φ) = −θ for any − ∈ P1,

G◦(θ, τ, φ, ψ) = ◦θτ for any ◦ ∈ P2,

G∼(θ, τ, φ, ψ) = ∼ θτ for any ∼∈ Equal,

GQ(θ, z, φ) =

{
Qzφ if x = z

Qzθ if x ̸= z
for any Q ∈ Q and z ∈ EV ar,

GQ(θ,X, φ) = QXθ for any Q ∈ Q and X ∈ SV ar.

Then

(i) If φ is an atomic pattern, we have the following cases:

(a) φ = x. Then Subfxδ (φ) = Subfxδ (x) = δ = G0(φ).

(b) φ ∈ (EV ar \ {x}) ∪ SV ar ∪ Σ ∪ PC . Then Subfxδ (φ) = φ = G0(φ).

(ii) For − ∈ P1, we have that

Subfxδ (−φ) = −Subfxδ (φ) = G−(Subf
x
δ (φ), φ).

(iii) For ◦ ∈ P2, we have that

Subfxδ (◦φψ) = ◦Subfxδ (φ)Subfxδ (ψ) = G◦(Subf
x
δ (φ), Subf

x
δ (ψ), φ, ψ).

(iv) For ∼∈ Equal, we have that

Subfxδ (∼ φψ) =∼ Subfxδ (φ)Subf
x
δ (ψ) = G∼(Subf

x
δ (φ), Subf

x
δ (ψ), φ, ψ).

(v) For Q ∈ Q and z ∈ EV ar, we have that

Subfxδ (Qzφ) =

{
Qzφ if x = z

QzSubfxδ (φ) if x ̸= z
= GQ(Subf

x
δ (φ), z, φ).

(vi) For Q ∈ Q and X ∈ SV ar, we have that

Subfxδ (QXφ) = QXSubfxδ (φ) = GQ(Subf
x
δ (φ), X, φ).

22



Thus, Subfxδ is the unique mapping given by Proposition 2.11.

Proposition 7.4. Subfxδ φ is a pattern.

Proof. The proof is immediate by induction on φ, using Proposition 7.3.

Lemma 7.5. Subfxxφ = φ.

Proof. Apply Remark 7.2 and Lemma A.8.(i) with a := φ, b := x, c := x, I := FreeOccurx(φ).

Lemma 7.6. If x does not occur (free) in φ, then Subfxδ φ = φ.

Proof. Apply Remark 7.2, the fact that FreeOccurx(φ) = ∅ and Lemma A.8.(ii) with a := φ,
b := x, c := δ.

7.1 Substitution of free occurrences of x with y

Remark 7.7.
Subfxy φ = Replxy (φ;FreeOccurx(φ)).

Proof. By Remark 7.2.

Lemma 7.8. Let φ be a pattern and x, y be element variables. Then ℓ(φ) = ℓ(Subfxy φ).

Proof. Apply Remark 7.7 and Lemma A.18 with x, y, a := φ and I := FreeOccurx(φ).

Lemma 7.9. Let φ be a pattern and x, y be element variables. Then

(i) Occury(Subf
x
y φ) = Occury(φ) ∪ FreeOccurx(φ).

(ii) If y does not occur bound in φ, then y does not occur bound in Subfxy φ.

(iii) If y does not occur in φ, then

Occury(Subf
x
y φ) = FreeOccury(Subf

x
y φ) = FreeOccurx(φ).

(iv) Assume that x ̸= y. Then Occurx(Subf
x
y φ) = BoundOccurx(φ).

(v) Assume that x ̸= y. Then x does not occur free in Subfxy φ.

(vi) Assume that x ̸= y. If x does not occur bound in φ, then x does not occur in Subfxy φ.

Proof. Denote, for simplicity, ψ := Subfxy φ. Let φ = φ0φ1 . . . φn−1, n ≥ 1.
Then ψ = ψ0ψ1 . . . ψn−1, where, for all k ∈ [0, n− 1],

ψk =

{
y if k ∈ FreeOccurx(φ)

φk otherwise

(i) For all k ∈ [0, n− 1], we have that

k ∈ Occury(Subf
x
y φ) iff ψk = y iff (k ∈ FreeOccurx(φ) or φk = y)

iff (k ∈ FreeOccurx(φ) or k ∈ Occury(φ)).

(ii) Assume by contradiction that y occurs bound in ψ. It follows that for some Q ∈ Q and
i ∈ [0, n − 2), we have that ψi = Q and ψi+1 = y. Obviously, φi = ψi = Q. If φi+1 = x,
then i + 1 /∈ FreeOccurx(φ), so ψi+1 = φi+1 = x, contradiction, as ψi+1 = y and x, y are
distinct. Thus, we must have that φi+1 = y. It follows that y occurs bound in φ at i+ 1, a
contradiction with the hypothesis.
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(iii) We have that Occury(φ) = ∅ and, by (ii), BoundOccury(Subf
x
y φ) = ∅. It follows that

FreeOccury(Subf
x
y φ) = Occury(Subf

x
y φ)

(i)
= Occury(φ) ∪ FreeOccurx(φ)

= FreeOccurx(φ).

(iv) ⊆ Let k ∈ Occurx(Subf
x
y φ). Then ψk = x. As x ̸= y, we must have that k /∈ FreeOccurx(φ)

and ψk = φk = x. Thus, k ∈ Occurx(φ) \ FreeOccurx(φ) = BoundOccurx(φ).

⊇ Assume that k ∈ BoundOccurx(φ). Then φk = x and k /∈ FreeOccurx(φ), so we must
have ψk = φk = x. Thus, k ∈ Occurx(Subf

x
y φ).

(v) By (iv), we have that FreeOccurx(Subf
x
y φ) = ∅.

(vi) Apply (iv) and the hypothesis to get that Occurx(Subf
x
y φ) = BoundOccurx(φ) = ∅.

Lemma 7.10. Let φ be a pattern and x, y, z be variables such that y ̸= z and y does not occur
in φ.
Then y does not occur in Subfxz φ.

Proof. Apply Lemma A.14 with a := y, b := φ, c := x, c1 := z, b1 := Subfxz φ.

Lemma 7.11. Let φ be a pattern and x, y, z be element variables such that z does not occur in
φ.
Then SubfzySubf

x
z φ = Subfxy φ.

Proof. If x does not occur free in φ, then, by Lemma 7.6, Subfxy φ = Subfxz φ = φ. Thus,
SubfzySubf

x
z φ = Subfzyφ. As z does not occur in φ, we can apply again Lemma 7.6 to conclude

that Subfzyφ = φ.
Assume now that x occurs free in φ and denote, for simplicity,

δ := Subfxz φ, χ := SubfzySubf
x
z φ = Subfzy δ.

By Lemma 7.9.(iii),
FreeOccurz(δ) = FreeOccurx(φ).

We can apply Remark 7.2 to get that

Subfxy φ = Replxy (φ;FreeOccurx(φ)),

δ = Replxz (φ;FreeOccurx(φ)),

χ = Replzy(δ;FreeOccurz(δ)) = Replzy(δ;FreeOccurx(φ)).

Apply now Lemma A.27 with a := φ, b := Subfxy φ, c := δ and I := FreeOccurx(φ) to get that
Subfxy φ = χ.

Lemma 7.12. Let φ be a pattern and x, z be element variables such that z does not occur in φ.
Then SubfzxSubf

x
z φ = φ.

Proof. Apply Lemma 7.11 with y := x and the fact that Subfxxφ = φ, by Lemma 7.5.
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8 Bounded substitution of element variables

Assume that EV ar ̸= ∅ and Q ≠ ∅.
Let φ be a pattern and x, y be element variables.

Definition 8.1. We define Subbxyφ to be the expression obtained from φ by replacing every bound
occurrence of x in φ with y.

Remark 8.2. Then
Subbxyφ = Replxy (φ;BoundOccurx(φ)).

Proposition 8.3 (Definition by recursion).
If x = y, then obviously Subbxyφ = φ. Assume that x ̸= y. Then the mapping

Subbxy : Pattern→ Expr, Subbxy(φ) = Subbxyφ

can be defined by recursion on patterns as follows:

Subbxy(φ) = φ if φ is an atomic pattern,

Subbxy(−φ) = −Subbxy(φ) for any − ∈ P1,

Subbxy(◦φψ) = ◦Subbxy(φ)Subbxy(ψ) for any ◦ ∈ P2,

Subbxy(∼ φψ) = ∼ Subbxy(φ)Subb
x
y(ψ) for any ∼∈ Equal,

Subbxy(Qzφ) =

{
QySubfxy

(
Subbxy(φ)

)
if x = z

QzSubbxy(φ) if x ̸= z
for any Q ∈ Q and z ∈ EV ar,

Subbxy(QXφ) = QXSubbxy(φ) for any Q ∈ Q and X ∈ SV ar.

Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = Expr and

G0(φ) = φ if φ is an atomic pattern,

G−(θ, φ) = −θ for any − ∈ P1,

G◦(θ, τ, φ, ψ) = ◦θτ for any ◦ ∈ P2,

G∼(θ, τ, φ, ψ) = ∼ θτ for any ∼∈ Equal,

GQ(θ, z, φ) =

{
QySubfxy (θ) if x = z

Qzθ if x ̸= z
for any Q ∈ Q and z ∈ EV ar,

GQ(θ,X, φ) = QXθ for any Q ∈ Q and X ∈ SV ar.

Then

(i) If φ is an atomic pattern, Subbxy(φ) = φ = G0(φ).

(ii) For − ∈ P1, we have that

Subbxy(−φ) = −Subbxy(φ) = G−(Subb
x
y(φ), φ).

(iii) For ◦ ∈ P2, we have that

Subbxy(◦φψ) = ◦Subbxy(φ)Subbxy(ψ) = G◦(Subb
x
y(φ), Subb

x
y(ψ), φ, ψ).

(iv) For ∼∈ Equal, we have that

Subbxy(∼ φψ) =∼ Subbxy(φ)Subb
x
y(ψ) = G∼(Subb

x
y(φ), Subb

x
y(ψ), φ, ψ).

(v) For Q ∈ Q and z ∈ EV ar, we have that

Subbxy(Qzφ) =

{
QySubfxy

(
Subbxy(φ)

)
if x = z

QzSubbxy(φ) if x ̸= z
= GQ(Subb

x
y(φ), z, φ).
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(vi) For Q ∈ Q and X ∈ SV ar, we have that

Subbxy(QXφ) = QXSubbxy(φ) = GQ(Subb
x
y(φ), X, φ).

Thus, Subbxy is the unique mapping given by Proposition 2.11.

Proposition 8.4. Subbxyφ is a pattern.

Proof. The proof is immediate by induction on φ, using Proposition 8.3.

Lemma 8.5. Subbxxφ = φ.

Proof. Apply Remark 8.2 and Lemma A.8.(i) with a := φ, b := x, c := x, I := BoundOccurx(φ).

Lemma 8.6. If x does not occur (bound) in φ, then Subbxyφ = φ.

Proof. Apply Remark 8.2, the fact that BoundOccurx(φ) = ∅ and Lemma A.8.(ii) with a := φ,
b := x, c := y.

Lemma 8.7. Let φ be a pattern and x, y be distinct element variables. Then

(i) x does not occur bound in Subbxyφ.

(ii) Occurx(Subb
x
yφ) = FreeOccurx(Subb

x
yφ) = FreeOccurx(φ).

(iii) x ∈ FreshF (φ) iff x does not occur in Subbxyφ.

(iv) Occury(Subb
x
yφ) = Occury(φ) ∪BoundOccurx(φ).

(v) BoundOccurx(φ) ⊆ BoundOccury(Subb
x
yφ).

(vi) If y does not occur in φ, then

Occury(Subb
x
yφ) = BoundOccury(Subb

x
yφ) = BoundOccurx(φ).

In particular, FreeOccury(Subb
x
yφ) = ∅.

(vii) If y does not occur in φ, then y does not occur free in Subbxyφ.

(viii) For every Q ∈ Q, x does not occur in SubbxyQxφ.

Proof. Denote, for simplicity, ψ := Subbxyφ. Let φ = φ0φ1 . . . φn−1, n ≥ 1.
Then ψ = ψ0ψ1 . . . ψn−1, where, for all k ∈ [0, n− 1],

ψk =

{
y if k ∈ BoundOccurx(φ)

φk otherwise

(i) Assume by contradiction that x occurs bound in ψ. It follows that for some Q ∈ Q and
i ∈ [0, n − 2), we have that ψi = Q and ψi+1 = x. Obviously, φi = ψi = Q. We have two
cases:

(a) φi+1 = x. Then i+ 1 ∈ BoundOccurx(φ), hence ψi+1 = y ̸= x, a contradiction.

(b) φi+1 ̸= x. Then i + 1 /∈ Occurx(φ), in particular i + 1 /∈ BoundOccurx(φ). Thus, we
have ψi+1 = φi+1, a contradiction.

(ii) The first equality follows from (i). Let us prove now that Occurx(ψ) = FreeOccurx(φ).

⊇: Let k ∈ FreeOccurx(φ). Then k /∈ BoundOccurx(φ), hence we must have that ψk =
φk = x. Thus, k ∈ Occurx(ψ).

⊆: Let k ∈ Occurx(ψ), so ψk = x. If k ∈ BoundOccurx(φ), then we must have ψk = y ̸= x,
a contradiction. Thus, k /∈ BoundOccurx(φ). Then ψk = φk, so φk = x. It follows that
k ∈ Occurx(φ) \BoundOccurx(φ) = FreeOccurx(φ).
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(iii) Apply (ii) and the fact that FreeOccurx(φ) = ∅.

(iv) ⊇: If k ∈ Occury(φ), then φk = y ̸= x, so ψk = φk = y. Thus, k ∈ Occury(ψ). If
k ∈ BoundOccurx(φ), then ψk = y. Thus, k ∈ Occury(ψ).

⊆: Let k ∈ Occury(ψ), so ψk = y. Assume that k /∈ BoundOccurx(φ). Then we must have
ψk = φk, that is φk = y, hence k ∈ Occury(φ).

(v) Let k ∈ BoundOccurx(φ). Then φk = x and there exist Q ∈ Q and 0 ≤ i, j ≤ n − 1 such
that i < k ≤ j and Q is a quantifier on x at place i of φ with scope χ = φi . . . φj , so φi = Q,
φi+1 = x. Then ψk = y, ψi = Q, ψi+1 = y. Let J := Occurx(χ) and θ := Replxy (χ; J). As
J ⊆ BoundOccurx(φ), we get that θ = ψi . . . ψj and Q is a quantifier on y at place k of ψ
with scope θ. Thus, k ∈ BoundOccury(ψ).

(vi) As Occury(φ) = ∅, we have that

Occury(ψ)
(iv)
= BoundOccurx(φ)

(v)

⊆ BoundOccury(ψ) ⊆ Occury(ψ).

It follows that we must have equalities instead of inclusions.

(vii) By (vi).

(viii) By (ii), we have that Occurx(Subb
x
yQxφ) = FreeOccurx(Qxφ) = ∅.

Lemma 8.8. Let φ be a pattern and x, y, z be element variables such that x ̸= y, z. Then x does
not occur in Subfxy Subb

x
zφ.

Proof. Let us denote ψ = Subfxy Subb
x
zφ. We have that

ψ = Replxy (Subb
x
zφ;FreeOccurx(Subb

x
zφ)) by Remark 7.2

= Replxy (Subb
x
zφ;FreeOccurx(φ)) by Lemma 8.7(ii)

= Replxy (Repl
x
z (φ;BoundOccurx(φ));FreeOccurx(φ)) by Remark 8.2

Apply now Lemma A.28 with x, y, z, a := φ, I := FreeOccurx(φ) and J := BoundOccurx(φ) to
get that x does not occur in ψ.

Lemma 8.9. Let φ be a pattern and x, y, z be distinct variables. Then

Subfxy Subb
x
zφ = SubbxzSubf

x
y φ.

Proof. Let us denote
ψ = Subfxy Subb

x
zφ, χ = SubbxzSubf

x
y φ.

Then

ψ = Replxy (Subb
x
zφ;FreeOccurx(Subb

x
zφ)) by Remark 7.2

= Replxy (Subb
x
zφ;FreeOccurx(φ)) by Lemma 8.7(ii)

= Replxy (Repl
x
z (φ;BoundOccurx(φ));FreeOccurx(φ)) by Remark 8.2

χ = Replxz (Subf
x
z φ;BoundOccurx(Subf

x
z φ)) by Remark 8.2

= Replxz (Subf
x
z φ;BoundOccurx(φ)) by Lemma 7.9(iv)

= Replxz (Repl
x
y (φ;FreeOccurx(φ));BoundOccurx(φ)) by Remark 7.2

Apply Lemma A.28 with x, y, z, a := φ, I := FreeOccurx(φ) and J := BoundOccurx(φ) to get
that ψ = χ.
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Lemma 8.10. Let φ be a pattern and x, z be distinct variables such that z does not occur in φ.
Then

SubbzxSubb
x
zφ = φ.

Proof. Let ψ := Subbxzφ. Then, by Remark 8.2,

ψ = Replxz (φ;BoundOccurx(φ)).

Apply Lemma A.22 with x, y := z, a := φ, a∗ := ψ and I := BoundOccurx(φ) to get that

φ = Replzx(ψ;BoundOccurx(φ)).

As z does not occur in φ, we have, by Lemma 8.7(vi), that BoundOccurx(φ) = BoundOccurz(ψ).
Thus,

φ = Replzx(ψ;BoundOccurx(φ)) = Replzx(ψ;BoundOccurz(ψ))

= Subbzxψ by Remark 8.2

= SubbzxSubb
x
zφ.

Lemma 8.11. Let φ be a pattern and x, y, z be distinct variables such that z does not occur in
φ. Then

SubbzxSubf
x
y Subb

x
zφ = Subfxy φ.

Proof. We get, by Lemma 8.9, that

SubbzxSubf
x
y Subb

x
zφ = SubbzxSubb

x
zSubf

x
y φ

As z does not occur in φ and y ̸= z, we get, by Lemma 7.10, that z does not occur in Subfxy φ.
Thus, we can apply Lemma 8.10 with x, z and φ := Subfxy φ to get that

SubbzxSubb
x
zSubf

x
y φ = Subfxy φ.

9 Bounded substitution theorem

Theorem 9.1. Let Cong be a reflexive and transitive L-congruence. Assume that the following
holds:
(ASSUMPTION) For any pattern φ, distinct variables x, z such that

x does not occur bound in φ and z does not occur in φ,

QxφCongQzSubfxz φ for all Q ∈ Q.
Then for any L-pattern φ and any variables x, y such that y does not occur in φ,

φCongSubbxyφ. (1)

Proof. The case x = y is obvious, as, by Lemma 8.5, Subbxxφ = φ and Cong is reflexive. Assume
that x and y are distinct variables.
We prove (1) by induction on the number m of bound occurrences of x in φ.
The case m = 0 is obvious, as, by Lemma 8.6, Subbxyφ = φ and Cong is reflexive.
Assume that m ≥ 1 and that (1) holds for all patterns with fewer than m bound occurrences of x.
As m ≥ 1, x occurs bound in φ. Apply Proposition 6.9 to get a subpattern Qxψ (with Q ∈ Q) of
φ such that x does not occur bound in ψ.
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Let z be a new variable, that is, z is distinct from x, y and z does not occur in φ (hence not in
ψ). We can apply (ASSUMPTION) for x, z and ψ to get that

QxψCongQzSubfxz ψ. (2)

Let χ be the pattern obtained from φ by replacing an occurrence of Qxψ in φ by QzSubfxz ψ.
Then, by (2) and Theorem 5.2 we get that

φCongχ. (3)

Furthermore, χ has fewer thanm bound occurrences of x, so we can apply the induction hypothesis
to conclude that

χCongSubbxyχ. (4)

Let δ be the pattern obtained from Subbxyχ by replacing an occurrence of QzSubfxz ψ in Subbxyχ
by QySubfxy ψ.

Then we have that (see the detailed proof in Subsubsection 9.1)

Subbxyφ = δ. (5)

Apply Theorem 5.2 to conclude that

SubbxyχCongSubbxyφ. (6)

Using now (3), (4), (6) and the transitivity of Cong, we get that

φCongSubbxyφ.

9.1 Proof of (5)

Claim 1: x, y do not occur in QzSubfxz ψ.
Proof of claim: As y does not occur in φ (hence not in ψ) and y ̸= z, we get that y does not
occur in Subfxz ψ, by Lemma 7.10. As y ̸= z, we can apply Lemma A.9 with a := y, b := Qz and
c := Subfxz ψ to conclude that y does not occur in QzSubfxz ψ.
As x does not occur bound in ψ and x ̸= z, we can apply Lemma 7.9.(vi) to get that x does not
occur in Subfxz ψ. As x ̸= z, we can apply Lemma A.9 with a := x, b := Qz and c := Subfxz ψ to
conclude that x does not occur in QzSubfxz ψ. ■

Claim 2: y does not occur in χ.
Proof of claim: Apply Lemma A.14 with a := y, b := φ, c := Qxψ, c1 := QzSubfxz ψ, b1 := χ. ■

Claim 3:

(i) QzSubfxz ψ = Replallxz (Qxψ) and QySubf
x
y ψ = Replallxy (Qxψ).

(ii) QySubfxy ψ = Replallzy(QzSubf
x
z ψ).

(iii) ℓ(Qxψ) = ℓ(QySubfxy ψ) = ℓ(QzSubfxz ψ).

(iv) Occurx(Qxψ) = Occury(QySubf
x
y ψ) = Occurz(QzSubf

x
z ψ).

Proof of claim:

(i) Let u ∈ {x, z}. Denote ψ̃ = Subfxuψ. As x does not occur bound in ψ, we have that
FreeOccurx(ψ) = Occurx(ψ). Hence, Subf

x
uψ = Replallxu(ψ).

As obviously Qu = Replallxu(Qx), we can apply Lemma A.10 to get the conclusion.
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(ii) By (i), we have that QzSubfxz ψ = Replallxz (Qxψ), hence

Replallzy(QzSubf
x
z ψ) = Replallzy(Replall

x
z (Qxψ)).

Apply Lemma A.21 with a := Qxψ, x, y := z, z := and I := Occurx(Qxψ) to get that

Replallzy(Replall
x
z (Qxψ)) = Replallxy (Qxψ).

Apply again (i) to get the conclusion.

(iii) Apply (i) and Lemma A.18.

(iv) Using (i), the fact that y, z do not occur in Qxψ and that x does not occur bound in ψ, we
can apply Lemma 7.9(iii) to get that

Occury(Subf
x
y ψ) = Occurz(Subf

x
z ψ) = FreeOccurx(ψ) = Occurx(ψ).

As Occurx(Qx) = Occury(Qy) = Occurz(Qz) = {1} and ℓ(Qx) = ℓ(Qy) = ℓ(Qz) = 2, we
can apply Lemma A.24 to get that

Occurx(Qxψ) = Occury(QySubf
x
y ψ) = Occurz(QzSubf

x
z ψ) = {1} ∪ (Occurx(ψ) + 2).

■

Assume, in the sequel, that χ is obtained by replacing the occurrence of Qxψ at place k in φ by
QzSubfxz ψ. Thus,

χ = ReplQxψQzSubfx
z ψ

(φ; {k}). (7)

Claim 4: φ = Repl
QzSubfx

z ψ
Qxψ (χ; {k}).

Proof of claim: Using Claim 3(iii) and (7), we can apply Lemma A.16(v) with a := φ, b := Qxψ,
c := QzSubfxz φ, a

∗ := χ and I := {k}. ■

Claim 5: χ = Replxz (φ;Occurx(Qxψ) + k).
Proof of claim: Using (7) and Claim 3(i), we can apply Lemma A.26 with a := φ, b := Qxψ,
c := QzSubfxz φ, d := χ. ■

Claim 6: QzSubfxz ψ occurs uniquely in χ at place k.
Proof of claim: As z is a new variable, we can apply Lemma A.15 with a := φ, b := Qxψ,
c := QzSubfxz ψ, d := χ. ■

Claim 7: QzSubfxz ψ occurs uniquely in Subbxyχ at place k.
Proof of claim: Apply Claims 1, 6 and Lemma A.25 with x, y, a := χ, b := QzSubfxz ψ,
d := Subbxyχ. ■

Thus,

δ = Repl
QzSubfx

z ψ
QySubfx

y ψ
(Subbxyχ; {k}). (8)

Claim 8: δ = Replzy(Subb
x
yχ;Occurz(QzSubf

x
z ψ) + k) = Replzy(Subb

x
yχ;Occurx(Qxψ) + k).

Proof of claim: Using (8) and Claims 1, 3(i), we can apply Lemma A.26 with x := z, z := y,
a := Subbxyχ, b := QzSubfxz ψ, c := QySubfxy ψ and d := δ to get that

δ = Replzy(Subb
x
yχ;Occurz(QzSubf

x
z ψ) + k).

By Claim 3, Occury(QySubf
x
y ψ) = Occurx(Qxψ). ■
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Claim 9: The following hold:

BoundOccurx(φ) = BoundOccurx(χ) ∪ (Occurx(Qxψ) + k), (9)

BoundOccurx(χ) ∩ (Occurx(Qxψ) + k) = ∅. (10)

Proof of claim: Denote n = ℓ(φ) and p = ℓ(Qxψ). Let φ = φ0 . . . φn−1. As Qxψ occurs in φ at
place k, we have that

Qxψ = φk . . . φk+p−1.

It follows that Occurx(Qxψ)+k = Occurx(φ)∩ [k, k+p−1]. Furthermore, Q = φk is a quantifier
at place k of φ with scope ψ, so, if x occurs in φ at place j ∈ [k, k + p− 1], then x occurs bound
in φ at place j. Thus, Occurx(φ)∩ [k, k+ p− 1] = BoundOccurx(φ)∩ [k, k+ p− 1]. We have got
that

Occurx(Qxψ) + k = BoundOccurx(φ) ∩ [k, k + p− 1] (11)

By Claim 3(iii), we have that p = ℓ(QzSubfxz ψ). Hence χ = χ0 . . . χn−1, where

χi = φi for all i ∈ [0, k − 1] ∪ [k + p, n− 1] and QzSubfxz ψ = χk . . . χk+p−1.

By Claim 1, we have that χi ̸= x for all i ∈ [k, k + p− 1], hence

BoundOccurx(χ) ⊆ Occurx(χ) ⊆ [0, k − 1] ∪ [k + p, n− 1]. (12)

As an application of (11) and (12) we get (10).
Subclaim: BoundOccurx(χ) = BoundOccurx(φ) ∩ ([0, k − 1] ∪ [k + p, n− 1]).
Proof of subclaim:
⊆ Assume that j ∈ BoundOccurx(χ). Then j ∈ [0, k − 1] ∪ [k + p, n − 1], χj = φj = x, and
there exists Q ∈ Q and i < j ≤ l ≤ n − 1 such that Q is a quantifier on x at place i of χ with
scope θ = χi . . . χl. Thus, if θ = θ0 . . . θl−i+1, then θ0 = χi = φi = Q, θ1 = χi+1 = φi+1 = x and
θj−i = χj = φj = x.
Applying Lemma 2.16 for the subpatterns θ and QzSubfxz ψ = χk . . . χk+p−1 of χ and taking into
account that θ cannot be a subpattern of QzSubfxz ψ (as x occurs in θ and x does not occur in
QzSubfxz ψ), we have the following cases:

(i) QzSubfxz ψ is a subpattern of θ. We have that i ≤ k < k+ p− 1 ≤ l ≤ n− 1 and QzSubfxz ψ

occurs in θ at place k − i. Let θ∗ := Repl
QzSubfx

z ψ
Qxψ (θ; {k − i}). Then θ∗ is a pattern, by

Theorem 5.2. Moreover, we get that θ∗ is subpattern of φ, by applying Lemma A.17(i) with
k, a := φ, b := Qxψ, c := QzSubfxz ψ, d := χ, d∗ := θ and a∗ := θ∗.

Furthermore, θ∗0 = θ0 = φi = Q, θ∗1 = θ1 = φi+1 = x, θ∗j−i = θj−i = φj = x. We
get, by Proposition 2.9, that Q is a quantifier on x at place i of φ with scope θ∗. Thus,
j ∈ BoundOccurx(φ).

(ii) Occurθ(χ) ∩ OccurQzSubfx
z ψ

(χ) = ∅. Then θ = φi . . . φl. Hence, by Proposition 2.9, Q is a
quantifier on x at place i of φ with scope θ. Thus, j ∈ BoundOccurx(φ).

⊇ Assume that j ∈ BoundOccurx(φ)∩ ([0, k−1]∪ [k+p, n−1]). Then j ∈ [0, k−1]∪ [k+p, n−1],
φj = x, and there exists Q ∈ Q and i < j ≤ l ≤ n − 1 such that Q is a quantifier on x at place
i of φ with scope θ = φi . . . φl. Thus, if θ = θ0 . . . θl−i+1, then θ0 = φi = Q, θ1 = φi+1 = x and
θj−i = φj = x.
Applying Lemma 2.16 for the subpatterns θ and Qxψ = φk . . . φk+p−1 of φ and taking into account
that θ cannot be a subpattern of Qxψ (as θj−i = φj = x and j /∈ [k, k + p − 1]), we have the
following cases:

(i) Qxψ is a subpattern of θ. We have that i ≤ k < k + p− 1 ≤ l ≤ n− 1 and Qxψ occurs in θ

at place k − i. Let θ∗ := ReplQxψQzSubfx
z ψ

(θ; {k − i}). Then θ∗ is a pattern (by Theorem 5.2).

Moreover, we get that θ∗ is subpattern of φ, by applying Lemma A.17(i) with k, a := φ,
b := Qxψ, c := QzSubfxz ψ, d := χ, a∗ := θ and d∗ := θ∗. Furthermore, θ∗0 = θ0 = χi = Q,
θ∗1 = θ1 = χi+1 = x, θ∗j−i = θj−i = χj = x. We get that Q is a quantifier on x at place i of
χ with scope θ∗. Thus, j ∈ BoundOccurx(χ).
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(ii) Occurθ(φ) ∩ OccurQxψ(φ) = ∅. Then θ = χi . . . χl. Hence, by Proposition 2.9, Q is a
quantifier on x at place i of χ with scope θ. Thus, j ∈ BoundOccurx(χ).

■

It follows that

BoundOccurx(φ) = BoundOccurx(φ) ∩ [0, n− 1]

= BoundOccurx(φ) ∩ ([0, k − 1] ∪ [k, k + p− 1] ∪ [k + p, n− 1])

=
(
BoundOccurx(φ) ∩ [k, k + p− 1]

)
∪

∪
(
BoundOccurx(φ) ∩ ([0, k − 1] ∪ [k + p, n− 1]))

= BoundOccurx(χ) ∪ (Occurx(Qxψ) + k).

Thus, (9) holds. ■

Remark now that

Subbxyχ = Replxy (χ;BoundOccurx(χ)) by Remark 8.2

= Replzy(Repl
x
z (χ;BoundOccurx(χ));BoundOccurx(χ))

by Lemma A.21 with a := χ, x, y := z, z := y, I := BoundOccurx(χ)

= Replzy(Repl
x
z (Repl

x
z (φ;Occurx(Qxψ) + k);BoundOccurx(χ));BoundOccurx(χ))

by Claim 5

= Replzy(Repl
x
z (φ; (Occurx(Qxψ) + k) ∪BoundOccurx(χ));BoundOccurx(χ))

by Lemma A.20 with a := φ, x, y := z, I := Occurx(Qxψ) + k, J := BoundOccurx(χ)

= Replzy(Repl
x
z (φ;BoundOccurx(φ));BoundOccurx(χ)) by Claim 9

Thus, by Remark 8.2
Subbxyχ = Replzy(Subb

x
zφ;BoundOccurx(χ)) (13)

It follows that

δ = Replzy(Subb
x
yχ;Occurx(Qxψ) + k) by Claim 8

= Replzy(Repl
z
y(Subb

x
zφ;BoundOccurx(χ));Occurx(Qxψ) + k) by (13)

= Replzy(Subb
x
zφ;BoundOccurx(χ) ∪ (Occurx(Qxψ) + k))

by Lemma A.20 with a := Subbxzφ, x, y := z, I := BoundOccurx(χ), J := Occurx(Qxψ) + k

= Replzy(Subb
x
zφ;BoundOccurx(φ)) by Claim 9

= Replzy(Repl
x
z (φ;BoundOccurx(φ));BoundOccurx(φ)) by Remark 8.2

= Replxy (φ;BoundOccurx(φ))

by Lemma A.21 with a := φ, x, y := z, z := y, I := BoundOccurx(φ)

= Subbxyφ by Remark 8.2

10 Free and bound set variables

Assume that SV ar ̸= ∅ and Q ≠ ∅.

Definition 10.1. Let φ = φ0φ1 . . . φn−1 be a pattern and X be a set variable.

(i) We say that Q ∈ Q is a binder on X at the ith place with scope ψ if φi = Q, φi+1 = X
and ψ = φi . . . φj is the unique pattern given by Proposition 2.9.
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(ii) We say that X occurs bound at the kth place of φ if φk = X and there exist Q ∈ Q
and 0 ≤ i, j ≤ n− 1 such that i < k ≤ j and Q is a binder on X at the ith place with scope
ψ = φi . . . φj.

(iii) If φk = X but X does not occur bound at the kth place of φ, we say that X occurs free at
the kth place of φ.

(iv) X is a bound variable of φ if there exists k such that X occurs bound at the kth place of
φ.

(v) X is a free variable of φ if there exists k such that X occurs free at the kth place of φ.

Notation 10.2. Let us denote, for every pattern φ,

FVSV ar(φ) = {X ∈ SV ar(φ) | X is free in φ},
BVSV ar(φ) = {X ∈ SV ar(φ) | X is bound in φ},

NotFVSV ar(φ) = SV ar(φ) \ FVSV ar(φ),
F reshSV ar(φ) = SV ar \ FVSV ar(φ).

Remark 10.3. (i) SV ar(φ) = FVSV ar(φ) ∪BVSV ar(φ).

(ii) FVSV ar(φ) and BVSV ar(φ) are not disjoint, in general, as X ∈ SV ar can be both free and
bound in a pattern φ.

(iii) NotFVSV ar(φ) ⊆ BVSV ar(φ).

(iv) FreshSV ar(φ) = (SV ar \ SV ar(φ)) ∪NotFVSV ar(φ).

Proof. We have that

FreshSV ar(φ) = SV ar \ FVSV ar(φ) =
(
SV ar(φ) ∪

(
SV ar \ SV ar(φ)

))
\ FVSV ar(φ)

(16)
=

(
SV ar \ SV ar(φ)

)
∪
(
SV ar(φ) \ FVSV ar(φ)

)
= (SV ar \ SV ar(φ)) ∪NotFVSV ar(φ).

Notation 10.4. Let us denote, for every pattern φ and set variable X,

FreeOccurX(φ) = the set of all free occurrences of X in φ,

BoundOccurX(φ) = the set of all bound occurrences of X in φ.

Lemma 10.5. (i) X ∈ FVSV ar(φ) iff FreeOccurX(φ) ̸= ∅.

(ii) X ∈ BVSV ar(φ) iff BoundOccurX(φ) ̸= ∅.

(iii) FreeOccurX(φ) ∩BoundOccurX(φ) = ∅.

(iv) OccurX(φ) = FreeOccurX(φ) ∪BoundOccurX(φ).

(v) FreeOccurX(φ) = OccurX(φ) \ BoundOccurX(φ) and BoundOccurX(φ) = OccurX(φ) \
FreeOccurX(φ).

Remark 10.6 (Definition by recursion of FVSV ar).
The mapping

FVSV ar : Pattern→ 2SV ar, φ 7→ FVSV ar(φ)

33



can be defined by recursion on patterns as follows:

FVSV ar(φ) = SV ar(φ) if φ is an atomic pattern,

FVSV ar(−φ) = FVSV ar(φ) for any − ∈ P1,

FVSV ar(◦φψ) = FVSV ar(φ) ∪ FVSV ar(ψ) for any ◦ ∈ P2,

FVSV ar(∼ φψ) = FVSV ar(φ) ∪ FVSV ar(ψ) for any ∼∈ Equal,

FVSV ar(Qxφ) = FVSV ar(φ) for any Q ∈ Q and x ∈ EV ar,

FVSV ar(QXφ) = FVSV ar(φ) \ {X} for any Q ∈ Q and X ∈ SV ar.

Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = 2SV ar and

G0(φ) = SV ar(φ),

G−(V, φ) = V for any − ∈ P1,

G◦(V1, V2, φ, ψ) = V1 ∪ V2 for any ◦ ∈ P2,

G∼(V1, V2, φ, ψ) = V1 ∪ V2 for any ∼∈ Equal,

GQ(V, x, φ) = V for any Q ∈ Q and x ∈ EV ar,

GQ(V,X, φ) = V \ {X} for any Q ∈ Q and X ∈ SV ar.

Then

(i) FVSV ar(φ) = SV ar(φ) = G0(φ) if φ is an atomic pattern.

(ii) For − ∈ P1, we have that

FVSV ar(−φ) = FVSV ar(φ) = G−(FVSV ar(φ), φ).

(iii) For ◦ ∈ P2, we have that

FVSV ar(◦φψ) = FVSV ar(φ) ∪ FVSV ar(ψ) = G◦(FVSV ar(φ), FVSV ar(ψ), φ, ψ).

(iv) For ∼∈ Equal, we have that

FVSV ar(∼ φψ) = FVSV ar(φ) ∪ FVSV ar(ψ) = G∼(FVSV ar(φ), FVSV ar(ψ), φ, ψ).

(v) For Q ∈ Q and x ∈ EV ar, we have that

FVSV ar(Qxφ) = FVSV ar(φ) = GQ(FVSV ar(φ), x, φ).

(vi) For Q ∈ Q and X ∈ SV ar, we have that

FVSV ar(QXφ) = FVSV ar(φ) \ {X} = GQ(FVSV ar(φ), X, φ).

Thus, FVSV ar : Pattern→ 2SV ar is the unique mapping given by Proposition 2.11.

Remark 10.7 (Definition by recursion of BVSV ar).
The mapping

BVSV ar : Pattern→ 2SV ar, φ 7→ BVSV ar(φ)

can be defined by recursion on patterns as follows:

BVSV ar(φ) = ∅ if φ is an atomic pattern,

BVSV ar(−φ) = BVSV ar(φ) for any − ∈ P1,

BVSV ar(◦φψ) = BVSV ar(φ) ∪BVSV ar(ψ) for any ◦ ∈ P2,

BVSV ar(∼ φψ) = BVSV ar(φ) ∪BVSV ar(ψ) for any ∼∈ Equal,

BVSV ar(Qxφ) = BVSV ar(φ) for any Q ∈ Q and x ∈ EV ar,

BVSV ar(QXφ) = BVSV ar(φ) ∪ {X} for any Q ∈ Q and X ∈ SV ar.
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Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = 2SV ar and

G0(φ) = ∅,
G−(V, φ) = V for any − ∈ P1,

G◦(V1, V2, φ, ψ) = V1 ∪ V2 for any ◦ ∈ P2,

G∼(V1, V2, φ, ψ) = V1 ∪ V2 for any ∼∈ Equal,

GQ(V, x, φ) = V for any Q ∈ Q and x ∈ EV ar,

GQ(V,X, φ) = V ∪ {X} for any Q ∈ Q and X ∈ SV ar.

Then

(i) BVSV ar(φ) = ∅ = G0(φ) if φ is an atomic pattern.

(ii) For − ∈ P1, we have that

BVSV ar(−φ) = BVSV ar(φ) = G−(BVSV ar(φ), φ).

(iii) For ◦ ∈ P2, we have that

BVSV ar(◦φψ) = BVSV ar(φ) ∪BVSV ar(ψ) = G◦(BVSV ar(φ), BVSV ar(ψ), φ, ψ).

(iv) For ∼∈ Equal, we have that

BVSV ar(∼ φψ) = BVSV ar(φ) ∪BVSV ar(ψ) = G∼(BVSV ar(φ), BVSV ar(ψ), φ, ψ).

(v) For Q ∈ Q and x ∈ EV ar, we have that

BVSV ar(Qxφ) = BVSV ar(φ) = GQ(BVSV ar(φ), x, φ).

(vi) For Q ∈ Q and X ∈ SV ar, we have that

BVSV ar(QXφ) = BVSV ar(φ) ∪ {X} = GQ(BVSV ar(φ), X, φ).

Thus, BVSV ar : Pattern→ 2SV ar is the unique mapping given by Proposition 2.11.

Remark 10.8 (Definition by recursion of NotFVSV ar).
The mapping

NotFVSV ar : Pattern→ 2SV ar, φ 7→ NotFVSV ar(φ)

can be defined by recursion on patterns as follows:

NotFVSV ar(φ) = ∅ if φ is an atomic pattern,

NotFVSV ar(−φ) = NotFVSV ar(φ) for any − ∈ P1,

NotFVSV ar(◦φψ) = NotFVSV ar(φ) ∩NotFVSV ar(ψ) for any ◦ ∈ P2,

FVSV ar(∼ φψ) = NotFVSV ar(φ) ∩NotFVSV ar(ψ) for any ∼∈ Equal,

NotFVSV ar(Qxφ) = NotFVSV ar(φ) for any Q ∈ Q and x ∈ EV ar,
NotFVSV ar(QXφ) = NotFVSV ar(φ) ∪ {X} for any Q ∈ Q and X ∈ SV ar.

Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = 2SV ar and

G0(φ) = ∅,
G−(V, φ) = V for any − ∈ P1,

G◦(V1, V2, φ, ψ) = V1 ∩ V2 for any ◦ ∈ P2,

G∼(V1, V2, φ, ψ) = V1 ∩ V2 for any ∼∈ Equal,

GQ(V, x, φ) = V for any Q ∈ Q and x ∈ EV ar,

GQ(V,X, φ) = V ∪ {X} for any Q ∈ Q and X ∈ SV ar.

Then
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(i) NotFVSV ar(φ) = ∅ = G0(φ) if φ is an atomic pattern.

(ii) For − ∈ P1, we have that

NotFVSV ar(−φ) = NotFVSV ar(φ) = G−(NotFVSV ar(φ), φ).

(iii) For ◦ ∈ P2, we have that

NotFVSV ar(◦φψ) = NotFVSV ar(φ) ∩NotFVSV ar(ψ)
= G◦(NotFVSV ar(φ), NotFVSV ar(ψ), φ, ψ).

(iv) For ∼∈ Equal, we have that

NotFVSV ar(∼ φψ) = NotFVSV ar(φ) ∩NotFVSV ar(ψ)
= G∼(NotFVSV ar(φ), NotFVSV ar(ψ), φ, ψ).

(v) For Q ∈ Q and x ∈ EV ar, we have that

NotFVSV ar(Qxφ) = NotFVSV ar(φ) = GQ(NotFVSV ar(φ), x, φ)

(vi) For Q ∈ Q and X ∈ SV ar, we have that

NotFVSV ar(QXφ) = SV ar(QXφ) \ FVSV ar(QXφ)

=

(
SV ar(φ) ∪ {X}

)
\
(
FVSV ar(φ) \ {X}

)
(14)
=

((
SV ar(φ) ∪ {X}

)
\ FVSV ar(φ)

)
∪ {X}

(15)
=

(
SV ar(φ) \ FVSV ar(φ)

)
∪ {X} = NotFVSV ar(φ) ∪ {X}

= GQ(NotFVSV ar(φ), X, φ).

Thus, NotFVSV ar : Pattern→ 2SV ar is the unique mapping given by Proposition 2.11.

11 Substitution of free occurrences of set variables

Let X ∈ SV ar and φ, δ be patterns.

Definition 11.1. We define SubfXδ φ to be the expression obtained from φ by replacing every free
occurrence of X in φ with δ.

Remark 11.2.
SubfXδ φ = ReplXδ (φ;FreeOccurX(φ)).

Proposition 11.3 (Definition by recursion).
The mapping

SubfXδ : Pattern→ Expr, SubfXδ (φ) = SubfXδ φ

can be defined by recursion on patterns as follows:

SubfXδ (Z) =

{
δ if X = Z

Z if X ̸= Z
if Z ∈ SV ar,

SubfXδ (φ) = φ if φ ∈ EV ar ∪ Σ ∪ PC ,
SubfXδ (−φ) = −SubfXδ (φ) for any − ∈ P1,

SubfXδ (◦φψ) = ◦SubfXδ (φ)SubfXδ (ψ) for any ◦ ∈ P2,

SubfXδ (∼ φψ) = ∼ SubfXδ (φ)SubfXδ (ψ) for any ∼∈ Equal,

SubfXδ (Qxφ) = QxSubfXδ (φ) for any Q ∈ Q and x ∈ EV ar,

SubfXδ (QZφ) =

{
QZφ if X = Z

QZSubfXδ (φ) if X ̸= Z
for any Q ∈ Q and Z ∈ SV ar.
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Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = Expr and

G0(φ) =

{
δ if φ = X

φ if φ ∈ (SV ar \ {X}) ∪ EV ar ∪ Σ ∪ PC

G−(θ, φ) = −θ for any − ∈ P1,

G◦(θ, τ, φ, ψ) = ◦θτ for any ◦ ∈ P2,

G∼(θ, τ, φ, ψ) = ∼ θτ for any ∼∈ Equal,

GQ(θ, x, φ) = Qxθ for any Q ∈ Q and x ∈ EV ar,

GQ(θ, Z, φ) =

{
QZφ if X = Z

QZθ if X ̸= Z
for any Q ∈ Q and Z ∈ SV ar.

Then

(i) If φ is an atomic pattern, we have the following cases:

(a) φ = X. Then SubfXδ (φ) = SubfXδ (X) = δ = G0(φ).

(b) φ ∈ (SV ar \ {X}) ∪ EV ar ∪ Σ ∪ PC . Then SubfXδ (φ) = φ = G0(φ).

(ii) For − ∈ P1, we have that

SubfXδ (−φ) = −SubfXδ (φ) = G−(Subf
X
δ (φ), φ).

(iii) For ◦ ∈ P2, we have that

SubfXδ (◦φψ) = ◦SubfXδ (φ)SubfXδ (ψ) = G◦(Subf
X
δ (φ), SubfXδ (ψ), φ, ψ).

(iv) For ∼∈ Equal, we have that

SubfXδ (∼ φψ) =∼ SubfXδ (φ)SubfXδ (ψ) = G∼(Subf
X
δ (φ), SubfXδ (ψ), φ, ψ).

(v) For Q ∈ Q and x ∈ EV ar, we have that

SubfXδ (Qxφ) = QxSubfXδ (φ) = GQ(Subf
X
δ (φ), x, φ)

(vi) For Q ∈ Q and Z ∈ SV ar we have that

SubfXδ (QZφ) =

{
QZφ if X = Z

QZSubfXδ (φ) if X ̸= Z
= GQ(Subf

X
δ (φ), Z, φ).

Thus, SubfXδ is the unique mapping given by Proposition 2.11.

Proposition 11.4. SubfXδ φ is a pattern.

Proof. The proof is immediate by induction on φ, using Proposition 11.3.

Lemma 11.5. SubfXX φ = φ.

Proof. By Remark 11.2 and Lemma A.8.(i) with a := φ, b := X, c := X, I := FreeOccurX(φ).

Lemma 11.6. If X does not occur (free) in φ, then SubfXδ φ = φ.

Proof. Apply Remark 11.2, the fact that FreeOccurX(φ) = ∅ and Lemma A.8.(ii) with a := φ,
b := X, c := δ.
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12 Bounded substitution of set variables

Let φ be a pattern and X, Y be set variables.

Definition 12.1. We define SubbXY φ to be the expression obtained from φ by replacing every
bound occurrence of X in φ with Y .

Remark 12.2. Then
SubbXY φ = ReplXY (φ;BoundOccurX(φ)).

Proposition 12.3 (Definition by recursion).
If X = Y , then obviously SubbXY φ = φ. Assume that X ̸= Y . Then the mapping

SubbXY : Pattern→ Expr, SubbXY (φ) = SubbXY φ

can be defined by recursion on patterns as follows:

SubbXY (φ) = φ if φ is an atomic pattern,

SubbXY (−φ) = −SubbXY (φ) for any − ∈ P1,

SubbXY (◦φψ) = ◦SubbXY (φ)SubbXY (ψ) for any ◦ ∈ P2,

SubbXY (∼ φψ) = ∼ SubbXY (φ)SubbXY (ψ) for any ∼∈ Equal,

SubbXY (Qxφ) = QxSubbXY (φ) for any Q ∈ Q and x ∈ EV ar,

SubbXY (QZφ) =

{
QY SubfXY

(
SubbXY (φ)

)
if X = Z

QZSubbXY (φ) if X ̸= Z
for any Q ∈ Q and Z ∈ SV ar.

Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = Expr and

G0(φ) = φ if φ is an atomic pattern,

G−(θ, φ) = −θ for any − ∈ P1,

G◦(θ, τ, φ, ψ) = ◦θτ for any ◦ ∈ P2,

G∼(θ, τ, φ, ψ) = ∼ θτ for any ∼∈ Equal,

GQ(θ, x, φ) = Qxθ for any Q ∈ Q and x ∈ EV ar,

GQ(θ, Z, φ) =

{
QY SubfXY (θ) if X = Z

QZθ if X ̸= Z
for any Q ∈ Q and Z ∈ SV ar.

Then

(i) If φ is an atomic pattern, SubbXY (φ) = φ = G0(φ).

(ii) For − ∈ P1, we have that

SubbXY (−φ) = −SubbXY (φ) = G−(Subb
X
Y (φ), φ).

(iii) For ◦ ∈ P2, we have that

SubbXY (◦φψ) = ◦SubbXY (φ)SubbXY (ψ) = G◦(Subb
X
Y (φ), SubbXY (ψ), φ, ψ).

(iv) For ∼∈ Equal, we have that

SubbXY (∼ φψ) =∼ SubbXY (φ)SubbXY (ψ) = G∼(Subb
X
Y (φ), SubbXY (ψ), φ, ψ).

(v) For Q ∈ Q and x ∈ EV ar, we have that

SubbXY (Qxφ) = QxSubbXY (φ) = GQ(Subb
X
Y (φ), x, φ).
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(vi) For Q ∈ Q and Z ∈ SV ar, we have that

SubbXY (QZφ) =

{
QY SubfXY

(
SubbXY (φ)

)
if X = Z

QZSubbXY (φ) if X ̸= Z
= GQ(Subb

X
Y (φ), Z, φ).

Thus, SubbXY is the unique mapping given by Proposition 2.11.

Proposition 12.4. SubbXY φ is a pattern.

Proof. The proof is immediate by induction on φ, using Proposition 12.3.

Lemma 12.5. SubbXXφ = φ.

Proof. By Remark 12.2 and Lemma A.8.(i) with a := φ, b := X, c := X, I := BoundOccurX(φ).

Lemma 12.6. If x does not occur (bound) in φ, then SubbXY φ = φ.

Proof. Apply Remark 12.2, the fact that BoundOccurX(φ) = ∅ and Lemma A.8.(ii) with a := φ,
b := X, c := Y .

13 Variable free for patterns

Let xX ∈ EV ar ∪ SV ar and δ, φ be patterns.

Definition 13.1. We say that xX is free for δ in φ or that δ is substitutable for xX in φ if
the following hold:

(i) if z is an element variable occuring free in δ and Q is a quantifier on z in φ with scope θ,
then xX does not occur free in θ.

(ii) if Z is a set variable occuring free in δ and Q is a binder on Z in φ with scope θ, then xX
does not occur free in θ.

Definition 13.2. Define the mappings

FreeForδ : Pattern→ 2EV ar∪SV ar, F reeForEδ : Pattern→ 2EV ar,

F reeForSδ : Pattern→ 2SV ar

as follows: for any pattern φ,

FreeForδ(φ) = {xX ∈ EV ar ∪ SV ar | xX is free for δ in φ},
F reeForEδ(φ) = FreeForδ(φ) ∩ EV ar,
FreeForSδ(φ) = FreeForδ(φ) ∩ SV ar.

As EV ar ∩ SV ar = ∅, we have that FreeForEδ(φ) ∩ FreeForSδ(φ) = ∅ and FreeForδ(φ) =
FreeForEδ(φ) ∪ FreeForSδ(φ).

Proposition 13.3 (Definition by recursion).
The mapping

FreeForδ : Pattern→ 2EV ar∪SV ar

can be defined by recursion on patterns as follows:

FreeForδ(φ) = EV ar ∪ SV ar if φ is an atomic pattern,

F reeForδ(−ψ) = FreeForδ(ψ) for any − ∈ P1,

F reeForδ(⊖ψχ) = FreeForδ(ψ) ∩ FreeForδ(χ) for any ⊖ ∈ P2 ∪ Equal,
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FreeForδ(Qxψ) =

{
FreshF (ψ) ∪ FreshSV ar(ψ) if x occurs in δ

FreeForδ(ψ) if x does not occur in δ

for any Q ∈ Q and x ∈ EV ar,

FreeForδ(QXψ) =

{
FreshF (ψ) ∪ FreshSV ar(ψ) if X occurs in δ

FreeForδ(ψ) if X does not occur in δ

for any Q ∈ Q and X ∈ SV ar.

Lemma 13.4. Let φ be a pattern.

(i) FreshF (φ) ∪ FreshSV ar(φ) ⊆ FreeForδ(φ), that is any element or set variable that

either (1) does not occur in φ or (2) occurs in φ, but does not occur free in φ

is free for δ in φ.

(ii) If EV ar(δ)∩EV ar(φ) = ∅ and SV ar(δ)∩SV ar(φ) = ∅, then FreeForδ(φ) = EV ar∪SV ar,
that is if element/set variables of δ do not occur in φ, then any element/set variable is free
for δ in φ.

(iii) If EV ar(δ) = SV ar(δ) = ∅, then FreeForδ(φ) = EV ar ∪ SV ar.

(iv) If EV ar(δ)∩BV (φ) = ∅ and SV ar(δ)∩BVSV ar(φ) = ∅, then FreeForδ(φ) = EV ar∪SV ar,
that is if element/set variables of δ do not occur bound in φ, then any element/set variable
is free for δ in φ.

13.1 x free for y

Remark 13.5. Let x, y ∈ EV ar. The following are equivalent:

(i) x is free for y in φ.

(ii) For every quantifier Q on y in φ with scope θ, we have that x does not occur free in θ.

(iii) For every subpattern Qyψ of φ, we have that x does not occur free in Qyψ.

Definition 13.6. Let y ∈ EV ar. Define the mapping FreeForEy : Pattern→ EV ar as follows:
for any pattern φ,

FreeForEy(φ) = {x ∈ EV ar | x is free for y in φ}.

Lemma 13.7. Let x, y ∈ EV ar and φ be a pattern.

(i) y ∈ FreeForEy(φ), that is y is free for y in φ.

(ii) If x does not occur in φ, then x ∈ FreeForEy(φ).

(iii) If x occurs in φ, but x does not occur free in φ, then x ∈ FreeForEy(φ).

(iv) FreshF (φ) ⊆ FreeForEy(φ).

(v) If y does not occur in φ, then FreeForEy(φ) = EV ar.

(vi) If y occurs in φ, but y does not occur bound in φ, then FreeForEy(φ) = EV ar.

(vii) If y ∈ FreshB(φ), then FreeForEy(φ) = EV ar.

(viii) If BV (φ) = ∅, then FreeForEy(φ) = EV ar.
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Proof. (i) Obviously. If Qyψ is a subpattern of φ, then y occurs bound in Qyψ, hence y does
not occur free in Qyψ.

(ii) Obviously. Assume that x does not occur in φ. If Qyψ is a subpattern of φ, then x does not
occur in Qyψ. In particular, x does not occur free in Qyψ.

(iii) Obviously. Assume that x occurs in φ, but x does not occur free in φ. If Qyψ is a subpattern
of φ, then x does not occur free in Qyψ.

(iv) Apply (ii), (iii) and Lemma 6.3(iv).

(v) Obviously. If y does not occur in φ, then there exists no subpattern Qyψ of φ.

(vi) Obviously. If y occurs in φ, but y does not occur bound in φ, then there exists no subpattern
Qyψ of φ.

(vii) Apply (v), (vi) and Lemma 6.3(v).

(viii) By (vii).

Proposition 13.8 (Definition by recursion).
Let y ∈ EV ar. The mapping

FreeForEy : Pattern→ EV ar

can be defined by recursion on patterns as follows:

FreeForEy(φ) = EV ar if φ is an atomic pattern,

F reeForEy(−ψ) = FreeForEy(ψ) for any − ∈ P1,

F reeForEy(⊖ψχ) = FreeForEy(ψ) ∩ FreeForEy(χ) for any ⊖ ∈ P2 ∪ Equal,

FreeForEy(Qzψ) =

{
FreshF (Qzψ) if z = y

FreeForEy(ψ) if z ̸= y
for any Q ∈ Q and z ∈ EV ar,

FreeForEy(QXψ) = FreeForEy(ψ) for any Q ∈ Q and X ∈ SV ar.

Proof. Let us verify that FreeForEy as in Definition 13.6 satisfies the conditions.

(i) If φ is an atomic pattern, then BV (φ) = ∅. Apply Lemma 13.7(viii).

(ii) φ = −ψ for − ∈ P1. For every x ∈ EV ar, we have that

x ∈ FreeForEy(φ) iff for every subpattern Qyδ of φ, x /∈ FV (Qyδ)

iff for every subpattern Qyδ of ψ, x /∈ FV (Qyδ),

by Proposition 2.14 and the fact that Qyδ ̸= −ψ
iff x ∈ FreeForEy(ψ).

(iii) φ = ⊖ψχ for ⊖ ∈ P2 ∪ Equal. For every x ∈ EV ar, we have that

x ∈ FreeForEy(φ) iff for every subpattern Qyδ of φ, x /∈ FV (Qyδ)

iff (for every subpattern Qyδ of ψ, x /∈ FV (Qyδ)) and
(for every subpattern Qyδ of χ, x /∈ FV (Qyδ)),

by Proposition 2.14 and the fact that Qyδ ̸= ⊖ψχ

iff x ∈ FreeForEy(ψ) ∩ FreeForEy(χ).

(iv) φ = Qzψ for Q ∈ Q and z ∈ EV ar. We have two cases:
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(a) z ̸= y. Then for every x ∈ EV ar, we have that

x ∈ FreeForEy(φ) iff for every subpattern Qyδ of φ, x /∈ FV (Qyδ)

iff for every subpattern Qyδ of ψ, x /∈ FV (Qyδ),

by Proposition 2.14 and the fact that Qyδ ̸= Qzψ

iff x ∈ FreeForEy(ψ).

(b) z = y, hence φ = Qyψ. We prove that FreeForEy(Qyψ) = FreshF (Qyψ) by double
inclusion.

⊆ Let x ∈ FreeForEy(Qyψ). As Qyψ is a subpattern of Qyψ, we must have that x
does not occur free in Qyψ. Thus, x ∈ FreshF (Qyψ).

⊇ By Lemma 13.7(iv).

(v) φ = QXψ for Q ∈ Q and X ∈ SV ar. For every x ∈ EV ar, we have that

x ∈ FreeForEy(φ) iff for every subpattern Qyδ of φ, x /∈ FV (Qyδ)

iff for every subpattern Qyδ of ψ, x /∈ FV (Qyδ),

by Proposition 2.14 and the fact that Qyδ ̸= QXψ

iff x ∈ FreeForEy(ψ).

13.1.1 Useful lemmas for Subb

Proposition 13.9. Assume that x, y ∈ EV ar are such that x ̸= y and y does not occur in φ.
Then x is free for y in Subbxyφ.

Proof. The proof is by induction on φ.

(i) φ is an atomic pattern. Then Subbxyφ = φ and x is free for y in φ, as y does not occur in φ.

(ii) φ = −ψ for − ∈ P1. As y does not occur in ψ, we can apply the induction hypothesis to get
that x is free for y in Subbxyψ. It follows that x is free for y in Subbxyφ = −Subbxyψ.

(iii) φ = ◦ψχ for ◦ ∈ P2. As y does not occur in ψ, χ, we can apply the induction hypothesis
to get that x is free for y in Subbxyψ, Subb

x
yχ. It follows that x is free for y in Subbxyφ =

◦Subbxy(ψ)Subbxy(χ).

(iv) φ =∼ ψχ for ∼∈ Equal. As y does not occur in ψ, χ, we can apply the induction hypothesis
to get that x is free for y in Subbxyψ, Subb

x
yχ. It follows that x is free for y in Subbxyφ =∼

Subbxy(ψ)Subb
x
y(χ).

(v) φ = Qzψ. We have two cases:

(a) x = z. Then Subbxyφ = QySubfxy
(
Subbxy(ψ)

)
. It is obvious that x does not occur in

Subbxyφ, so x is free for y in Subbxyφ.

(b) x ̸= z. Then Subbxyφ = QzSubbxy(ψ). As y does not occur in ψ, we can apply the
induction hypothesis to get that x is free for y in Subbxyψ. As y does not occur in φ,
we must have that y ̸= z. Then, obviously x is free for y in Subbxyφ.

(vi) φ = QXψ. As y does not occur in ψ, we can apply the induction hypothesis to get that x
is free for y in Subbxyψ. Then, obviously x is free for y in Subbxyφ = QXSubbxy(ψ).

Lemma 13.10. Let φ be a pattern and y, z be distinct variables. Then FreeForEy (Subb
y
zφ) =

EV ar, that is any element variable is free for y in Subbyzφ.
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Proof. By Lemma 8.7(i), y does not occur bound in Subbyzφ, that is y /∈ BV (Subbyzφ)), so y ∈
FreshB (Subbyzφ)). Apply Lemma 13.7(vii) to conclude that FreeForEy (Subb

y
zφ) = EV ar.

Lemma 13.11. Let φ be a pattern and x, y, z be variables. Then

x is free for y in φ iff x is free for y in Subbxzφ.

Proof. If x = z, then Subbxzφ = φ, by Lemma 8.5. The conclusion is obvious. If x = y, then, by
Lemma 13.7(i), both y is free for y in φ and y is free for y in Subbyzφ hold.
Assume in the sequel that x ̸= y and x ̸= z.
We prove by induction on φ, using the definition by recursion of Subbxzφ (Proposition 8.3).

(i) φ is an atomic pattern. Then φ = Subbxzφ.The conclusion is obvious.

(ii) φ = −ψ for − ∈ P1. We get that

x ∈ FreeForEy(φ) iff x ∈ FreeForEy(ψ)
by Proposition 13.8

iff x ∈ FreeForEy(Subb
x
zψ)

by the induction hypothesis for ψ
iff x ∈ FreeForEy(−Subbxzψ)

by Proposition 13.8
iff x ∈ FreeForEy(Subb

x
zφ)

by Proposition 8.3.

(iii) φ = ⊖ψχ for ⊖ ∈ P2 ∪ Equal.
We get that

x ∈ FreeForEy(φ) iff x ∈ FreeForEy(ψ) ∩ FreeForEy(χ)
by Proposition 13.8

iff x ∈ FreeForEy(Subb
x
zψ) ∩ FreeForEy(Subbxzχ)

by the induction hypothesis for ψ, χ
iff x ∈ FreeForEy(⊖SubbxzψSubb

x
zχ)

by Proposition 13.8
iff x ∈ FreeForEy(Subb

x
zφ)

by Proposition 8.3.

(iv) φ = QXψ for Q ∈ Q and X ∈ SV ar. We get that

x ∈ FreeForEy(φ) iff x ∈ FreeForEy(ψ)
by Proposition 13.8

iff x ∈ FreeForEy(Subb
x
zψ)

by the induction hypothesis for ψ
iff x ∈ FreeForEy(QXSubb

x
zψ)

by Proposition 13.8
iff x ∈ FreeForEy(Subb

x
zφ)

by Proposition 8.3.

(v) φ = Qvψ for Q ∈ Q and v ∈ EV ar. We have the following cases:

(a) v ̸= y and v ̸= x. Then
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x ∈ FreeForEy(φ) iff x ∈ FreeForEy(ψ)
by Proposition 13.8, as v ̸= y

iff x ∈ FreeForEy(Subb
x
zψ)

by the induction hypothesis for ψ
iff x ∈ FreeForEy(QvSubb

x
zψ)

by Proposition 13.8, as v ̸= y
iff x ∈ FreeForEy(Subb

x
zφ)

by Proposition 8.3, as v ̸= x.

(b) v = y, hence φ = Qyψ. Then

FreeForEy(φ) = FreeForEy(Qyψ)

= FreshF (Qyψ) by Proposition 13.8

= FreshF (φ)

As x ̸= y, we have, by Proposition 8.3, that Subbxzφ = SubbxzQyψ = QySubbxzψ. It
follows that

FreeForEy(Subb
x
zφ) = FreeForEy(Subb

x
zQyψ) = FreeForEy(QySubb

x
zψ)

= FreshF (QySubbxzψ) by Proposition 13.8

= FreshF (Subbxzφ)

As x ̸= z, we have, by Lemma 8.7(i) that x does not occur bound in Subbxzφ, that is
x /∈ BV (Subbxzφ). Apply Lemma 6.3(iii) to get that x /∈ NotFV (Subbxzφ). It follows
that
x ∈ FreshF (Subbxzφ) iff x does not occur in Subbxzφ by Lemma 6.3(iv)

iff x ∈ FreshF (φ) by Lemma 8.7(iii)

Thus, x ∈ FreeForEy(φ) iff x ∈ FreeForEy(Subb
x
zφ).

(c) v = x, hence φ = Qxψ. By Lemma 13.7(iii), we have that x ∈ FreeForEy(φ)

Apply Lemma 8.7(viii) and the fact that x ̸= z to get that x does not occur in Subbxzφ.
By Lemma 13.7(ii), x ∈ FreeForEy(Subb

x
zφ).

Thus, both x ∈ FreeForEy(φ) and x ∈ FreeForEy(Subb
x
zφ).

13.1.2 Useful lemmas for Subf

Lemma 13.12. Let φ be a pattern and x, y, z be variables such that z does not occur in φ. Then

x is free for y in φ iff z is free for y in Subfxz φ.

Proof. If x = z, then Subfxz φ = φ, by Lemma 7.5. The conclusion is obvious.
Assume in the sequel that x ̸= y and x ̸= z.
We prove by induction on φ, using the definition by recursion of Subfxz φ (Proposition 7.3).

(i) φ is an atomic pattern. Then Subfxz φ = φ. The conclusion is obvious.

(ii) φ = −ψ for − ∈ P1. We get that

x ∈ FreeForEy(φ) iff x ∈ FreeForEy(ψ)
by Proposition 13.8

iff z ∈ FreeForEy(Subf
x
z ψ)

by the induction hypothesis for ψ
iff z ∈ FreeForEy(−Subfxz ψ)

by Proposition 13.8
iff z ∈ FreeForEy(Subf

x
z φ)

by Proposition 7.3.
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(iii) φ = ⊖ψχ for ⊖ ∈ P2 ∪ Equal.
We get that

x ∈ FreeForEy(φ) iff x ∈ FreeForEy(ψ) ∩ FreeForEy(χ)
by Proposition 13.8

iff z ∈ FreeForEy(Subf
x
z ψ) ∩ FreeForEy(Subfxz χ)

by the induction hypothesis for ψ, χ
iff z ∈ FreeForEy(⊖SubbxzψSubf

x
z χ)

by Proposition 13.8
iff z ∈ FreeForEy(Subf

x
z φ)

by Proposition 7.3.

(iv) φ = QXψ for Q ∈ Q and X ∈ SV ar. We get that

x ∈ FreeForEy(φ) iff x ∈ FreeForEy(ψ)
by Proposition 13.8

iff z ∈ FreeForEy(Subf
x
z ψ)

by the induction hypothesis for ψ
iff z ∈ FreeForEy(QXSubf

x
z ψ)

by Proposition 13.8
iff z ∈ FreeForEy(Subf

x
z φ)

by Proposition 7.3.

(v) φ = Qvψ for Q ∈ Q and v ∈ EV ar. We have the following cases:

(a) v ̸= x and v ̸= y. Then
x ∈ FreeForEy(φ) iff x ∈ FreeForEy(ψ)

by Proposition 13.8, as v ̸= y
iff z ∈ FreeForEy(Subf

x
z ψ)

by the induction hypothesis for ψ
iff z ∈ FreeForEy(QvSubf

x
z ψ)

by Proposition 13.8, as v ̸= y
iff z ∈ FreeForEy(Subf

x
z φ)

by Proposition 7.3, as v ̸= x.

(b) v = y and v ̸= x, hence φ = Qyψ and x ̸= y. Then

FreeForEy(φ) = FreeForEy(Qyψ)

= FreshF (Qyψ) by Proposition 13.8

= FreshF (φ)

As x ̸= y, by Proposition 7.3, we have that Subfxz φ = SubfxzQyψ = QySubfxz ψ. It
follows that

FreeForEy(Subf
x
z φ) = FreeForEy(Subf

x
zQyψ) = FreeForEy(QySubf

x
z ψ)

= FreshF (QySubfxz ψ) by Proposition 13.8

= FreshF (Subfxz φ)

We have that
x ∈ FreeForEy(φ) iff x ∈ FreshF (φ)

iff FreeOccurx(φ) = ∅ by Lemma 6.5(ii)
iff FreeOccurz(Subf

x
z φ) = ∅ by Lemma 7.9(iii),

as z does not occur in φ
iff z ∈ FreshF (Subfxz φ) by Lemma 6.5(ii)
iff z ∈ FreeForEy(Subf

x
z φ)
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(c) v = x, hence φ = Qxψ. Then Subfxz φ = φ.

By Lemma 13.7(iii), we have that x is free for y in φ.

Furthermore, by Lemma 13.7(ii) and the fact that z does not occur in φ, we have that
z is free for y in φ.

13.2 X free for Y

Remark 13.13. Let X,Y ∈ SV ar.

(i) X is free for Y in φ if the following holds: for every binder Q on Y in φ with scope θ, we
have that X does not occur free in θ.

(ii) X is not free for Y in φ if the following holds: there exists a binder Q on Y in φ with scope
θ such that X occurs free in θ.

Definition 13.14. Let Y ∈ SV ar. Define the mapping FreeForSY : Pattern → SV ar as
follows: for any pattern φ and Y ∈ SV ar,

FreeForSY (φ) = {X ∈ SV ar | X is free for Y in φ}.

Proposition 13.15 (Definition by recursion).
Let Y ∈ SV ar. The mapping

FreeForSY : Pattern→ SV ar

can be defined by recursion on patterns as follows:

FreeForSY (φ) = SV ar if φ is an atomic pattern,

F reeForSY (−ψ) = FreeForSY (ψ) for any − ∈ P1,

F reeForSY (⊖ψχ) = FreeForSY (ψ) ∩ FreeForSY (χ) for any ⊖ ∈ P2 ∪ Equal,
FreeForSY (Qxψ) = FreeForSY (ψ) for any Q ∈ Q and x ∈ EV ar,

FreeForSY (QXψ) =

{
FreshSV ar(φ) if X = Y

FreeForSY (ψ) if X ̸= Y
for any Q ∈ Q and X ∈ SV ar.

Lemma 13.16. Let Y ∈ SV ar and φ be a pattern.

(i) Y ∈ FreeForSY (φ), that is Y is free for Y in φ.

(ii) FreshSV ar(φ) ⊆ FreeForSY (φ), that is any set variable that

either (1) does not occur in φ or (2) occurs in φ, but does not occur free in φ

is free for Y in φ.

(iii) If Y /∈ SV ar(φ), then FreeForSY (φ) = SV ar, that is if Y does not occur in φ, then any
set variable is free for Y in φ.

(iv) If Y /∈ BVSV ar(φ), then FreeForSY (φ) = SV ar, that is if Y occurs in φ, but Y does not
occur bound in φ, then any set variable is free for Y in φ.

Proposition 13.17. Assume that X,Y ∈ SV ar are such that X ̸= Y and Y does not occur in φ.
Then X is free for Y in SubbXY φ.

Proof. The proof is by induction on φ.
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(i) φ is an atomic pattern. Then SubbXY φ = φ and X is free for Y in φ, as Y does not occur in
φ.

(ii) φ = −ψ for − ∈ P1. As Y does not occur in ψ, we can apply the induction hypothesis to
get that X is free for Y in SubbXY ψ. It follows that X is free for Y in SubbXY φ = −SubbXY ψ.

(iii) φ = ◦ψχ for ◦ ∈ P2. As Y does not occur in ψ, χ, we can apply the induction hypothesis to
get that X is free for Y in SubbXY ψ, Subb

X
Y χ. It follows that X is free for Y in SubbXY φ =

◦SubbXY (ψ)SubbXY (χ).

(iv) φ =∼ ψχ for ∼∈ Equal. As Y does not occur in ψ, χ, we can apply the induction hypothesis
to get that X is free for Y in SubbXY ψ, Subb

X
Y χ. It follows that X is free for Y in SubbXY φ =∼

SubbXY (ψ)SubbXY (χ).

(v) φ = Qxψ. As Y does not occur in ψ, we can apply the induction hypothesis to get that X
is free for Y in SubbXY ψ. Then, obviously X is free for Y in SubbXY φ = QxSubbXY (ψ).

(vi) φ = QZψ. We have two cases:

(a) X = Z. Then SubbXY φ = QY SubfXY
(
SubbXY (ψ)

)
. It is obvious that X does not occur

in SubbXY φ, so X is free for Y in SubbXY φ.

(b) X ̸= Z. Then SubbXY φ = QZSubbXY (ψ). As Y does not occur in ψ, we can apply the
induction hypothesis to get that X is free for Y in SubbXY ψ. As Y does not occur in φ,
we must have that Y ̸= Z. Then, obviously X is free for Y in SubbXY φ.

14 Positive and negative occurences of set variables

Assume that →∈ P2 and that SV ar ̸= ∅. Let X be a set variable.

Definition 14.1. Let φ = φ0φ1 . . . φn−1 be a pattern.

(i) We say that → is an implication at the ith place of φ with left scope ψ and right
scope χ if φi =→ and ψ = φi+1 . . . φj, χ = φj+1 . . . φl are the unique patterns given by
Proposition 2.10.

(ii) X occurs left at the kth place of φ if X occurs free at the kth place of φ and there exist
0 ≤ i < k ≤ j ≤ n− 1 such that ψ = φi+1 . . . φj is the left scope of an implication → at the
ith place of φ.

Definition 14.2. We define the mapping

NX,L : Pattern→ Fun(N,N)

by recursion on patterns as follows:

(i) φ is an atomic pattern. Then NX,L(φ)(k) = 0 for every k ∈ N.

(ii) φ = −ψ, where − ∈ P1. Thus, φ = φ0φ1 . . . φn−1 with φ0 = −, ψ = φ1 . . . φn−1. We have
the following cases:

(a) k = 0 or k ≥ n. Then NX,L(φ)(k) = 0.

(b) 1 ≤ k ≤ n− 1. Then NX,L(φ)(k) = NX,L(ψ)(k − 1).

(iii) φ = ⊖ψχ, where ⊖ ∈ Equal ∪ (P2 \ {→}). Thus, φ = φ0φ1 . . . φn−1 with φ0 = ⊖, ψ =
φ1 . . . φj and χ = φj+1 . . . φn−1 for some 1 ≤ j < n− 1. We have the following cases:

(a) k = 0 or k ≥ n. Then NX,L(φ)(k) = 0.

47



(b) 1 ≤ k ≤ j. Then NX,L(φ)(k) = NX,L(ψ)(k − 1).

(c) j + 1 ≤ k ≤ n− 1. Then NX,L(φ)(k) = NX,L(χ)(k − j − 1).

(iv) φ =→ ψχ. Thus, φ = φ0φ1 . . . φn−1 with φ0 =→, ψ = φ1 . . . φj and χ = φj+1 . . . φn−1 for
some 1 ≤ j < n− 1. We have the following cases:

(a) k = 0 or k ≥ n. Then NX,L(φ)(k) = 0.

(b) 1 ≤ k ≤ j. Then NX,L(φ)(k) = NX,L(ψ)(k − 1) + 1.

(c) j + 1 ≤ k ≤ n− 1. Then NX,L(φ)(k) = NX,L(χ)(k − j − 1).

(v) φ = Qxψ, where Q ∈ Q and x ∈ EV ar. Thus, φ0φ1 = Qx and ψ = φ2 . . . φn−1. We have
the following cases:

(a) k ∈ {0, 1} or k ≥ n. Then NX,L(φ)(k) = 0.

(b) 2 ≤ k ≤ n− 1. Then NX,L(φ)(k) = NX,L(ψ)(k − 2).

(vi) φ = QZψ, where Q ∈ Q and Z ∈ SV ar. If X = Z, then NX,L(µZψ)(k) = 0 for all k ∈ N.
If X ̸= Z, then we have the following cases:

(a) k ∈ {0, 1} or k ≥ n. Then NX,L(φ)(k) = 0.

(b) 2 ≤ k ≤ n− 1. Then NX,L(φ)(k) = NX,L(ψ)(k − 2).

Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = Fun(N,N) and

G0(φ)(k) = 0 if φ is an atomic pattern,

G⊖(f, g, ψ, χ)(k) =


0 if k = 0 or k ≥ n,

f(k−1) if 1 ≤ k ≤ j,

g(k−j−1) if j+1 ≤ k ≤ n−1

for any ⊖ ∈ Equal ∪ (P2 \ {→}),

G→(f, g, ψ, χ)(k) =


0 if k = 0 or k ≥ n,

f(k − 1) + 1 if 1 ≤ k ≤ j,

g(k − j − 1) if j + 1 ≤ k ≤ n− 1

,

GQ(f, x, ψ)(k) =

{
0 if k ∈ {0, 1} or k ≥ n,

f(k − 2) if 2 ≤ k ≤ n− 1

for any Q ∈ Q and x ∈ EV ar,

GQ(f, Z, ψ)(k) =


0 if Z = X,

0 if Z ̸= X and (k ∈ {0, 1} or k ≥ n),

f(k−2) if Z ̸= X and 2 ≤ k ≤ n− 1

for any Q ∈ Q and Z ∈ SV ar.

Then

(i) NX,L(φ)(k) = 0 = G0(φ)(k) for every k ∈ N if φ is an atomic pattern.

(ii) φ = ⊖ψχ. Then

NX,L(⊖ψχ)(k) =


0 if k = 0 or k ≥ n,

NX,L(ψ)(k − 1) if 1 ≤ k ≤ j,

NX,L(χ)(k − j − 1) if j + 1 ≤ k ≤ n− 1

= G⊖(NX,L(ψ), NX,L(χ), ψ, χ)(k).
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(iii) φ =→ ψχ. Then

NX,L(→ ψχ)(k) =


0 if k = 0 or k ≥ n,

NX,L(ψ)(k − 1) + 1 if 1 ≤ k ≤ j,

NX,L(χ)(k − j − 1) if j + 1 ≤ k ≤ n− 1

= G→(NX,L(ψ), NX,L(χ), ψ, χ)(k).

(iv) φ = Qxψ. Then

NX,L(Qxψ)(k) =

{
0 if k ∈ {0, 1} or k ≥ n,

NX,L(ψ)(k − 2) if 2 ≤ k ≤ n− 1

= GQ(NX,L(ψ), x, ψ)(k).

(v) φ = QZψ. If Z = X, then NX,L(QXψ)(k) = 0 = GQ(NX,L(ψ), Z, ψ)(k).
Assume that Z ̸= X. Then

NX,L(QZψ)(k) =

{
0 if k ∈ {0, 1} or k ≥ n,

NX,L(ψ)(k − 2) if 2 ≤ k ≤ n− 1

= GQ(NX,L(ψ), Z, ψ)(k).

Notation 14.3. Let k ∈ N and φ be a pattern. We denote NX,L(φ)(k) with NL(φ,X, k).

Definition 14.4. Let X k ∈ N and φ be a pattern such that X occurs free at the kth place of φ.

(i) We say that X occurs positively at the kth place of φ (or that X has a positive
occurence at the kth place of φ) if NL(φ,X, k) = 0 or NL(φ,X, k) is an even natural
number.

(ii) We say that X occurs negatively at the kth place of φ (or that X has a negative
occurence at the kth place of φ) if NL(φ,X, k) is an odd natural number.

Definition 14.5. We say that φ is positive in X if one of the following is true:

(i) X does not occur free in φ.

(ii) For every k ∈ N, if X occurs free at the kth place of φ, then X occurs positively at the kth
place of φ.

Definition 14.6. We say that φ is negative in X if one of the following is true:

(i) X does not occur free in φ.

(ii) For every k ∈ N, if X occurs free at the kth place of φ, then X occurs negatively at the kth
place of φ.

Remark 14.7 (Alternative definition). The property that φ is positive in X can be defined by
recursion on patterns as follows:

(i) If φ is atomic, then

(a) φ is positive in X;

(b) φ is negative in X iff φ ̸= X.

(ii) If φ = −ψ, where − ∈ P1, then
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(a) φ is positive in X iff ψ is positive in X;

(b) φ is negative in X iff ψ is negative in X.

(iii) If φ = ⊖ψχ, where ⊖ ∈ Equal ∪ (P2 \ {→}), then

(a) φ is positive in X iff both ψ, χ are positive in X;

(b) φ is negative in X iff both ψ, χ are negative in X.

(iv) If φ =→ ψχ, then

(a) φ is positive in X iff ψ is negative in X and χ is positive in X;

(b) φ is negative in X iff ψ is positive in X and χ is negative in X.

(v) If φ = Qxψ, where Q ∈ Q and x ∈ EV ar, then

(a) φ is positive in X iff ψ is positive in X.

(b) φ is negative in X iff ψ is negative in X.

(vi) If φ = QXψ, where Q ∈ Q, then

(a) φ is positive in X;

(b) φ is negative in X.

(vii) If φ = QZψ, where Q ∈ Q and Z ∈ EV ar \ {X}, then

(a) φ is positive in X iff ψ is positive in X.

(b) φ is negative in X iff ψ is negative in X.

15 Proof systems

Let L be a language for abstract matching logic.

Definition 15.1. An L-proof system is a pair P = (Axm,DedRules), where

(i) Axm ⊆ PatternL is a set of axioms.

(ii) DedRules is a set of deduction rules (or inference rules). A deduction rule has one of
the following forms:

(I)
φ1 φ2 . . . φn

ψ
, (II)

φ1 φ2 . . . φn
ψ

(C)

where n ≥ 1, φ1, φ2 . . . φn, ψ ∈ PatternL and C is a condition.

φ1, φ2 . . . φn are said to be the premises of the rule and ψ is the condition of the rule. For a
deduction rule of form (II), C is said to be the conclusion of the rule.
A deduction rule of form (I) is read as: from φ1, φ2, . . . , φn deduce/infer ψ.
A deduction rule of form (II) is read as: if condition C holds, from φ1, φ2, . . . , φn deduce/infer ψ.
We denote deduction rules by D, D′, D1, D2, etc.
Let P = (Axm,DedRules) be an L-proof system.

Definition 15.2. A set Γ of L-patterns is said to be closed to DedRules if the following hold:

(i) For every deduction rule D ∈ DedRules of form (I), if Γ contains the premises of D, then
the conclusion of D is also in Γ.

(ii) For every deduction rule D ∈ DedRules of form (II), if the condition C of D holds and Γ
contains the premises of D, then the conclusion of D is also in Γ.
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Let Γ be a set of L-patterns.

Definition 15.3. The set of Γ-P-theorems is the intersection of all sets ∆ of L-patterns that
have the following properties:

(i) Axm ⊆ ∆.

(ii) Γ ⊆ ∆.

(iii) ∆ is closed to DedRules.

The set of Γ-P-theorems is denoted by Γ−ThmP . If φ is a Γ-P-theorem, then we also say that φ
is deduced from the hypotheses Γ.
As an immediate consequence of Definition 15.3, we get the induction principle for Γ-P-theorems.

Proposition 15.4. [Induction principle on Γ-P-theorems]
Let ∆ be a set of L-patterns satisfying the following properties:

(i) Axm ⊆ ∆.

(ii) Γ ⊆ ∆.

(iii) ∆ is closed to DedRules.

Then Γ−ThmP ⊆ ∆.

Proof. By hypothesis, ∆ ⊆ PatternL. By Definition 15.3, we get that Γ−ThmP ⊆ ∆.

Definition 15.5. The set ThmP of P-theorems is defined by ThmP = ∅−ThmP .

Notation 15.6. Let Γ,∆ be sets of L-patterns and φ be an L-pattern. We use the following
notations
Γ ⊢P φ := φ is a Γ-P-theorem,

⊢P φ := φ is a P-theorem,

Γ ⊢P ∆ ⇔ Γ ⊢P φ for any φ ∈ ∆.

Proposition 15.7. Let Γ,∆ be sets of L-patterns.

(i) Assume that ∆ ⊆ Γ. Then for every L-pattern φ, ∆−ThmP ⊆ Γ−ThmP , that is

∆ ⊢P φ implies Γ ⊢P φ.

(ii) For every L-pattern φ, ThmP ⊆ Γ−ThmP , that is

⊢P φ implies Γ ⊢P φ.

(iii) Assume that Γ ⊢P ∆. Then for every L-pattern φ, ∆−ThmP ⊆ Γ−ThmP , that is

∆ ⊢P φ implies Γ ⊢P φ.

(iv) For every L-pattern φ, (Γ−ThmP)−ThmP = Γ−ThmP , that is

Γ−ThmP ⊢P φ iff Γ ⊢P φ.

Proof. (i) As ∆ ⊆ Γ, one proves immediately by induction on ∆-theorems that ∆−ThmP ⊆
Γ−ThmP .

(ii) Apply (i) with ∆ = ∅.
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(iii) As, by hypothesis, ∆ ⊆ ThmL(Γ), one proves immediately by induction on ∆-theorems that
∆−ThmP ⊆ Γ−ThmP .

(iv) ⇐ As, by definition, Γ ⊆ Γ−ThmP , we can apply (i) to get that Γ−ThmP ⊆ (Γ−ThmP)−
ThmP .

⇒ We have that Γ ⊢P Γ−ThmP , so we can apply (iii) with ∆ = Γ−ThmP to get that
(Γ−ThmP)−ThmP ⊆ Γ−ThmP .

15.1 Γ-P-proof

Let P = (Axm,DedRules) be an L-proof system and Γ be a set of L-patterns.

Definition 15.8. A Γ-P-proof is a sequence of L-patterns θ1, . . . , θn such that for all i ∈
{1, . . . , n}, one of the following holds:

(i) θi ∈ Axm.

(ii) θi ∈ Γ.

(iii) θi is the conclusion of a deduction rule D ∈ DedRules of form (I) and the premises of D
are previous L-patterns.

(iv) θi is the conclusion of a deduction rule D ∈ DedRules of form (II), the premises of D are
previous L-patterns and the condition C of D holds.

An ∅-P-proof is called simply a P-proof.

Definition 15.9. Let φ be an L-pattern. A Γ-P-proof of φ is a Γ-P-proof θ1, . . ., θn such that
θn = φ.

Proposition 15.10. For any L-pattern φ,

Γ ⊢P φ iff there exists a Γ-P-proof of φ.

Proof.
Θ = {φ ∈ PatternL | there exists a Γ-P-proof of φ}.

⇒ We prove by induction on Γ-P-theorems that Γ−ThmP ⊆ Θ:
If φ is an axiom or a member of Γ, then θ0 = φ is a Γ-P-proof of φ. Hence, φ ∈ Θ.
Let us prove that Θ is closed to DedRules.

(i) Let D = φ1 φ2 ... φn

ψ be a deduction rule of form (I) such that φ1, φ2, . . . , φn ∈ Θ. Then

for every i = 1, . . . , n there exists a Γ-P-proof δi1, δ
i
2 . . . , δ

i
ki

= φi of φi. It follows that

δ11 , δ
1
2 . . . , δ

1
k1 = φ1, δ

2
1 , δ

2
2 . . . , δ

2
k2 = φ2, . . . , δ

n
1 , δ

n
2 . . . , δ

n
kn = φn, ψ

is a Γ-P-proof of ψ. Thus, ψ ∈ Θ.

(ii) Let D = φ1 φ2 ... φn

ψ (C) be a deduction rule of form (II) such that the condition C
of D holds and φ1, φ2, . . . , φn ∈ Θ. Then for every i = 1, . . . , n there exists a Γ-P-proof
δi1, δ

i
2 . . . , δ

i
ki

= φi of φi. It follows that

δ11 , δ
1
2 . . . , δ

1
k1 = φ1, δ

2
1 , δ

2
2 . . . , δ

2
k2 = φ2, . . . , δ

n
1 , δ

n
2 . . . , δ

n
kn = φn, ψ

is a Γ-P-proof of ψ. Thus, ψ ∈ Θ.

⇐ Assume that φ has a Γ-P-proof θ1, . . . , θn = φ. We prove by induction on i that for all
i = 1, . . . , n, Γ ⊢P θi. As a consequence, Γ ⊢P θn = φ.
If i = 1, then θ1 must be an axiom or a member of Γ. Then obviously Γ ⊢P θ1.
Assume that the induction hypothesis is true for all j = 1, . . . , i. We have the following cases for
θi+1:
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(i) θi+1 is an axiom or a member of Γ. Then obviously Γ ⊢P θi+1.

(ii) θi+1 is the conclusion of a deduction rule D = φ1 φ2 ... φn

θi+1
of form (I) and φ1, φ2, . . .φn

are previous L-patterns. Then by the induction hypothesis we have that Γ ⊢P φk for all
k = 1, . . . , n. By the definition of Γ-P-theorems, it follows that Γ ⊢P θi+1.

(iii) θi+1 is the conclusion of a deduction rule D = φ1 φ2 ... φn

θi+1
(C) of form (II) and φ1,

φ2, . . .φn are previous L-patterns and the condition C of D holds. Then by the induction
hypothesis we have that Γ ⊢P φk for all k = 1, . . . , n. By the definition of Γ-P-theorems, it
follows that Γ ⊢P θi+1.

15.2 Comparison of L-proof systems

Let P1 = (Axm1, DedRules1), P2 = (Axm2, DedRules2) be two L-proof systems.

Definition 15.11. P1 is said to be weaker than P2 (we write P1 ≲ P2) if the following holds:
for every L-pattern φ and for every set Γ of L-patterns,

Γ ⊢P1
φ implies Γ ⊢P2

φ.

Thus, P1 ≲ P2 iff Γ−ThmP1
⊆ Γ−ThmP2

for every set Γ of L-patterns.
Proposition 15.12. Assume that

(i) ⊢P2
φ for every axiom φ ∈ Axm1,

(ii) For every set Γ of L-patterns, Γ−ThmP2
is closed to DedRules1.

Then P1 ≲ P2.

Proof. Let Γ be a set of L-patterns. We have that

(i) Axm1 ⊆ ThmP2
⊆ Γ−ThmP2

.

(ii) Γ ⊆ Γ−ThmP2
.

(iii) Γ−ThmP2
is closed to DedRules1.

By induction on Γ-P1-theorems (Proposition 15.4), we get that Γ−ThmP1 ⊆ Γ−ThmP2 . Thus,
P1 ≲ P2.

Definition 15.13. The L-proof systems P1, P2 are said to be equivalent (we write P1 ∼ P2) if
for every set Γ of L-patterns,

Γ ⊢P1 φ implies Γ ⊢P2 φ.

Proposition 15.14. The following are equivalent:

(i) P1 ∼ P2,

(ii) P1 ≲ P2 and P2 ≲ P1,

(iii) Γ−ThmP1 = Γ−ThmP2 for every set Γ of L-patterns.

15.3 Abstract matching logics

Definition 15.15. An abstract matching logic is a pair AML = (L,P), where

(i) L is a language for abstract matching logic. We say that L is the language of AML.

(ii) P is an L-proof system. We say that P is the proof system for AML.
We also write LAML instead of L and PAML instead of P.
For every set Γ of L-patterns, the set Γ−ThmP is called the set of Γ-theorems of AML. The
set ThmP is called the set of theorems of AML.
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A Expressions over a set

Let A be a nonempty set whose elements will be called symbols.

Notation A.1. For every m,n ∈ N be such that m ≤ n. We denote

[m,n] := {m,m+ 1, . . . , n− 1, n}.

Notation A.2. If I ⊆ N and k ∈ N, then

I + k := {n+ k | n ∈ I}.

An expression over A or simply expression is a finite sequence of symbols from A. We denote
an expression over A of length n ∈ N∗ by a0a1 . . . an−1, where ai ∈ A for every i = 0, . . . , n− 1.
The empty expression (of length 0) is denoted by λ. The length of an expression a is denoted by
ℓ(a).
The concatenation of expressions over A is defined as follows: if a = a0a1 . . . an−1 and b =
b0 . . . bk−1, then ab = a0 . . . an−1b0 . . . bk−1.

Definition A.3. Let a = a0a1 . . . an−1 be an expression.

(i) If i, j ∈ [0, n − 1] are such that i ≤ j, then the expression ai . . . aj is called the (i, j)-
subexpression of a.

(ii) A proper initial segment of a is an (0, j)-subexpression of a, that is an expression
a0a1 . . . ai, where i ∈ [0, n− 2].

Definition A.4. Let a = a0a1 . . . an−1 and b be expressions.

(i) Let i ∈ [0, n − 1]. We say that b occurs at place i in a if there exists j ∈ [i, n − 1] such
that b is the (i, j)-subexpression of a.

(ii) We say that b occurs in a if there exists i ∈ [0, n− 1] such that b occurs at place i in a.

(iii) An occurrence of b in a is an i ∈ [0, n− 1] such that b occurs at place i in a.

We denote the set of all occurrences of b in a by Occurb(a).

Notation A.5. Let a, b, c, d be expressions and I ⊆ Occurb(a). We denote by Replbc (a; I) the
expression obtained by replacing b with c in a at every place i ∈ I.
If I = {i1, . . . , ik}, we also write Replbc (a; i1, . . . , ik) instead of Replbc (a; I).
We shall write, for simplicity, Replallbc (a) instead of Replbc (a;Occurb(a)).

Lemma A.6. Let a, b, c be expressions and I ⊆ Occurb(a). Assume that ℓ(a) = n, ℓ(b) = k
and ℓ(c) = p. Then

(i) |I|k ≤ n.

(ii) ℓ(Replbc (a; I)) = n+ |I|(p− k).

Lemma A.7. Let a, b be expressions such that b occurs in a at 0 ≤ i1 < i2 ≤ ℓ(a). If b is a not
constant expression, then

i2 ≥ i1 + ℓ(b).

Proof. If ℓ(b) = 1, then obviously i2 ≥ i1 + 1.
Otherwise,

p := ℓ(b) ≥ 2 and b = b0 . . . bp−1.

Assume by contradiction that i2 < i1 + ℓ(b). As b is a not constant expression, there are
i < j ∈ [0, p− 1] such that bi ̸= bj , so

I := {i ∈ [0, p− 1] | bi ̸= bj for some j < i} ≠ ∅.

Let i0 := min{i ∈ [0, p− 1] | bi ̸= bj for some j < i}.
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A.1 Useful results

Lemma A.8. Let a, b, c be expressions and I ⊆ Occurb(a).

(i) Replbb(a; I) = a.

(ii) Replbc (a; ∅) = a.

Proof. Obviously.

Lemma A.9. Let a, b, c be expressions. If a does not occur in b, c, then a does not occur in
bc.

Lemma A.10. Let a, b, c, d be expressions. Then

Replallad(bc) = Replallad(b)Replall
a
d(c).

Lemma A.11. Let a = a0a1 . . . an−1, b = b0b1 . . . bl−1, c, be expressions and k be such that
ak = bk = d. Assume that

Replalldc(a){k} = Replalldc(b){k}.

Then a = b.

Proof. Let c = c0c1 . . . cp−1. Denote a1 = Repldc(a; {k}) and b1 = Repldc(b; {k}). Then

ℓ(a1) = n− 1 + p, a1 = a10a
1
1 . . . a

1
n−2+p, ℓ(b1) = l − 1 + p, b1 = b10b

1
1 . . . b

1
l−2+p

and

a1i =


ai for i ∈ [0, k − 1]

ck−i for i ∈ [k, k + p− 1]

ai−p+1 for i ∈ [k + p, n− 2 + p]

b1i =


bi for i ∈ [0, k − 1]

ck−i for i ∈ [k, k + p− 1]

bi−p+1 for i ∈ [k + p, n− 2 + p]

As a1 = b1, we must have that n = l, ai = bi for all i ∈ [0, k − 1] and ai−p+1 = bi−p+1 for all
i ∈ [k + p, n− 2 + p], that is aj = bj for all j ∈ [k + 1, n− 1]. As ak = bk by hypothesis, it follows
that a = b.

Lemma A.12. Let a, b, c, d be expressions and k ∈ Occurb(a). Then

Replbd(a; {k}) = Replcd(Repl
b
c (a; {k}); {k}).

Lemma A.13. Let a, b, c, a∗ be expressions and k ∈ Occurb(a) such that a∗ = Replbc (a; {k}).
Then a = Replcb(a

∗; {k}).

Proof. Apply Lemma A.12 with d := b.

Lemma A.14. Let a, b, c, c1, b1 be expressions. Assume that

(i) a does not occur in b, c1;

(ii) b1 is obtained from b by replacing zero or more occurrences of c with c1.

Then a does not occur in b1.

Lemma A.15. Let a, b, c, d be expressions and k ∈ [0, ℓ(a)− 1] such that

(i) b occurs in a at place k;

(ii) c contains symbols that are not in a;

(iii) d = Replbc (φ; {k}).

Then Occurc(d) = {k}. Thus, c occurs uniquely in d at place k.

55



A.2 ℓ(b) = ℓ(c)

Lemma A.16. Let b, c be expressions such that ℓ(b) = ℓ(c).

(i) Assume that a is an expression and I ⊆ Occurb(a). Then I ⊆ Occurc(Repl
b
c (a; I)).

(ii) Assume that a is an expression and I ⊆ Occurb(a). Then

ℓ(a) = ℓ(Replbc (a; I)).

(iii) Assume that a is an expression and I, J ⊆ Occurb(a) are such that I ∩ J = ∅. Then

Replbc (a; I ∪ J) = Replbc (Repl
b
c (a; I); J) = Replbc (Repl

b
c (a; J); I).

(iv) Assume that a, d are expressions, I ⊆ Occurb(a) and ℓ(d) = ℓ(b) = ℓ(c). Then

Replbd(a; I) = Replcd(Repl
b
c (a; I); I).

(v) Assume that a, a∗ are expressions, I ⊆ Occurb(a) and a∗ = Replbc (a; I). Then

a = Replcb(a
∗; I).

Proof. Let l = ℓ(b) = ℓ(c) and b = b0b1 . . . bl−1, c = c0c1 . . . cl−1, l ≥ 1

(i) Let n ≥ 1, a = a0a1 . . . an−1. If I = ∅, then the conclusion is obvious. Assume that
I = {i1, i2, . . . , ik} ≠ ∅, where k ≥ 1 and 0 ≤ i1 < i2 < . . . < ik ≤ n− 1. Thus, i2 ≥ i1. Let

a0 = a0a1 . . . ai1−1, a
1 = ai1ai1+1 . . . ai2−1, . . . , a

k = aikaik+1 . . . an−1.

Then
a = a0ba1b . . .ak−1bak

and
a = a0ba1b . . .ak−1bak

(ii) TO WRITE

(iii) Apply (iv) with d := b. We have that Replbb(a; I) = a and Replcb(Repl
b
c (a; I); I) =

Replcb(a
∗; I).

Lemma A.17. Let a, b, c, d be expressions and k ∈ Occurb(a) such that ℓ(b) = ℓ(c) = p and
d = Replbc (a; {k}). Assume that i ≤ k < k + p− 1 ≤ l ≤ n− 1.

(i) Let d∗ be the (i, l)-subexpression of d. Then k−i ∈ Occurb(d
∗) and a∗ = Replcb(d

∗; {k − i})
is the (i, l)-subexpression of a.

(ii) Let a∗ be the (i, l)-subexpression of a. Then k− i ∈ Occurb(a
∗) and d∗ = Replbc (a

∗; {k − i})
is the (i, l)-subexpression of d.
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A.3 Replacement of symbols

Lemma A.18. Let x, y be symbols, a be an expression and I ⊆ Occurx(a). Then ℓ(a) =
ℓ(Replxy (a; I)).

Proof. Apply Lemma A.16 (ii) with b := x and c := y

Lemma A.19. Let x, y be symbols, a be an expression and I ⊆ Occurx(a).
Then I ⊆ Occury(Repl

x
y (a; I)).

Proof. Apply Lemma A.16(i) with b := x and c := y

Lemma A.20. Let x, y be symbols, a be an expression and I, J ⊆ Occurx(a) be such that I∩J = ∅.
Then

Replxy (a; I ∪ J) = Replxy (Repl
x
y (a; I); J) = Replxy (Repl

x
y (a; J); I).

Proof. Apply Lemma A.16(iii) with b := x and c := y

Lemma A.21. Let x, y, z be symbols, a be an expression and I ⊆ Occurx(a). Then

Replxz (a; I) = Replyz (Repl
x
y (a; I); I).

Proof. Apply Lemma A.16(iv) with b := x, c := y and d := z.

Lemma A.22. Let x, y be symbols, a, a∗ be expressions and I ⊆ Occurx(a). Assume that
a∗ = Replxy (a; I). Then a = Replyx(a

∗; I).

Proof. Apply Lemma A.16(v) with b := x, c := y and d := y

Lemma A.23. Let x, y be symbols and a be an expression such that y does not occur in a. Then

Occurx(a) = Occury(Replall
x
y (a)).

Proof. Let a = a0a1 . . . an−1 and denote d := Replallxy (a). Then, by Lemma A.18, we have that
ℓ(a) = ℓ(d) = n, hence d = d0d1 . . . dn−1.
⊆ By Lemma A.19.
⊇ Let i ∈ [0, n− 1] \ I. Then di = ai ̸= y, as y does not occur in a.

Lemma A.24. Let x be symbol and a, b be expressions. Then

Occurx(ab) = Occurx(a) ∪ (Occurx(b) + ℓ(a)).

Lemma A.25. Let a, b, c, d be expressions and x, y be symbols such that

(i) b occurs uniquely in a at place k;

(ii) x, y do not occur in b;

(iii) d is obtained from a by replacing zero or more occurrences of x with y.

Then b occurs uniquely in d at place k.

Lemma A.26. Let a, b, c, d be expressions, k ∈ [0, ℓ(a)− 1] and x, z be symbols such that

(i) b occurs in a at k;

(ii) z does not occur in b;

(iii) c = Replallxz (b);

(iv) d = Replbc (a; {k}).
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Then
d = Replxz (a;Occurx(b) + k).

Lemma A.27. Let a be an expression and x, y, z ∈ A. Assume that x occurs in a and I ⊆
Occurx(a), where n ≥ 1. Let

b := Replxy (a; I), c := Replxz (a; I).

Then

(i) I ⊆ Occurz(c);

(ii) b = Replzy(c; I).

Lemma A.28. Let x, y, z be symbols, a be an expression and I, J ⊆ Occurx(a) be such that
I ∪ J = Occurx(a) and I ∩ J = ∅.
Then x does not occur in Replxy (Repl

x
z (a; J); I).

Lemma A.29. Let x, y, z be symbols such that x ̸= y, z, a be an expression and I, J ⊆ Occurx(a)
be such that I ∩ J = ∅. Then

Replxy (Repl
x
z (a; J); I) = Replxz (Repl

x
y (a; I); J).

B Set theory

Let A, B be sets. We use the following notations:

(i) A ∪B for the union of A and B.

(ii) A ∩B for the intersection of A and B.

(iii) A \B for the difference between A and B.

(iv) A∆B for the symmetric difference of A and B.

(v) 2A for the powerset of A.

(vi) CAB for the complementary of B, when B ⊆ A.

B.1 Set-theoretic properties used in the lecture notes

Proposition B.1. Let A,B,C be sets. Then

(i) If B,C ⊆ A, then

A \ (B \ C) = (A \B) ∪ C. (14)

(ii) If B ⊆ A, then (
(A ∪ C) \B

)
∪ C = (A \B) ∪ C. (15)

(iii) If B ⊆ A and C ∩A = ∅, then

(A ∪ C) \B = (A \B) ∪ C. (16)
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