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Abstract

In these notes we present an abstract version of matching logic.
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1 Introduction

Applicative matching logic (AML) was introduced recently by Xiaohong Chen and Grigore Rosu
[1, 2] as a variant of matching logic (ML), developed by Grigore Rosu and collaborators [7, 6]. In
[3], the first author gives a theoretical introduction to AML. In these notes we develop an abstract
version of matching logic, based on the observation that different basic definitions and results from
[3] can be obtained in a much more general setting. As in the case of [3], Monk’s textbook [5] has
a huge influence on these notes.

We consider a language £ for abstract matching logic that contains a countable set of element
variables, sets of set variables and constants, and finite sets of propositional constants, unary and
binary connectives, equality symbols, first-order quantifiers and second-order binders. Examples
of such languages are given in [1]. We define L-patterns, prove unique readability results, give
a recursion principle on patterns. In Section 3 we prove useful properties of L-contexts and in
Section 4 we define a general notion of congruence that is used in the next section to prove
important replacement theorems. In Sections 6-14 we define and prove properties of free, bound,
fresh element/set variables, substitution of free occurrences of element/set variables, bounded
substitution, variables free for patterns, positive and negative occurences of set variables. One of
the main results is the bounded substitution theorem (Section 9), whose proof is inspired by the
proof of [5, Theorem 10.59] for first-order logic. Finally, in Section 15, we study general proof
systems and define an abstract matching logic.

The general setting from these notes is applied by the author and Dafina Trufas in [4] for first-order
matching logic with application (and definedness).
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2 Language
Definition 2.1. A language L for abstract matching logic consists of:
(i) a countable set EVar of element variables;
(i) a set SVar of set variables;
(iii) a set ¥ of constants;
(iv) a finite set Pc of propositional constants;
(v) a finite set Py of unary connectives;
(vi) a finite set Py of binary connectives;
(vii) a finite set Equal of equality symbols;
(viii) a finite set Q of first-order quantifiers;
(iz) a finite set Q of second-order binders.
Furthermore, the following holds:
IfQ # 0, then SVar is a countable set.



Each two of the sets EVar, SVar, ¥, Pc, P1, Po, Equal, Q, Q are pairwise disjoint. We denote
element variables by z,vy, z, 1, T2, ... and set variables by X,Y, Z, X1, X5, .. ..

In the sequel, £ is a language for abstract matching logic.
Definition 2.2. The set Sym, of L-symbols is defined as
Symyg =EVarUSVarUXUPc UPL UPy UEqual UQU Q.

Definition 2.3. The set Expry of L-expressions is the set of all expressions over Sym..

Definition 2.4. The set AtomicPattern, of atomic L-patterns is defined as follows:
AtomicPattern, = EVar USVar UX U Pc.
Let ' be a set of L-expressions. We say that
(i) T is closed to Py if for every — € Py and every L-expression ¢,
pel' impliess —pel.
(ii) T is closed to Ps if for every o € Py and every L-expressions ¢, 1,
p, €' implies oy eT.
(iii) T is closed to Fqual if for every ~ € Equal and every L-expressions ¢, 1,
p, €' implies ~ Y el
(iv) T is closed to Q if for every @Q € Q, x € EVar and L-expression ¢,
p el implies Qzp el
(v) T is closed to Q if for every Q € Q, X € SVar and L-expression ¢,
el implies QXpel.

Definition 2.5. The set Pattern, of L-patterns is the intersection of all sets I' of L-expressions
that have the following properties:
(i) T contains all atomic L-patterns.

(ii) T is closed to Py, Pa, Equal, Q and Q.

We use the Polish notation in the definition of L£-patterns as this notation allows us to obtain the
unique readability of £-patterns (see Proposition 2.8), a fundamental property.

L-patterns are denoted by ¢, ¥, x, . ...

For any L-pattern ¢, we use the following notations

EVar(p) = {x € EVar | x occurs in ¢},
SVar(p) ={X € SVar | X occurs in ¢}.

Proposition 2.6 (Induction principle on patterns).
Let T be a set of L-patterns satisfying the following properties:

(i) T' contains all atomic L-patterns.

(ii) T is closed to Py, Po, Equal, Q and Q.



Then I = Pattern,.
Proof. By hypothesis, I' C Pattern,. By Definition 2.5, we get that Pattern, C T. O

Induction principle on patterns is used to prove that all patterns have a property P: we define I as
the set of all patterns satisfying P and apply induction on patterns to obtain that I' = Pattern,.

Definition 2.7 (Alternative definition for L-patterns). The L-patterns are the L-expressions
inductively defined as follows:

(i) Every atomic L-pattern is an L-pattern.
(ii) If ¢ is an L-pattern and — € Py, then —¢ is an L-pattern.
(iii) If ¢ and ¢ are L-patterns and o € Pa, then opi is an L-pattern.
(iv) If ¢ and v are L-patterns and ~€ Equal, then ~ o is an L-pattern.
(v) If ¢ is an L-pattern, Q € Q and x € EVar, then Quy is an L-pattern.
(vi) If ¢ is an L-pattern, Q € Q and X € SVar, then QX is an L-pattern.
(vii) Only the expressions obtained by applying the above rules are L-patterns.

When the signature £ is clear from the context, we shall write simply expression(s), pattern(s)
and we shall denote the set of expressions by Fxpr, the set of patterns by Pattern, the set of
atomic patterns by AtomicPattern, etc..

2.1 Unique readability
Proposition 2.8 (Unique readability of patterns).
(i) Any pattern has a positive length.
(ii) If ¢ is a pattern, then one of the following holds:

(a) ¢ = x, where x € EVar.

(b) ¢ = X, where X € SVar.

(¢c) ¢ =0, where o € 3.

(d) ¢ = P, where P € Pc.

(e) ¢ = —1, where — € Py and ¢ is a pattern.

(f) @ = ohx, where o € Py and 1, x are patterns.

(9) o =~ X, where ~€ Equal and v, x are patterns.

(h) ¢ = Qxrp, where Q € Q, x € EVar and v is a pattern.
(i) o = QX, where Q € Q, X € SVar and ¢ is a pattern.

(i4i) Any proper initial segment of a pattern is not a pattern.

() If ¢ is a pattern, then exactly one of the cases from (ii) holds. Moreover, ¢ can be written
in a unique way in one of these forms.

Proof. (i) Let T be the set of patterns of positive length. We prove that I' = Pattern using the
Induction principle on patterns (Proposition 2.6).

(a) If ¢ is an atomic pattern, then its length is 1, so ¢ € T

(b) If 9,9 € I, hence they have positive length, then obviously the patterns —¢ (— € Py),
opy (o € Pa), ~ i (~€ Equal), Qry (Q € Q, x € EVar), QXp € T (Q € Q,
X € SVar) have positive length, hence they are in T



(ii) Let Ty = {—% | — € P and ¢ € Pattern}, T's = {otpx | o € P2 and ¢, x € Pattern},
Iy = {~ ¢¥x |~€ Equal and ¥, x € Pattern}, I'y = {Qz¢ | Q € Q,x € EVar and ¢ €
Pattern} and I's = {QX¢ | Q € Q,X € SVar and ¢ € Pattern}. Define

F:EVGTUSVO/I"UEUPCLJrlUFQUFgUF4UF5.

Then obviously, I' C Pattern. We prove that I' = Pattern using the Induction principle on
patterns (Proposition 2.6).

(a) As EVar U SVar U UPe CT, we have that T" contains all atomic patterns.

(b) Let ,x €T, — € Py, 0 € Pa, ~€ Equal, Q € Q, x € EVar, Q € @ind X € SVar.
Then —p € I'1 CT,opxy €2 CT, ~x €13, Qup € Ty C T, and QX € I'5 C T
Thus, I' is closed to P1, P2, Fqual, Q and Q.

(iii) As, by (i), patterns have positive length, it follows that we have to prove that for all n > 1,
(P) ifo=p...n_1 is a pattern of length n, then for any 0 <i <n—1,
© =g .-..p; is not a pattern.
The proof is by induction on n.
n = 1: Then one cannot have 0 <4 < 0, hence (P) holds.

Assume that n > 1 and that (P) holds for any pattern of length < n. Let ¢ = @g...¢on_1
be a pattern of length n. By (ii), we have the following cases:

(a) ¢ = —1, where — € Py and v is a pattern. Then ¢y = — and ¥ = ¢1...p,—-1. Let
0 <1i < n—1 and assume, by contradiction, that ¢q...p; is a pattern. Applying again
(i), it follows that g ...p; = —!, where ' = ¢1...¢; is a pattern. Then ¢! is a
proper initial segment of . As the length of ¥ is < n, we can apply the induction
hypothesis to get that ¢! is not a pattern. We have obtained a contradiction.

(b) ¢ = Ovyx, where © € PyUEqual and ¥, x are patterns. Thus, g = O, ¥ = 1 ... pk_1
and X = @k ...¢Pn—1, where 2 < k <n—1.
Let 0 < i < n — 1 and assume, by contradiction, that ¢q...p; is a pattern. Applying
again (ii), it follows that ¢g...p; = OYlx!, where ¢!, x! are patterns. Thus, ¢! =
©1.Pp—1, X} = @p ... i, where 2 < p <i. We have the following cases:

(1) p < k. Then 9! is a proper initial segment of 1. As the length of ¢ is < n, we can
apply the induction hypothesis to get that 1! is not a pattern. We have obtained
a contradiction.

(2) p = k. Then 9! = ¢ and x! is a proper initial segment of y. As the length of y
is < m, we can apply the induction hypothesis to get that x! is not a pattern. We
have obtained a contradiction.

(3) p > k. Then % is a proper initial segment of 1. As the length of ¢! is < n, we can
apply the induction hypothesis to get that v is not a pattern. We have obtained a
contradiction.

(c) ¢ = 6, where v is a pattern and 0 € {Qz | Q € FolQ,r € EVar} U{QX | Q €
Q,X € SVar}. Then gop; = 6 and ¥ = ¢9...0p_1. Let 0 < i < n — 1 and
assume, by contradiction, that ¢q...p; is a pattern. Applying again (i), it follows
that @g...@; = 0p', where ! = @o...@; is a pattern. Then ! is a proper initial
segment of 1. As the length of ¥ is < n, we can apply the induction hypothesis to get
that 9! is not a pattern. We have obtained a contradiction.

(iv) is an immediate consequence of (ii) and (iii).
0

Proposition 2.9. Let ¢ = @1 ...0n_1 be a pattern and suppose that p; € QU Q for some
1=0,...,n—1. Then there exists a unique j such that i < j <n —1 and ;... ¢; is a pattern.



Proof. Let us prove first the uniqueness. Assume, by contradiction, that i < j < k < n — 1 are
such that ¢;...¢; and ¢;... ¢ are both patterns. As ¢;...p; is a proper initial segment of
@i ...k, it follows, by Proposition 2.8.(iii) that ¢;...¢; is not a pattern. We have obtained a
contradiction.
Let us prove in the sequel the existence.
As, by Proposition 2.8.(i), patterns have positive length, it follows that we have to prove that for
alln > 1,

(P) if o=¢q...pn_1 is a pattern of length n and ¢; € QU Q for some i =0,...,n — 1,

then there exists j such that i < j <n —1and ¢;...p; is a pattern.

The proof is by induction on n.

n = 1. Then ¢ = ¢ is an atomic pattern, so there exists no 7 satisfying the premise in (P), hence
(P) holds.

Assume that n > 1 and that (P) holds for any pattern of length < n. Let ¢ = ¢g...p,—1 be a
pattern of length n such that ¢; € QU Q for some i = 0,...,n — 1. By Proposition 2.8.(ii), we
have the following cases:

(i) ¢ = —¢, where — € P; and ¢ is a pattern. Then g = — and ¥ = ¢1...p,—1. It follows
that ¢ > 1, hence ¢; occurs in ¥. As the length of ¥ is < n, we can apply the induction
hypothesis to get the existence of j such that ¢ < j <n —1 and ¢;...p; is a pattern.

(ii) ¢ = OYyx, where © € PoU Equal and v, x are patterns. Thus, pg = O, ¥ = ¢1... k1 and
X =@k Pn_1, where 2 < k <n — 1. We have the following cases:

(a) i <k —1. Then ¢, occurs in ¢. As the length of ¢ is < n, we can apply the induction
hypothesis to get the existence of j such that ¢ < j <k —1 and ¢;...¢; is a pattern.

(b) ¢ > k. Then ¢; occurs in y. As the length of x is < n, we can apply the induction
hypothesis to get the existence of j such that i < j <n —1 and ¢;...¢; is a pattern.

(iii) ¢ = 6, where 1 is a pattern and § € {Qx | Q € Q,x € EVar}U{QX |Q € O, X € SVar}.
Then pop1 =0 and ¥ = s ... pn—1. As i # 1, we have the following cases:

(a) i=0. Then j =n—1and ¢;...¢; = ¢ is a pattern.

(b) 2 < i < n—1. Then @; occurs in t. As the length of ¥ is < n, we can apply the
induction hypothesis to get the existence of j such that i < j <n—1and ¢;...¢;is a
pattern.

O

Proposition 2.10. Let ¢ = wop1...pn—1 be a pattern and suppose that ¢; € Py U Equal for
some it =0,...,n— 1. Then there exist unique j, | such thati < j <l <n—1 and @it1...p;,
Qj+1 ... Q1 are patterns.

Proof. Let us prove first the uniqueness. Assume, by contradiction, that i < j <l < n —1
and i < j; < I3 < n—1 are such that ¥ = @i41...0j, X = @j41..-01, V' = Piv1...0j,,
X = ¢j+1---¢1, are patterns. If j # ji, then either j < j; or j; < j, hence one of ¢, ¢! is a
proper initial segment of the other one. By Proposition 2.8.(iii), we get that one of 1, ¥! is not a
pattern. We have obtained a contradiction. Thus, we must have j = j;. We prove similarly that
we must have [ = [;.

Let us prove in the sequel the existence. As, by Proposition 2.8.(i), patterns have positive length,
it follows that we have to prove that for all n > 1,

(P) ifo=10...0n_1 is a pattern of length n and p; € P2 U Equal for some i =0,...,n— 1,
then there exist j, [ such that ¢ < j <! <n—1and @;41...9;, jt1...¢; are patterns.

The proof is by induction on n.
n = 1. Then ¢ = g is an atomic pattern, so there exists no i satisfying the premise in (P), hence
(P) holds.



Assume that n > 1 and that (P) holds for any pattern of length < n. Let ¢ = ¢q...p,_1 be a
pattern of length n such that ¢; € Py U Equal for some ¢ = 0,...,n—1. By Proposition 2.8.(ii),
we have the following cases:

(i) ¢ = —1, where — € P; and 9 is a pattern. We get that ¢ > 1, hence ¢; occurs in ¥. As the
length of v is < n, we can apply the induction hypothesis for ¢ to get the conclusion.

(ii) ¢ = OYyx, where © € PoU Equal and v, x are patterns. Thus, pg = O, ¥ = ¢1... k1 and
X =@k Pn_1, where 2 < k <n — 1. We have the following cases:

(a) i =0. Then we can take j =k —1and [ =n — 1.

(b) i € {1,...,k —1}. Then ; occurs in ¥. As the length of ¢ is < n, we can apply the
induction hypothesis for 1 to get the conclusion.

(¢) i > k. Then @; occurs in x. As the length of x is < n, we can apply the induction
hypothesis for x to get the conclusion

(iii) ¢ = 6, where 1) is a pattern and § € {Qz | Q € Q,x € EVar}U{QX |Q € Q,X € SVar}.
Then pgp; =0 and ¥ = @s ... p,_1. As @; does not occur in 0, we have that ¢; occurs in .
As the length of 1 is < n, we can apply the induction hypothesis for 1 to get the conclusion.

O
2.2 Recursion principle on patterns
Proposition 2.11 (Recursion principle on patterns). Let D be a set and the mappings
Gy : AtomicPattern — D,
G_ : D x Pattern — D  for any — € Py
G, : D? x Pattern* — D for any o € P,
G. : D* x Pattern®> — D for any ~€ Equal,
Gqg : D x EVar x Pattern — D for any @ € Q and x € EVar,
G@ : D x SVar x Pattern — D for any Q € Q and X € SVar.
Then there exists a unique mapping
F: Pattern — D
that satisfies the following properties:
(i) F(p) = Go(p) for any atomic pattern .
(i) F(—p) =G_(F(p),p) for any — € Py and any pattern .
(iii) F(opy)) = Go(F(p), F(¢), p,1) for any o € Py and any patterns o, 1.
(iv) F(~ o) =G (F(p), F(Y),p,0) for any ~€ Equal and any patterns ¢, 1.
(v) F(Qup) = Go(F(p),z,¢) for any Q € Q, x € EVar and any pattern .
(vi) F(QXp) = Gg(F(p), X, ) for any Q€ Q, X € SVar and any pattern .
Proof. Apply Proposition 2.8. O



2.3 Subpatterns
Definition 2.12. Let ¢ be a pattern. A subpattern of ¢ is a pattern i that occurs in .
Notation 2.13. We denote by SubPattern(p) the set of subpatterns of .

Proposition 2.14 (Definition by recursion).
The mapping
SubPattern : Pattern — 289%™y SubPattern(yp)

can be defined by recursion on patterns as follows:

SubPattern(y) = {¢} if ¢ is an atomic pattern,

SubPattern(—y) = SubPattern(p) U{—p} for any — € Py,

SubPattern(opy) = SubPattern(p) U SubPattern(y) U {opy} for any o € Pa,
SubPattern(~ @) = SubPattern(p) U SubPattern(y) U {~ @i}  for any ~€ Equal,
SubPattern(Qry) = SubPattern(p) U{Qxzp} for any Q € Q and x € EVar,
SubPattern(QX¢) = SubPattern(p)U{QXe} for any Q € Q and X € SVar.

Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = 2FPattern anq

Go(p) = {¢} if ¢ is an atomic pattern,
G_(T,¢) = TU{—yp} for any — € Py,
Go(T,A,p,¢) = TUAU{opy} for any o € Po,

G.(T,A,0,¢) = TUAU{~ @y} for any ~€ Equal,
Go(T,z,¢) = T U{Qzy} for any Q € Q and z € EVar,
G, X, ) = TUu{QXyp} for any Q € Q and X € SVar.

Then
(i) SubPattern(p) = {¢} = Go(y) if ¢ is an atomic pattern.
(ii) For — € Py, we have that

SubPattern(—y¢) = SubPattern(p) U {—¢} = G_(SubPattern(p), ).

(iii) For o € Pq, we have that

SubPattern(opy) = SubPattern(y) U SubPattern(y) U {opy}
= G, (SubPattern(yp), SubPattern(v), v, ).

(iv) For ~€ Equal, we have that

SubPattern(~ @) = SubPattern(yp) U SubPattern(y) U {~ o}
= G (SubPattern(yp), SubPattern(v), ¢, ).

(v) For Q € Q and x € EVar, we have that

SubPattern(Qzy) = SubPattern(p) U{Qxp} = Gg(SubPattern(p),z, ¢).

(vi) For Q@ € Q and X € SVar, we have that

SubPattern(QX ) = SubPattern(p) U {QX ¢} = Gg(SubPattern(p), X, ¢).

Thus, SubPattern : Pattern — 2P is the unique mapping given by Proposition 2.11.



Lemma 2.15. Let ¢, ¥ be patterns such that v is a subpattern of p. Then SubPattern(y) C
SubPattern(p).

Proof. Obviously. If x € SubPattern(v), then x is a pattern that occurs in ¥. As % occurs in ¢,
it follows that y occurs also in ¢. Thus, x € SubPattern(y). O

Lemma 2.16. Let ¢, ¥, x be patterns such that v, x are subpattern of ¢. Then one of the
following holds:

(i) (¥ is a subpattern of x) or (x is a subpattern of ¢).
(ii) Occury(p) N Occury (@) = 0.
Proof. The proof is by induction on ¢.
(i) ¢ is an atomic pattern. Then we must have ) = x = ¢. The conclusion is obvious.

(ii) ¢ = =4, where — € P; and ¢ is a pattern. If » = ¢ or x = ¢, then (i) holds. Assume that
1 # ¢ and x # . Then v, x are subpatterns of §. Applying the inductive hypothesis for ¢,
we get that either (i) holds or Occury(6) N Occury (§) = 0. It follows that

Occury () N Occury (p) = (Occury(8) + 1) N (Occury (6) + 1) = 0.

(iii) ¢ = ©d6, where © € P> U Equal and 6, 0 are patterns. If ) = ¢ or x = ¢, then (i) holds.
Assume that ¢ # ¢ and x # . Then 9, x € SubPattern(d) U SubPattern(d). We have the
following cases:

(a) 9, x are subpattern of §. Applying the inductive hypothesis for §, we get that either
(i) holds or Occury(6) N Occury(6) = 0. It follows that

Occury () N Occury (@) = (Occury(6) + 1) N (Occury (8) + 1) = 0.

(b) v, x are subpattern of . Applying the inductive hypothesis for 6, we get that either(i)
holds or Occury (0) N Occury (6) = 0. It follows that

Occury () N Occury (¢) = (Occury (0) + £(5) + 1) N (Occury (0) + £(6) + 1) = 0.

(c) 1 is a subpattern of 6 and x is a subpattern of §. Then Occury () C [1,€(5) — 1] and
Occury(¢) C [€(5),£(¢) — 1]. Thus, (ii) holds.

(iv) ¢ = 66, where 4 is a pattern and 6 € {Qz | Q € Q,x € EVar} U{QX |Q € Q,X € SVar}.
If v = ¢ or x = ¢, then (i) holds. Assume that ¢ # ¢ and x # . Then ¥, x are
subpatterns of §. Applying the inductive hypothesis for §, we get that either (i) holds or
Occury (6) N Occury (6) = 0. It follows that

Occury(p) N Occury (@) = (Occury (8) + 2) N (Occury (6) + 2) = 0.

3 L-contexts
Let £ be a language for abstract matching logic and [J be a new symbol and let us denote
Symg = Sym, U {O}.

Definition 3.1.
The set Cr of L-contexts is the intersection of all sets T' of expressions over Symg that have the
following properties:

10



(i) DeTl.

(ii) For every — € P,

Coel implies —Cpel.
(iii) For every o € Py and every L-pattern o,

Co el implies oChp,opCheT.
(iv) For every ~ € Equal and every L-paltern ¢,
Co el implies ~ Cpop,~pCoel.

(v) For every Q € Q, x € EVar,

Co el implies QxCpeTl.
(vi) For every Q € Q, X € SVar ,

Co el implies QXCpeTl.

Proposition 3.2. [Induction principle on L-contexts]
Let T be a set of L-contexts satisfying (i)-(vi) from Definition 3.1.
Then I' =Cg.

Proof. By hypothesis, I' C C,. By Definition 3.1, we get that C, C T O
Proposition 3.3 (Unique readability of £-contexts).
(i) Any L-context has a positive length.
(ii) If Co is an L-context, then one of the following hold:
(a) Co=0.
(b) Co = —Dg, where Dy is an L-context and — € Py.
(¢) Co = oDpyp, where Dy is an L-context, ¢ is an L-pattern and o € Ps.
(d) Co = opDp, where Dy is an L-context, ¢ is an L-pattern and o € Ps.
(e) Co =~ Dpy, where Do is an L-context, ¢ is an L-pattern and ~ € Equal.
(f) Co =~ ¢Dg, where Dy is an L-context, ¢ is an L-pattern and ~ € Equal.

(9) Co = QzDg, where Dy is an L-context, Q € Q and x € EVar.
(h) Co = QX Dg, where D is an L-contest, Q € Q, X € SVar.

(i4i) Any proper initial segment of an L-context is not an L-context.

(iv) If Co is an L-context, then exactly one of the cases from (ii) holds. Moreover, Co can be
written in a unique way in one of these forms.

Proof. Similarly with the proof of Proposition 2.8. O

11



Proposition 3.4 (Recursion principle on £-contexts).
Let A be a set, 04 € A and the mappings
G_:A— A forany —€P;
Gl: A x Pattern — A for any o € Ps,
G? : A x Pattern — A for any o € Ps,
Gl : A x Pattern — A for any ~€ Equal,
G2 : A x Pattern — A for any ~€ Equal,
Gg:AxEVar - A forany Q€ Q and x € EVar,
GQ:A x SVar — A for any Q € Q and X € SVar.
Then there exists a unique mapping
F . Cg — A
that satisfies the following properties:

(i) F(O) =04
(i) F(—Cr) = G_(F(Cn)) for any L-contest Co and any — € Pi.
(ii1) F(opCn)
(iv) F(oCoyp) =
(
(
(

GL(F(Cp), ) for any L-context Co, any L-pattern ¢ and any o € Ps.
G2(F(Cp), ) for any L-context Cq, any L-pattern ¢ and any o € Pa.

(v) F(~ oCn) = GL(F(CRn),y) for any L-context Cq, any L-pattern ¢ and any ~ € Equal.
(vi) F(~ Coyp) = G%(F(CR), ) for any L-context Cq, any L-pattern ¢ and any ~ € Equal.
(vii) F(QzCh) = Ggo(F(Cn),z) for any L-context Co, any Q € Q and any x € EVar.

(viii) F(QXCh) = Go(F(Cn), X) for any L-context Co, any Q € Q and any X € SVar

Proof. Apply Proposition 3.3. O

3.1 [ occurs exactly once in every L-context
Proposition 3.5. O occurs ezactly once in every L-context CH.
Proof. The proof is by induction on the context Cp:

(i) Co = 0. Obviously.

(i) Cg = —Dg, where Dp is an L-context and — € P;. By the induction hypothesis, O occurs
exactly once in Dg. Obviously, O occurs exactly once in Cp.

(ili) Co = ©Dgyp, where D is an L-context, ¢ is an L-pattern and o € Py U Equal. By the
induction hypothesis, [J occurs exactly once in D. As ¢ is an L-pattern, [J does not occur
in . Thus, O occurs exactly once in Cp.

(iv) Cg = ©pDp, where D is an L-context, ¢ is an L-pattern and o € Py U Fqual. By the
induction hypothesis, [J occurs exactly once in D. As ¢ is an L-pattern, [J does not occur
in . Thus, [0 occurs exactly once in Cp.

(v) Co = QxzDg, where D is an L-context, Q € Q and x € EVar. By the induction hypothesis,
O occurs exactly once in Dg. Obviously, O occurs exactly once in Cp.

(vi) Co = QX Dg, where D is an L-context, Q € Q, X € SVar. By the induction hypothesis,
[0 occurs exactly once in Dg. Obviously, [ occurs exactly once in Ch.

O
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3.2 Replacement in an L-context

Definition 3.6. Let Co be an L-context and § be an L-pattern. We denote by Cqld] the L-
expression obtained by replacing the unique occurrence of I with 6.

Remark 3.7. Cq[d] = Replall§(Ch).

Proposition 3.8 (Definition by recursion).
Co[d] can be defined by recursion on L-contexts as follows:

Qo] = 4,
[0] —Cg[d] for any — € Py
oCop)[d] = oCpldle  for any o € Pa,
6] = opCrld]  for any o € Py,

6] = ~Cg[dle for any ~€ Equal,
~oCL)6] = ~@Cold] for any ~€ Equal,
QzCo)[d] = QzCpld] for any Q € Q and x € EVar,
QXCo)[§] = QXCgld] for any Q € Q and X € SVar.

Proof. Let
F:Cp — Fun(Patterng, Expre), F(Cpo)(d) = Cold].

Apply Proposition 3.4 with A = Fun(Patterng, Expr.), 04(5) = 6 and, for any f € A, § €
Pattern,

G_()6) = —f(6) forany —€Py,

GL(f,0)(8) = of(6)p for any o € Py and ¢ € Patterng,
G2(f,9)(0) = opf(d) for any o € Py and ¢ € Pattern,
GL(f,9)(0) = ~ f(0)p for any ~€ Fqual and ¢ € Patterng,
G2 (f,¢)(0) = ~@f(d) for any ~€ Equal and ¢ € Pattern,,
Gq(f,z)(6) = Quf(s) forany Q€ Q, x€ EVar,
Go(f,X)(0) = QXf(§) forany Q€ Qand X € SVar.

Then
(i) F(O)(0) = § = O4(9) for every L-pattern d. It follows that F(0J) = O4.
(ii) For — € Py, we have that for any L-context Ch and any L-pattern d,
F(=Co)(6) = (=Cp)[d] = —Cpld] = —F(Cp)(4) = G_(F(C))(9).
It follows that F(—Cp) = G_(F(Cp)).
(iii) For o € Pa, we have that for any L-context Ch and any L-patterns ¢, d,
F(oCnp)(6) = (oCap)[d] = oCn[d]p = oF(Co)(8)p = Go(F(Cn), ¢)(9),
F(opCr)(8) = (0pCn)[0] = 0pCnld] = 0pF (Cn)(8) = G3(F(Cr), ¢)(9).

It follows that for any L-context C and any L-pattern o, F(oChy) = GL(F(Ch), ) and
F(opCp) = GZ(F(Cn), o).

(iv) For ~€ Equal, we have that for any L-context Ch and any L-patterns ¢, 4,

F(~ Cop)(8) = (~ Cow)ld] =~ Caldlp =~ F(Cn)(8)p = GL(F(Cp), ¢)(9),
F(~ C0)(6) = (~ ¢C0)[0] =~ ¢Cpld] =~ ¢F(Cn)(8) = GL(F(Cq),»)(d).

It follows that for any L-context Cy and any L-pattern ¢, F(~ Cop) = GL(F(Cn),¢) and
F(~ ¢Co) = GL(F(Cn), »).
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(v) For Q € Q, we have that for any x € EVar, any L-context C and any L-pattern 0,
F(QxCn)(d) = (QzCo)[] = QzCnld] = QzF(Cn)(9) = Go(F(Co),=)(9).

It follows that for any € EVar and any L-context Co, F(QzCh) = Gg(F(Ch), x).

(vi) For Q € Q, we have that for any X € SVar, any L-context C and any L-pattern &,

F(QXCn)(9) = (QXCn)[8] = QXCnld] = QX F(Co)(8) = Gx(F(Cn), X)(9).

It follows that for any X € SVar and any L-context Co, F(QXCn) = Go(F(Co), X).
Thus, F is the unique mapping given by Proposition 3.4.
Proposition 3.9. For any L-context Ch and any L-pattern 0, Cqld] is an L-pattern.
Proof. The proof is by induction on £-context Cp, using Proposition 3.8.

Remark 3.10. Let Co, Do be L-contexts such that Occurg(Co) = Occurg(Dn).
If Cqlé] = Dgld] for some L-pattern §, then Co = Dp.

Proof. Apply Remark 3.7 and Lemma A.11.
Proposition 3.11. Let ¢, § be L-patterns such that § is a subpattern of .

(i) For any occurrence of § in p, there exists an L-context Co such that Cold] = .

(ii) If k is an occurrence of § in ¢ and Cg is as in (1), then O occurs uniquely at place k of Cp

and Cy = Repl®,(; {k}). Thus, Cq is unique satisfying (i).

Proof. (i) If § = ¢, then we can take Cg = 0. Assume in the sequel that § # . The proof is

by induction on ¢, using the definition by recursion of subpatterns (Proposition 2.14).

(a) ¢ is an atomic L-pattern. Obviously, as the unique subpattern is ¢.

(b) ¢ = —1, where v is an L-pattern and — € P;. As § # ¢, we have that the occurrence
of § in ¢ is an occurrence of § in 9. Apply the induction hypothesis for ¥ to get the
L-context Dy such that Dg[d] = ¢. Take Cg := —Dg. Then

Cold] = —=Dgld] = =4 = ¢.

(¢) ¢ = ©Yyx, where 1, x are L-patterns and © € Py U Equal. As § # ¢, we have two
cases:

(1) The occurrence of § in ¢ is an occurrence of ¢ in 1. Apply the induction hypothesis
for ¢ to get the L-context Do such that Dg[d] = ¢. Take Cg := ©Dgy. Then

Cold] = ©Dg[d]x = ovx = ¢.

(2) The occurrence of § in ¢ is an occurrence of § in x. Apply the induction hypothesis
for x to get the L-context D such that Dg[d] = x. Take Cp := ©¢Dg. Then

Colé] = oy Dpld] = oYx = .

(d) ¢ = Qzv, where 9 is an L-pattern, Q € Q and = € EVar. As § # ¢, we have that the
occurrence of § in ¢ is an occurrence of d in . Apply the induction hypothesis for
to get the L-context D such that Dg[d] = 9. Take Cp := QzDg. Then

Cold] = QzDpld] = Qzyp = ¢.
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(e) ¢ = QX1p, where 1) is an L-pattern, Q € Q and X € SVar. As § # ¢, we have that
the occurrence of § in ¢ is an occurrence of § in . Apply the induction hypothesis for
1 to get the L-context D such that Dg[d] = ¢. Take Cy := QX Dg. Then

Cnld] = QX Dpld] = QXY = o
(ii) By (i) and Remark 3.7, we have that
¢ = Cad] = Replallg (C) = Reply (Co; {k}).
Apply Lemma A.13 with a:= Cg, b:=0, c:= 4§, a* := ¢ and k to get that

Co = Repldy(y; {k}).

4 L-congruences

Let £ be a language and Cong be a binary relation on the set Pattern, of L-patterns.
Definition 4.1. We say that Cong is an L-congruence if it satisfies the following conditions:

) ong 1s compatible wi 1, that 1s for any — € P1 and any L-patterns 1, @3,
) C ) tibl ith P1, that 1 P d L-patt
p1Congys implies —p; Cong—p,.
1) ong is compatible with Pq, that is for any o € P2 and any L-patterns p1,p2, Y,
ii) C ) tibl ith Pa, that 1 P d L-pat %
p1 Cong s implies op19 Congowsy and ohp; Congoyws.

100 ong is compatible wit qual, that 1s for any ~€ Equal and any L-patterns o1,p2, P,

iii) C ) tibl ith Equal, that 1 Equal and L P1,p
w1 Congps  implies ~ p19p Cong~ wa1p and ~ Y1 Cong~ Pps.

(iv) Cong is compatible with Q, that is for every Q € Q, x € EVar and any L-patterns o1,

Y2,
p1 Congpy  implies Qe CongQryps.

(v) Cong is compatible with Q, that is for every Q € Q, X € SVar and any L-patterns o1,

$2; _ _
p1 Congpy implies QX1 CongQX .

Lemma 4.2.
Let Cong be a transitive L-congruence. Then for any © € Py U Equal and any L-patterns v1,p2,

1,
p1Cong s and 11 Congvpy  imply Op111 Cong Opa1hs.

Proof. Assume that 1 Cong ¢- and ¥ Cong . It follows that

©p191Cong Opa1)1 and Ozt Cong Opaths.
Since Cong is transitive, it follows that O Cong Opa1)s. O
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5 Replacement theorems

Let Cong be an L-congruence.

Theorem 5.1 (Replacement Theorem for £-contexts).
For any L-context C and any L-patterns ¢, 1,

pCongy implies Colp] Cong Coly)].
Proof. The proof is by induction on the £L-context C. Let ¢, 1) be L-patterns such that pCong .
(i) Co=0. Then Coly] = ¢ and Coy] = .
By hypothesis, Cong, hence Clp]Cong C[].
(i) Cg = —Dp, where D is an L-context and — € P;. By the induction hypothesis, we have

that Dg[p]Cong D[¢)]. As Cong is compatible with Py, we get that —Dg[p]Cong —Dg[v],
that is Colp]Cong Co[y].

(iii) Cg = ©DgY, where Dp is an L-context, y is an L-pattern and © € Py U Equal. By the
induction hypothesis, we have that Dg[¢]Cong Dg[i]. As Cong is compatible with Py and
Equal, we get that ©Dg[p]xCong ©Dg[v]y, that is Colp]Cong Colv].

(iv) Co = ©xDg, where Dg is an L-context, x is an L-pattern and © € Py U Equal. By the
induction hypothesis, we have that Dg[p]Cong D[¢]. As Cong is compatible with Py and
Equal, we get that ©xDngl¢]Cong ©xDglv], that is Colp]Cong C[v].

(v) Co = QzDg, where D is an L-context, @ € Q and x € EVar. By the induction hy-
pothesis, we have that Dp[¢p]Cong Dg[i]. As Cong is compatible with Q, we get that

QzDg|p]Cong Qx D[], that is Colp]Cong Coli].

(vi) Co = QXDp, where D is an L-context, @ € Q and X € SVar. By the induction
hypothesis, we have that Dg[p]Cong Dg[¢)]. As Cong is compatible with Q, we get that
QX Dg[p]Cong QX Dp[y], that is Co[p]Cong Co[y].

O
Theorem 5.2 (Replacement Theorem - one occurrence).

Let p,1,x,0 be L-patterns such that ¢ is a subpattern of x and 0 is obtained from x by replacing
an occurrence of @ with 1. Then 6 is an L-pattern and, moreover,

pCong implies x Cong?0.
Proof. Asume that k is the occurrence of ¢ in x that is replaced with . Then
0 = Reply (x; {k}).

By Proposition 3.11, there exists an L-context C such that [J occurs uniquely at place k of Ch
and

X = Cole] = Replall ) (Cp) = Reply (Ca; {k}).
Thus,

6 = Repl?(Reply (Cr; {k}); {k}).

Apply Lemma A.12 with a:= Cp, b:=0, ¢ := ¢, d := 9 and k to get that

6 = Reply) (Co; {k}) = Replall] (Co) = Coly].
It follows, by Proposition 3.9, that 6 is an L-pattern and, by Theorem 5.1, that yCong#. O
Theorem 5.3 (Replacement Theorem).

Let @, 1, x,0 be L-patterns such that ¢ is a subpattern of x and 0 is obtained from x by replacing
one or more occurrences of o with v. Then 6 is an L-pattern and

pCong1p implies x Congl.

Proof. 1t follows immediately from Theorem 5.2 by induction on the number of occurrences of ¢
in x that are replaced with . O
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6 Free, bound, fresh element variables

Assume that EVar # () and Q # 0.
Definition 6.1. Let ¢ = o1 ... pn—1 be a pattern and x € EVar.
(i) We say that Q € Q is a quantifier on = at place i of ¢ with scope ¢ if p; = Q,
Yir1 = and Y = @; ... p; is the unique pattern given by Proposition 2.9.

(ii) We say that x occurs bound at place k of ¢ if ¢ = x and there exist Q € Q and
i < j <mn—1 such that k € (i,j] and Q is a quantifier on = at place i of ¢ with scope

V= Gi.. 05
(iii) If o, = x but x does not occur bound at place k of ¢, we say that x occurs free at place
k of p.

(iv) x is a bound variable of ¢ (or that x occurs bound in ¢) if there exists k such that x
occurs bound at place k of of p.

(v) x is a free variable of ¢ (or that x occurs free in ) if there exists k such that x occurs
free at place k of .

(vi) A bound occurrence of x in ¢ is a k € [0,n — 1] such that © occurs bound at place k in ¢.
(vii) A free occurrence of x in ¢ is a k € [0,n — 1] such that x occurs free at place k in .
Notation 6.2. Let us denote, for every pattern ¢,

FV(p) ={x € EVar(y) |z is free in ¢},

BV (p) ={z € EVar(p) | x is bound in ¢},
NotFV(p) = EVar(p) \ FV (),
NotBV (¢) = EVar(p) \ BV (p),
FreshF(p) = EVar\ FV(p),
FreshB(p) = EVar \ BV (p),

Lemma 6.3. (i) EVar(yp) = FV(p)U BV(y).

(i) FV(p) and BV (p) are not disjoint, in general, as x € EVar can be both free and bound in
a pattern .

(iii) NotFV () C BV (p).
(iv) FreshF () = (EVar\ EVar(e)) U NotFV (p).
(v) FreshB(p) = (EVar\ EVar(p)) U NotBV(p).
Proof. We have that

FreshF(p) = EVar\ FV(p) = (EVar(gp) U (EVar\ EVar(go))) \ FV (o)

(9 (EVar \ EVar(cp)) U (EVar(go) \ FV(go))
= (EVar\ EVar(p)) UNotFV(p),

FreshB(p) = EVar\ BV (¢) = | EVar(p) U (EVar \ EVar(cp))) \ BV (p)

& (BVar\ EVar(g)) U (EVar(¢) \ BV ()
= (EVar\ EVar(p)) UNotBV (p).
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Notation 6.4. Let us denote, for every pattern ¢ and element variable x,

FreeOccur, (o) = the set of all free occurrences of T in @,

BoundOccury(p) = the set of all bound occurrences of x in .
The following lemma contains some obvious useful properties.
Lemma 6.5. (i) © € FV(p) iff FreeOccur, (o) # 0.

(i) © € FreshF (o) iff FreeOccury(p) = 0.

(iti) © € BV (o) iff BoundOccury(p) # 0.

(iv) x € FreshB(y) iff BoundOccur, () = .

(v) FreeOccury(p) N BoundOccur,(¢) = 0.

(vi) Occury(p) = FreeOccur;(p) U BoundOccury;(p).

(vii) FreeOccury(p) = Occury(p) \ BoundOccury(v) and BoundOccury,(p) = Occury(v) \
FreeOccurz(p).

Proposition 6.6 (Definition by recursion of F'V).
The mapping
FV : Pattern — 2V o FV(yp)

can be defined by recursion on patterns as follows:

FV(p) = EVar(p) if ¢ is an atomic pattern,
FV(-p) = FV(p) for any — € Py,
FV(opy) = FV(e)UFV(¢) for anyo € Pa,
FV(~ @) = FV(p)UFV(Y) for any ~€ Equal,
FV(Qry) = FV(e)\{z} for any Q € Q and z € EVar,
FV(QXy) = FV(p) for any Q € Q and X € SVar.
Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = 2FVa" and
Golg) = BVar(y),
G_(V,p) =V for any — € Py,
Go(V1,V2,90,¢) = ViUV, for any o € P,
GV, Vo, 0,0) = ViUV, for any ~€ Equal,
Go(V,z,¢) = V\{x} for any Q € Q and = € EVar,
Go(V. X, ¢) =V for any Q € Q and X € SVar.

Then
(i) FV(p) = EVar(p) = Go(p) if ¢ is an atomic pattern.
(ii) For — € Py, we have that
FV(=¢) = FV(p) = G_(FV(¢), 9)-
(iii) For o € P, we have that

FV(opy) = FV(e) UFV(¢) = Go(FV (9), FV (), ¢,1).

18



(iv) For ~€ Equal, we have that
FV(~ @) = FV(p) UFV(¥) = G(FV(9), FV(¥), ,).
(v) For Q € Q and z € EVar, we have that
FV(Qup) = FV(p) \ {z} = Go(FV(p),z,¢).

(vi) For Q € Q and X € SVar, we have that

FV(QXyp) = FV(p) = G5(FV(¢), X, ¢).

Thus, F'V : Pattern — 2FV" is the unique mapping given by Proposition 2.11.

Remark 6.7 (Definition by recursion of BV).
The mapping
BV : Pattern — 28V o s BV ()

can be defined by recursion on patterns as follows:

BV (p) =0 if ¢ is an atomic pattern,
BV(-¢) = BV(y) for any — € P,

BV(opy) = DBV(p)UBV(¢) foranyo € Ps,

BV (~¢y) = BV(p)UBV(¢) for any ~€ Equal,

BV(Qzyp) = BV(p)U{z} for any Q € Q and x € EVar,
BV(QX¢) = BV(p) for any Q € Q and X € SVar.

Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = 2EVa" and

Go(¥) = 0,

G_(V,p) =V for any — € Py,
Go(V1,Va,0,9) = ViUVa  for any o € Po,
G.(Vi,Va,0,¢) = ViUV,  for any ~€ Equal,

Go(V,z,9) = VU{z} forany Q€ Qand x € EVar,
Go(V. X, ¢) =V for any Q € Q and X € SVar.

Then
(i) BV(¢) =0 = Go(¢p) if ¢ is an atomic pattern.
(ii) For — € Py, we have that
BV(=¢) = BV(¢) = G_(BV(¢), ¢).
(iii) For o € Py, we have that
BV (eptp) = BV (p) U BV (1) = Go(BV (¢), BV (1), ¢,9).

(iv) For ~€ Equal, we have that

BV(~ pp) = BV (p) UBV(¢) = G (BV(9), BV (¢), ¢, 9).

(v) For Q € Q and x € EVar, we have that

BV(Quyp) = BV (p) U {z} = Go(BV(¢), 2, ¢)-
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(vi) For Q@ € Q and X € SVar, we have that

BV (QXyp) = BV (p) = G5(BV (¢), X, ¢).

Thus, BV : Pattern — 2FV" is the unique mapping given by Proposition 2.11. O

Remark 6.8 (Definition by recursion of NotFV).
The mapping
NotFV : Pattern — 25V s NotFV (p)

can be defined by recursion on patterns as follows:

NotFV (p) = 0 if @ is an atomic pattern,
NotFV(—y) = NotFV(p) for any — € Py,

NotFV(opyp) = NotFV(p)NNotFV(¢) for any o € P,

NotFV(~¢yp) = NotFV(p) N NotFV () for any ~€ Equal,
NotFV(Qxp) = NotFV(p)U{x} for any Q € Q and x € EVar,
NotFV(QXyp) = NotFV(p) for any Q € Q and X € SVar.

Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = 2EVa" and

Go(p) = 0,

G_(V,p) =V for any — € Py,
Go(Vi,Va,0,0p) = VinNVy forany o € P,
G.(V1,Va,0,0) = ViNVy for any ~€ Equal,

Go(V,z,9) = VU{z} forany Q € Qand xz € EVar,
GQ(V, X, ) =V for any Q € Q and X € SVar.

Then
(i) NotFV(p) =0 = Go(p) if ¢ is an atomic pattern.
(ii) For — € Py, we have that

NotFV(—¢) = NotFV(p) = G_(NotFV (p), ¥).

(iii) For o € Py, we have that

NotFV (oph) = NotFV(¢) N NotFV () = Go(NotFV (), NotFV (1), ¢, 1).

(iv) For ~€ Equal, we have that

NotFV(~ o) = NotFV () N NotFV (4) = G (NotFV (), NotFV (1), o, ).
(v) For Q € O and « € EVar, we have that
NOLFV(@a) = EVar(Qee) \ FV(Qa) = (EVar(e) U o) )\ (FV()\ i)
L ((Bvar(e) U )\ FY(9) U f2)
D (BVar(p)\ FV(9)) U{z} = NotFV (o) U {z} = Go(NotFV (g), z, )

(vi) For Q € Q and X € SVar, we have that

NotFV(QX ) = NotFV (p) = Go(NotFV(p), X, ¢).
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Thus, NotFV : Pattern — 2FV%" is the unique mapping given by Proposition 2.11. O

Lemma 6.9. Let ¢ be a pattern and x € EVar such that x occurs bound in .
Then there exists a subpattern Qv (with Q € Q) of ¢ such that x does not occur bound in 1.

Proof. The proof is by induction on ¢, using the definition by recursion of subpatterns (Proposition
2.14) and the definition by recursion of bounded variables (Proposition 6.7).

(i)
(i)

(i)

7

© is an atomic pattern. Then x does not occur bound in ¢.

@ = —9, where ¢ is a pattern and — € P;. Then x occurs bound in §. Apply the induction
hypothesis for § to get a subpattern Qzv¢ (with @ € Q) of ¢ such that = does not occur
bound in 1. We have that ¢ is a subpattern of ¢, hence, by Lemma 2.15, SubPattern(d) C
SubPattern(p). Thus, Qxi) is a subpattern of ¢ such that x does not occur bound in ).

@ = OJdx, where J, x are patterns and © € Py U Fqual. We have two cases:

(a) x occurs bound in §. Apply the induction hypothesis for ¢ to get a subpattern Q1)
(with @ € Q) of § such that = does not occur bound in . We have that § is a
subpattern of ¢, hence, by Lemma 2.15, SubPattern(d) C SubPattern(y). Thus, Q)
is a subpattern of ¢ such that x does not occur bound in 1.

(b) x occurs bound in x. Apply the induction hypothesis for x to get a subpattern Qx
(with @ € Q) of x such that x does not occur bound in ¢. We have that y is a
subpattern of ¢, hence, by Lemma 2.15, SubPattern(x) C SubPattern(p). Thus, Q)
is a subpattern of ¢ such that x does not occur bound in 1.

© = Qxd, where § is a pattern, Q € Q and = € EVar. We have two cases:

(a) = does not occur bound in §. Then we can take Qx = @, hence 1 = 4.

(b) x occurs bound in §. Apply the induction hypothesis for § to get a subpattern Qx
(with @ € Q) of § such that = does not occur bound in . We have that § is a
subpattern of ¢, hence, by Lemma 2.15, SubPattern(d) C SubPattern(y). Thus, Qz
is a subpattern of ¢ such that = does not occur bound in .

© = QXJ, where 6 is a pattern, Q@ € Q and X € SVar. Then x occurs bound in §. Apply
the induction hypothesis for § to get a subpattern Qz (with Q € Q) of § such that z
does not occur bound in 1. We have that § is a subpattern of ¢, hence, by Lemma 2.15,
SubPattern(d) C SubPattern(y). Thus, Qxv is a subpattern of ¢ such that z does not
occur bound in .

O

Substitution of free occurrences of element variables

Assume that EVar # () and Q # 0.
Let x € EVar and ¢, § be patterns.

Definition 7.1. We define Subf§y to be the expression obtained from ¢ by replacing every free
occurrence of x in ¢ with §.

Remark 7.2.

Subf§o = Repl§ (¢; FreeOccur,(¢)).

Proposition 7.3 (Definition by recursion).
The mapping

Subf§ : Pattern — Expr, Subf§ () = Subf§e
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can be defined by recursion on patterns as follows:

Subfy(z) = {i Zi ; j if z € EVar,

Subf§ () = g if o € SVar UX U Pg,
Subfy(—¢) = —Subff(yp) for any — € Py,
Subff(opp) = oSubf§(p)SubfE(v) for any o € Ps,
Subfg(~ ) =~ Subf§(e)Subfs () for any ~€ Equal,

Subfi(Qzp) = {QzSubfg” (¢) ifx#=z
SubfF(QXe) = QXSubff(p) for any Q € Q and X € SVar.

for any Q € Q and z € EVar,

Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = Expr and

Gol) 0 fp==
80 =
’ ¢ ifpe (EVar\{z})USVaruX UPe

G_(0,p) = -0 for any — € P,

Go(0,7,0,0) = of1 for any o € Ps,

G (0,1,0,0) = ~06r for any ~€ Equal,
Qzp ifx=z

Go(8,z,¢) = for any @Q € Q and z € EVar,
Qz0 ifx#z

Ga(ﬂ, X, ) = QX0 for any Q € Q and X € SVar.

Then
(i) If ¢ is an atomic pattern, we have the following cases:

(a) ¢ =x. Then Subf§(p) = Subf§(x) = = Go(p).
(b) ¢ € (EVar\{z})USVar UXUPc. Then Subfi(¢) = ¢ = Go(yp).

(ii) For — € Py, we have that
Subf§(—¢) = —Subf§ (p) = G- (Subf§(¢), ¥).
(iii) For o € Py, we have that
Subfs (opy) = oSubf§ (p)Subfs (V) = Go(Subfs (@), Subfs (¥), ¢, ¥).
(iv) For ~€ Equal, we have that
Subf§ (~ o) =~ Subf§ (¢)Subf5 (¥) = G (Subfs (), Subfs (¥), ¢, ¥).
(v) For Q € Q and z € EVar, we have that

Qzy ife==z

Subf§(Qzp) = {

(vi) For Q € Q and X € SVar, we have that

Subf5 (QX ) = QX Subf5 (¢) = Gg(Subf5 (¢), X, ).
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Thus, Subf§ is the unique mapping given by Proposition 2.11.
Proposition 7.4. Subf{y is a pattern.
Proof. The proof is immediate by induction on ¢, using Proposition 7.3.

Lemma 7.5. SubfZy = .

Proof. Apply Remark 7.2 and Lemma A.8.(i) with a := ¢, b :=x, ¢ := z, I := FreeOccur,(p).

Lemma 7.6. If x does not occur (free) in ¢, then Subffy = .

O

Proof. Apply Remark 7.2, the fact that FreeOccur,(p) = 0 and Lemma A.8.(ii) with a := ¢,

b:=z, c:=6.

7.1 Substitution of free occurrences of r with y

Remark 7.7.
Subf,p = Reply(p; FreeOccury(p)).

Proof. By Remark 7.2.
Lemma 7.8. Let ¢ be a pattern and x, y be element variables. Then £(p) = £(Subfy¢).
Proof. Apply Remark 7.7 and Lemma A.18 with z, y, a := ¢ and I := FreeOccur,(y).
Lemma 7.9. Let ¢ be a pattern and x, y be element variables. Then

(i) Occury(Subfy¢) = Occury(p) U FreeOccur,(p).

(i4) If y does not occur bound in ¢, then y does not occur bound in Subf, p.

(iii) If y does not occur in v, then

Occury (Subf,p) = FreeOccur,(Subf, ¢) = FreeOccur,(p).

(iv) Assume that x # y. Then Occur,(Subfy¢) = BoundOccur,(y).

(v) Assume that x # y. Then x does not occur free in Subfyp.

(vi) Assume that x #y. If x does not occur bound in @, then x does not occur in Subfy .

Proof. Denote, for simplicity, ¢ := Subf;¢. Let ¢ = pop1...0n-1,n > 1.
Then ¢ = 9oty ... %Y,_1, where, for all k € [0,n — 1],

y if k € FreeOccur,(yp)
Y = .
pr otherwise

(i) For all k € [0,n — 1], we have that

k € Occury(Subfie) iff oy =y iff (k € FreeOccur,(¢) or o = y)
iff (k€ FreeOccury(yp) or k € Occury(p)).

O

(ii) Assume by contradiction that y occurs bound in . It follows that for some @ € Q and
i € [0,n — 2), we have that 1; = Q and ¥;11 = y. Obviously, ¢; = ¥; = Q. If p;y1 = =z,
then i + 1 ¢ FreeOccur,(p), so ¥;+1 = p;y1 = x, contradiction, as 1,11 = y and z, y are
distinct. Thus, we must have that ¢; 1 = y. It follows that y occurs bound in ¢ at i + 1, a

contradiction with the hypothesis.
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(iii) We have that Occury(¢) = () and, by (ii), BoundOccur,(Subf;¢) = 0. It follows that

FreeOccury(Subf, ) = Occur, (Subf, ) O Occury(p) U FreeOccury(p)
= FreeOccury(p).

(iv) C Let k € Occur,(Subfy¢). Then ¢y, = x. As x # y, we must have that k ¢ FreeOccur,(p)
and ¢y, = ¢ = x. Thus, k € Occur,(p) \ FreeOccury(p) = BoundOccury(p).

D Assume that k € BoundOccur,(¢). Then ¢, = x and k ¢ FreeOccur,(p), so we must
have ¢, = ¢ = z. Thus, k € Occur,(Subf;p).

(v) By (iv), we have that FreeOccur,(Subfi¢) = 0.
(vi) Apply (iv) and the hypothesis to get that Occur,(Subf;¢) = BoundOccury(p) = 0.
O
Lemma 7.10. Let ¢ be a pattern and x, y, z be variables such that y # z and y does not occur
Z“thﬁ y does not occur in Subf .
Proof. Apply Lemma A.14 with a:=y, b:= ¢, c:=z, ¢1 := 2z, by := Subflo. O

Lemma 7.11. Let ¢ be a pattern and x, y, z be element variables such that z does not occur in

®.
Then Subf;SubfZp = Subf;p.

Proof. 1f x does not occur free in ¢, then, by Lemma 7.6, Subfjy = Subfiy = ¢. Thus,
Subf;Subfl¢ = Subf;p. As z does not occur in ¢, we can apply again Lemma 7.6 to conclude
that Subf;p = ¢.

Assume now that x occurs free in ¢ and denote, for simplicity,

§:=Subfip, x:=Subf;Subfie = Subf;o.

By Lemma 7.9.(iii),
FreeOccur,(0) = FreeOccur, ().

We can apply Remark 7.2 to get that

Subf,p = Reply(p; FreeOccury(p)),
d = Repl; (p; FreeOccury(y)),
X = Repl, (9; FreeOccur,(0)) = Reply(0; FreeOccur,(¢)).

Apply now Lemma A.27 with a := ¢, b := Subf;¢, ¢ := § and I := FreeOccur,(¢) to get that
Subfyje = x. O

Lemma 7.12. Let ¢ be a pattern and x, z be element variables such that z does not occur in .
Then SubfZSubfiy = ¢.

Proof. Apply Lemma 7.11 with y := = and the fact that Subf¥¢ = ¢, by Lemma 7.5. O
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8 Bounded substitution of element variables

Assume that EVar # () and Q # 0.
Let ¢ be a pattern and zx, y be element variables.

Definition 8.1. We define Subbyp to be the expression obtained from ¢ by replacing every bound
occurrence of x in @ with y.

Remark 8.2. Then
Subby,p = Reply, (p; BoundOccury(p)).

Proposition 8.3 (Definition by recursion).
If =y, then obviously Subbyp = . Assume that x #y. Then the mapping

Subby, : Pattern — Expr,  Subby(p) = Subbyp

can be defined by recursion on patterns as follows:

Subby, (o) = if @ is an atomic pattern,
Subby (—p) = —Subby(p) for any — € Py,

Subby (oprp) = oSubb(¢)Subby (1)) for any o € Py,

Subby (~ pp) =~ Subb(p)Subby (1) for any ~€ Equal,

N [ QuSubfz(Subbt(e) ifr =z
Subby(Qzp) = {QzSubb%(sp) y e
Subby(QX¢) = QXSubby(p) for any Q € O and X € SVar.

for any Q € Q and z € EVar,

Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = Expr and

Go(p) = o if ¢ is an atomic pattern,

G_(0,¢) = -0 for any — € Py,

Go(0,1,0,00) = ofr for any o € Ps,

G (0,1,0,0) = ~0Ot for any ~€ FEqual,

Gq(8, z,9) - {QySUbfg(g) tees for any @ € Q and z € EVar,
Qz0 ifx # 2z

Ga(tﬁ), X, ) = QX0 for any Q) € Q and X € SVar.

Then
(i) If ¢ is an atomic pattern, Subby(¢) = p = Go(y).
(ii) For — € Py, we have that
Subby (—p) = —Subb; (@) = G_(Subby (v), ).
(ili) For o € Py, we have that

Subby (o)) = oSubby (¢)Subby (1) = Go(Subby (), Subby (V), ¢, ).
(iv) For ~€ Equal, we have that
Subby, (~ p1p) =~ Subby (p)Subby, () = G (Subby (), Subby (V), ¢, ).
(v) For @ € Q and =z € EVar, we have that

QySubfy (Subbi(cp)) ifo ==z

= Gg(Subb; }
QzSubby () ifo#2 Q(Subby(9), 2, ¢)

Subb, (Qzp) = {
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(vi) For Q@ € Q and X € SVar, we have that
Subbyy (QX ) = QX Subb; (¢) = Gg(Subby(v), X, ¢).

Thus, Subby is the unique mapping given by Proposition 2.11. O
Proposition 8.4. Subbyy is a pattern.

Proof. The proof is immediate by induction on ¢, using Proposition 8.3. O
Lemma 8.5. SubbZyp = ¢.

Proof. Apply Remark 8.2 and Lemma A.8.(i) with a := ¢, b := z, ¢ := z, I := BoundOccur,(p).
O

Lemma 8.6. If x does not occur (bound) in ¢, then Subbyp = ¢.

Proof. Apply Remark 8.2, the fact that BoundOccur,(p) = 0 and Lemma A.8.(ii) with a := ¢,
b=z c:=y. O

Lemma 8.7. Let ¢ be a pattern and x, y be distinct element variables. Then
(i) @ does not occur bound in Subbyp.
(i4) Occury(Subbyp) = FreeOccur, (Subbyp) = FreeOccury(p).
(i) x € FreshF(p) iff x does not occur in Subbip.
(i) Occury(Subbyp) = Occury(p) U BoundOccury(p).
(v) BoundOccury(p) € BoundOccur,(Subbyp).
(vi) If y does not occur in @, then
Occury (Subby, @) = BoundOccur, (Subb,p) = BoundOccur,(p).
In particular, FreeOccur,(Subbye) = 0.
(vit) If y does not occur in @, then y does not occur free in Subbyp.
(viii) For every Q € Q, = does not occur in SubbyQrep.

Proof. Denote, for simplicity, ¢ := Subbyp. Let ¢ = @op1...pn—1,n > 1.
Then ¥ = gty .. .1%p_1, where, for all k € [0,n — 1],

y  if k € BoundOccury(yp)
Y = .
pr otherwise

(i) Assume by contradiction that x occurs bound in . It follows that for some @ € Q and
i € [0,n — 2), we have that ¢, = Q and ;11 = z. Obviously, ¢; = ¥; = Q. We have two
cases:

(a) ¢it+1 = z. Then ¢ + 1 € BoundOccur,(p), hence 1,11 = y # x, a contradiction.
(b) @it1 # x. Then i+ 1 ¢ Occury(p), in particular i + 1 ¢ BoundOccur,(p). Thus, we
have ;11 = p;4+1, a contradiction.
(ii) The first equality follows from (i). Let us prove now that Occur, () = FreeOccur,(p).

D: Let k € FreeOccury(p). Then k ¢ BoundOccur,(y), hence we must have that i, =
o = . Thus, k € Occury(v).

C: Let k € Occury(v), so ¢, = z. If k € BoundOccur,(p), then we must have ¢y, = y # «,
a contradiction. Thus, k& ¢ BoundOccur,(p). Then 1, = @i, so ¢r = x. It follows that
k € Occur,(p) \ BoundOccury,(p) = FreeOccur,(p).
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(iii) Apply (ii) and the fact that FreeOccur,(¢) = 0.

(iv) 2: If k& € Occury(p), then ¢, = y # x, so ¥ = ¢, = y. Thus, k € Occury(y). If
k € BoundOccury(p), then ¢, =y. Thus, k € Occury(v).
C: Let k € Occury(v), so ¢y, = y. Assume that k ¢ BoundOccur,(y). Then we must have
Y = @k, that is ¢ =y, hence k € Occury ().

(v) Let k € BoundOccury(p). Then ¢ = x and there exist @ € Q and 0 < 4,5 < n — 1 such
that i« < k < j and @ is a quantifier on = at place ¢ of ¢ with scope x = ¢; ... ¢}, s0 ¢; = @,
@ir1 = z. Then ¢y =y, ¥; = Q, Yiy1 = y. Let J := Occury(x) and 0 := Reply(x;J). As
J € BoundOccury(p), we get that 8 = 1);...1; and Q is a quantifier on y at place k of ¢
with scope 6. Thus, k € BoundOccury(1)).

(vi) As Occury(p) = 0, we have that

iv (v)
Occury (1) iz BoundOccury(p) € BoundOccury,(y) C Occury ().

It follows that we must have equalities instead of inclusions.
(vii) By (vi).
(viii) By (ii), we have that Occur,(SubbjQrp) = FreeOccur,(Qzyp) = 0.
O

Lemma 8.8. Let ¢ be a pattern and x, y, z be element variables such that x # y,z. Then x does
not occur in Subf; Subb?p.

Proof. Let us denote ¢ = Subf,; Subbp. We have that

¥ = Reply, (Subbp; FreeOccur, (Subbyp)) by Remark 7.2

= Reply (SubbZp; FreeOccury(p)) by Lemma 8.7(ii)
= Reply, (Repl; (¢; BoundOccur,(p)); FreeOccury(p)) by Remark 8.2

Apply now Lemma A.28 with z, y, 2, a := ¢, I := FreeOccur;(p) and J := BoundOccur,(y) to
get that x does not occur in . O

Lemma 8.9. Let ¢ be a pattern and x, y, z be distinct variables. Then
Subf,; Subbp = Subb Subf, .
Proof. Let us denote
Y = Subf,; SubbTp, x = Subb;Subf, p.
Then

Subb? p; FreeOccur, (Subblp)) by Remark 7.2

Subb? ; FreeOccury(p)) by Lemma 8.7(ii)

Repl3 (¢; BoundOccur,(¢)); FreeOccur,(¢)) by Remark 8.2
Subf?p; BoundOccur,(Subf¥p)) by Remark 8.2

Subf?@; BoundOccury(¢)) by Lemma 7.9(iv)

Reply (¢; FreeOccur,(¢)); BoundOccury(p)) by Remark 7.2

¥ = Reply,
= Repl,
= Repl,
X = Repl
= Repl?
= Repl?

~ Y~~~ —~

Apply Lemma A.28 with z, y, z, a := ¢, I := FreeOccur,(p) and J := BoundOccur,(p) to get
that ¥ = x. O
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Lemma 8.10. Let ¢ be a pattern and x, z be distinct variables such that z does not occur in .
Then
SubbZ Subblp = .

Proof. Let ¢ := Subb?y. Then, by Remark 8.2,
1 = ReplZ (¢; BoundOccury(p)).

Apply Lemma A.22 with z, y := z, a:= ¢, a* := ¢ and I := BoundOccur,(p) to get that
© = ReplZ (¢¥; BoundOccur,(p)).

As z does not occur in ¢, we have, by Lemma 8.7(vi), that BoundOccur,(¢) = BoundOccur, ().
Thus,

© = ReplZ (¢; BoundOccury(¢)) = ReplZ(w; BoundOccur, (1))
= SubbZty by Remark 8.2
= SubbZ Subb’ .

O

Lemma 8.11. Let ¢ be a pattern and x, y, z be distinct variables such that z does not occur in
p. Then
Subbz Subf,; Subbiyp = Subf,p.

Proof. We get, by Lemma 8.9, that
Subby Subf,; Subbip = Subb; Subb; Subf, ¢

As z does not occur in ¢ and y # z, we get, by Lemma 7.10, that z does not occur in Subfy .
Thus, we can apply Lemma 8.10 with z, 2z and ¢ := Subf; ¢ to get that

Subbz Subb; Subf,/p = Subf,p.

9 Bounded substitution theorem

Theorem 9.1. Let Cong be a reflexive and transitive L-congruence. Assume that the following
holds:
(ASSUMPTION)  For any pattern o, distinct variables x, z such that
x does not occur bound in ¢ and z does not occur in ¢,

QrpCongQzSubfly  for all Q € Q.
Then for any L-pattern ¢ and any variables x, y such that y does not occur in ¢,

¢ Cong Subby p. (1)

Proof. The case z = y is obvious, as, by Lemma 8.5, Subb%¢ = ¢ and Cong is reflexive. Assume
that z and y are distinct variables.

We prove (1) by induction on the number m of bound occurrences of = in .

The case m = 0 is obvious, as, by Lemma 8.6, Subby¢ = ¢ and Cong is reflexive.

Assume that m > 1 and that (1) holds for all patterns with fewer than m bound occurrences of x.
As m > 1, x occurs bound in . Apply Proposition 6.9 to get a subpattern Qz (with @ € Q) of
o such that x does not occur bound in .
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Let z be a new variable, that is, z is distinct from x, y and z does not occur in ¢ (hence not in
1). We can apply (ASSUMPTION) for z, z and ¢ to get that

QxyCong QzSubf. (2)

Let x be the pattern obtained from ¢ by replacing an occurrence of Qzvy in ¢ by QzSubfIvy.
Then, by (2) and Theorem 5.2 we get that

©Cong . (3)

Furthermore, x has fewer than m bound occurrences of x, so we can apply the induction hypothesis
to conclude that
xCong Subb; x. (4)

Let 0 be the pattern obtained from Subbyx by replacing an occurrence of QzSubf7v in Subbyx
by QuSubfyu.

Then we have that (see the detailed proof in Subsubsection 9.1)
Subbyp = 0. (5)
Apply Theorem 5.2 to conclude that
Subby, xCong Subby . (6)
Using now (3), (4), (6) and the transitivity of Cong, we get that

©Cong Subby .

9.1 Proof of (5)

Claim 1: z, y do not occur in QzSubfI.

Proof of claim: As y does not occur in ¢ (hence not in ¢) and y # z, we get that y does not
occur in SubfZ, by Lemma 7.10. As y # z, we can apply Lemma A.9 with a :=y, b := @z and
c := Subf7vy to conclude that y does not occur in QzSubfI.

As z does not occur bound in ¢ and z # z, we can apply Lemma 7.9.(vi) to get that  does not
occur in Subff. As x # z, we can apply Lemma A.9 with a :=x, b := Qz and ¢ := SubfIy to
conclude that x does not occur in QzSubfI. |

Claim 2: y does not occur in .
Proof of claim: Apply Lemma A.14 witha :=y, b := ¢, ¢ := Qzv, c; := QzSubffy, by == x. B

Claim 3:
(i) Q=Subfre = Replall?(Quy) and QySubfIv = Replallz(Qap).
(il) QuSubfry = Replally(QzSubfr).
(i) £(Qui) = {(QySubfzv) = H(Q=Subfrw).
(iv) Occur,(Quy) = Occur, (QySubfiv) = Occur,(QzSub ).
Proof of claim:

(i) Let u € {z,z}. Denote ¥ = Subf*ty. As x does not occur bound in v, we have that
FreeOccury, () = Occur,(¢). Hence, Subfyp = ReplallZ(1).

As obviously Qu = ReplallZ(Qz), we can apply Lemma A.10 to get the conclusion.

—~ =
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(ii) By (i), we have that QzSubfZ¢ = ReplallZ(Qz1)), hence
Replall; (QzSubf;+) = Replall;(Replall (Qx1))).
Apply Lemma A.21 with a:= Qxv, x, y := 2z, z := and I := Occur,(Qz) to get that

Replall;(Replall (Qxv)) = Replall, (Qx).
Apply again (i) to get the conclusion.
(iii) Apply (i) and Lemma A.18.

(iv) Using (i), the fact that y, z do not occur in Qxt) and that & does not occur bound in ¢, we
can apply Lemma 7.9(iii) to get that

Occury (Subf,/v) = Occur,(Subf;v) = FreeOccur,(y) = Occury ().

As Occury, (Qz) = Occury(Qy) = Occur,(Qz) = {1} and £(Qx) = £(Qy) = £(Qz) = 2, we
can apply Lemma A.24 to get that

Occur,(Qri)) = Occur, (QySubfy ) = Occur,(QzSubf 1) = {1} U (Occury(v) + 2).
|

Assume, in the sequel, that y is obtained by replacing the occurrence of Qxv at place k in ¢ by
QzSubfy. Thus,

X = Replg g, p0y (05 {K}). (7)
QzSubfl

Claim 4: ¢ = Repl),, O {k}).-
Proof of claim: Using Claim 3(iii) and (7), we can apply Lemma A.16(v) with a := ¢, b := Qx,
c:=QzSubfZp, a* := y and I := {k}. |

Claim 5: x = Repl?(p; Occur,(Qz) + k).
Proof of claim: Using (7) and Claim 3(i), we can apply Lemma A.26 with a := ¢, b := Qa,
c:=QzSubflp, d = x. |

Claim 6: QzSubf1 occurs uniquely in y at place k.
Proof of claim: As z is a new variable, we can apply Lemma A.15 with a := ¢, b := Qux,
c:=QzS5ubfiy, d = x. |

Claim 7: QzSubf71 occurs uniquely in Subbyx at place k.
Proof of claim: Apply Claims 1, 6 and Lemma A.25 with z, y, a := x, b := QzSubfl,
d := Subbyx. |

Thus,
zSubf? T
5= Rengysw}”}ﬁ(subbyx; {k}). (8)
Claim 8: § = ReplZ (Subbjx; Occur,(QzSubfIv) + k) = ReplZ (Subby x; Occur, (Qxi) + k).
Proof of claim: Using (8) and Claims 1, 3(i), we can apply Lemma A.26 with z := z, z := y,
a:= Subbyx, b := QzSubfI¢, ¢ := QySubf; and d := § to get that
6 = Repl; (Subby x; Occur,(QzSubfI) + k).

By Claim 3, Occury (QySubf;j1) = Occur,(Qz). |
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Claim 9: The following hold:

BoundOccury(p) = BoundOccury;(x) U (Occury, (Qzp) + k), 9)
BoundOccur,(x) N (Occur, (Qxyp) + k) = 0. (10)

Proof of claim: Denote n = ¢(y) and p = £(Qzv)). Let ¢ = ¢ ... pn_1. As Qxt) occurs in @ at
place k, we have that
QrY = @k ... Phtp-1-

It follows that Occury(Qz) +k = Occury(p) N[k, k+p—1]. Furthermore, @ = ¢y, is a quantifier
at place k of ¢ with scope 1, so, if z occurs in ¢ at place j € [k, k + p — 1], then z occurs bound
in ¢ at place j. Thus, Occur,(¢) N[k, k + p — 1] = BoundOccur,(p) N[k, k +p — 1]. We have got
that

Occury(Qzy) + k = BoundOccur,(p) N[k, k +p — 1] (11)

By Claim 3(iii), we have that p = ¢(QzSubfZ¥). Hence x = xo ... Xn—1, Where
Xi =i foralli € [0,k —1|U [k +p,n— 1] and QzSubfiy = Xk .- - Xk+p—1-
By Claim 1, we have that x; # « for all ¢ € [k, k + p — 1], hence
BoundOccury(x) C Occury(x) C [0,k — 1] U [k +p,n—1]. (12)

As an application of (11) and (12) we get (10).

Subclaim: BoundOccury(x) = BoundOccury(p) N ([0, — 1] U [k + p,n — 1]).

Proof of subclaim:

C Assume that j € BoundOccury(x). Then j € [0,k —1]U[k+p,n—1], x; = ¢; = z, and
there exists Q € Q and i < j <[ < n — 1 such that @ is a quantifier on x at place i of x with
scope 0= Xi---Xl- Thus, if 6 = 00 .o ~0l—i+17 then 90 = Xi = ¥Yi = Q, 91 = Xi+l = Pi+1 = T and
Oji=x;=¢; ==

Applying Lemma 2.16 for the subpatterns 0 and QzSubfIv = xi ... Xk+p—1 of x and taking into
account that 6 cannot be a subpattern of QzSubfZ¥ (as x occurs in 6 and = does not occur in
QzSubfZ1)), we have the following cases:

(i) QzSubfZy is a subpattern of 8. We have that i <k <k+p—1<[!<n-—1and QzSubf¥
occurs in 6 at place k —i. Let 6* := Replgiiuij(& {k —i}). Then 6* is a pattern, by
Theorem 5.2. Moreover, we get that 8* is subpattern of ¢, by applying Lemma A.17(i) with
k,a:=¢, b:=Quxy, c:=QzSubfIy, d :=x, d* := 0 and a* := 6*.

Furthermore, 05 = 6y = ¢; = Q, 07 = 61 = piy1 =, 05, = 0, = p; = . We
get, by Proposition 2.9, that @ is a quantifier on = at place ¢ of ¢ with scope 6*. Thus,
J € BoundOccurg(yp).

(ii) Occurg(x) N Occurqg.subszy(x) = 0. Then 6 = @;...¢;. Hence, by Proposition 2.9, @ is a
quantifier on x at place i of ¢ with scope . Thus, j € BoundOccur,(y).

D Assume that j € BoundOccur;(¢)N([0,k—1]U[k+p,n—1]). Then j € [0,k —1|U[k+p,n—1],
¢j = x, and there exists Q € Q and ¢ < j <[ < n — 1 such that @ is a quantifier on = at place
1 of ¢ with scope 0 = ¢;...p;. Thus, if 0 =6y...0,_;41, then 8y = p; = Q, 01 = v;41 = = and
Hj_i =@p; =T

Applying Lemma 2.16 for the subpatterns § and Q) = @i . . . Yr1p—1 of  and taking into account
that 6 cannot be a subpattern of Qzv (as 0;_; = ¢; = x and j ¢ [k, k + p — 1]), we have the
following cases:

(i) Qzv is a subpattern of 8. We have that i <k <k+p—1<I1<n—1and Qz occurs in ¢
at place k — 4. Let 6% := Rengj;”ubfz,w(a; {k —1i}). Then 6* is a pattern (by Theorem 5.2).
Moreover, we get that 8* is subpattern of ¢, by applying Lemma A.17(i) with k, a := ¢,
b := Qzv, c := QzSubfly, d := x, a* := 6 and d* := 6*. Furthermore, 65 =6y = x; = Q,
07 =01 = Xit1 ==, 0;_, =0;—; = x; = x. We get that () is a quantifier on x at place i of
x with scope 6*. Thus, j € BoundOccur,(x).
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(i) Occurg(p) N Occurgzy(p) = 0. Then 0 = x;...x;. Hence, by Proposition 2.9, @ is a
quantifier on x at place i of x with scope 6. Thus, j € BoundOccur;(x).

|
It follows that
BoundOccury(p) = BoundOccury(p) N [0,n — 1]
= BoundOccury (o) N ([0,k —1U [k, k+p—1]U[k+p,n—1])
= (BoundOccury () N[k, k +p —1])U
U (BoundOccury(¢) N ([0,k — 1] U [k +p,n — 1]))

= BoundOccury(x) U (Occury(Qxy) + k).

Thus, (9) holds. |

Remark now that

Subby x = Reply, (x; BoundOccur,(x)) by Remark 8.2
= Repl; (Repl?(x; BoundOccury(x)); BoundOccur,(x))
by Lemma A.21 with a:=x, z, y:= 2, z := vy, I := BoundOccur,(x)
= Repl; (Repl? (Repl; (p; Occur,(Qx) + k); BoundOccury(x)); BoundOccury(x))
by Claim 5
= Repl; (Repl?(p; (Occury(Quip) + k) U BoundOccury(x)); BoundOccury(x))
by Lemma A.20 with a := ¢, z, y := 2, I := Occur,(Qzv) + k, J := BoundOccur;(x)
= Repl; (Repl (p; BoundOccury(p)); BoundOccur,(x)) by Claim 9
Thus, by Remark 8.2
Subby x = Repl; (Subb; p; BoundOccury(x)) (13)
It follows that

§ = Repl; (Subby,x; Occur, (Qzy) + k) by Claim 8
= Repl; (Repl; (Subb? p; BoundOccur,(x)); Occur, (Qxi) + k) by (13)
= Repl, (Subb; p; BoundOccury(x) U (Occury,(Quip) + k))
by Lemma A.20 with a := Subblp, x, y := z, I := BoundOccur;(x), J := Occur,(Qzy) + k
= Repl; (Subb; p; BoundOccury(p)) by Claim 9
= Repl, (Repl(p; BoundOccury(p)); BoundOccury(p)) by Remark 8.2
= Repl;; (p; BoundOccur,(p))

by Lemma A.21 with a:= ¢, z, y := 2, z .=y, I := BoundOccury(p)
= Subbyp by Remark 8.2

10 Free and bound set variables

Assume that SVar # () and Q # 0.
Definition 10.1. Let ¢ = @o@1 ... 9n—1 be a pattern and X be a set variable.

(i) We say that Q € Q is a binder on X at the ith place with scope ) if o; = Q, piy1 = X
and Y = @; ... p; is the unique pattern given by Proposition 2.9.
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(i) We say that X occurs bound at the kth place of ¢ if pr = X and there exist QecQ
and 0 <i,7 <n—1suchthati <k <j and Q is a binder on X at the ith place with scope

(iii) If pr = X but X does not occur bound at the kth place of ¢, we say that X occurs free at
the kth place of .

(iv) X is a bound variable of ¢ if there exists k such that X occurs bound at the kth place of
©.

(v) X is a free variable of ¢ if there exists k such that X occurs free at the kth place of .

Notation 10.2. Let us denote, for every pattern o,

FVsvar(p) ={X € SVar(p) | X is free in ¢},

BVsvar(p) ={X € SVar(p) | X is bound in ¢},
NotFVsvar(¢) = SVar(p) \ FVsvar(9),
Freshgyar(p) = SVar \ FVsyar(9).

Remark 10.3. (i) SVar(¢) = FVsvar(p) U BVsyar(9).

(i) FVsyar(p) and BVgya-(¢) are not disjoint, in general, as X € SVar can be both free and
bound in a pattern .

(’LZZ) NOtFVSVar(QO) Q BVSV[W(QD),
(i) Freshgya-(p) = (SVar\ SVar(p)) U NotFVsyar(¢).
Proof. We have that

Freshsyar () = SVar \ FVsyar(p) = <SVar(g0) U (SVar\ SVar(go))) \ FVsvar ()
(16)

(SVar\ SVar(e)) U (SVar(e) \ FVsvar(9))
= (SVar\ SVar(e)) U NotFVsyar(p).

Notation 10.4. Let us denote, for every pattern ¢ and set variable X,

FreeOccurx (p) = the set of all free occurrences of X in ¢,

BoundOccurx(¢) = the set of all bound occurrences of X in .
Lemma 10.5. (i) X € FVgvar(p) iff FreeOccurx (o) # 0.

(i1) X € BVsvar(9) iff BoundOccurx (@) # 0.

(111) FreeOccurx (@) N BoundOccurx (p) = 0.

(iv) Occurx(p) = FreeOccurx(p) U BoundOccurx ().

(v) FreeOccurx(p) = Occurx(p) \ BoundOccurx (p) and BoundOccurx(p) = Occurx (o) \
FreeOccurx (p).

Remark 10.6 (Definition by recursion of FVgy ).
The mapping
FVsvar : Pattern — 25V o FVsyar(¢)
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can be defined by recursion on patterns as follows:

FVsyar(9) = SVar(y) if © 1is an atomic pattern,
FVsyar(—¢) = FVsvar(®) for any — € Py,

FVsvar(opy) = FVsvar(p) U FVsvar(¥) for any o € Po,
FVsvar(~@¥) = FVsvar(p) U FVsyaer(1) for any ~€ Equal,
FVsvar(Qre) = FVsyar(v) for any Q € Q and x € EVar,
FVsvar(QX@) = FVsyar(e)\{X} for any Q € Q and X € SVar.

Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = 25V and

Go(p) = SVar(y),

G_(V,p) =V for any — € Py,
Go(V1,Va,0,0) = ViUV, for any o € P,
G.(V1,Va,0,¢) = ViUV for any ~€ FEqual,
Go(V,z,¢) =V for any Q € Q and = € EVar,
Go(V. X, ¢) = V\{X} forany Q€ Qand X € SVar.

Then
(i) FVsvar(p) = SVar(p) = Go(p) if ¢ is an atomic pattern.

(ii) For — € Py, we have that
FVsvar(=¢) = FVsvar(¢) = G- (FVsvar(¢), ¢)-
(iii) For o € Pa, we have that
FVsvar(opy) = FVsvar(9) U FVsvar(¥) = Go(FVsvar(9), FVsvar(¥), . ).
(iv) For ~€ Equal, we have that
FVsvar(~ ¢¥) = FVsvar(9) U FVsvar(¥) = G (FVsvar (), FVsvar(¥), ¢, ).
(v) For Q € Q and x € EVar, we have that

FVSVar(Qx(P) = FVSVar(SO) = GQ(FVSVar(@)7$7<P)~

(vi) For Q € Q and X € SVar, we have that
FVsvar(Q@Xp) = FVsvar(p) \ {X} = G@(FVSVM(@)vXa ©).

Thus, FVsyar : Pattern — 25V is the unique mapping given by Proposition 2.11.

Remark 10.7 (Definition by recursion of BVgy ).

The mapping

2SV(LT‘

BVsvyar @ Pattern — , @ BVsyar(v)

can be defined by recursion on patterns as follows:

BVsvar(p) = 0 if © 1is an atomic pattern,
BVsvar(—) = BVsvar(p) for any — € Py,

BVsvar(opy) = BVsvar(p) UBVsvar(¥) for any o € Py,

BVsvar(~ ) = BVsyar(p)UBVsyae(¥) for any ~€ Equal,
BVsvar(Qze) = BVsyar(p) for any Q € Q and x € EVar,
BVsyvar(QX9) = BVsyaer(p)U{X} for any Q € Q and X € SVar.
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Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = 25V and

Then

Go(p)

G_(V.p)
Go(Vi, Va, o, 1)
G (V1 Va, p,1)
Go(V,z,9)
Ga(V, X, ¢)

0,
V
Viul,
ViuV,
Vv

VU{X}

for any — € P,

for any o € P,

for any ~€ Equal,

for any @Q € Q and z € EVar,
for any Q@ € Q and X € SVar.

(i) BVsvar(p) =0 = Go(p) if ¢ is an atomic pattern.

(ii) For — € Py, we have that
BVsvar(—¢) = BVsvar(¢) = G_(BVsvar(©), @)

(iii) For o € Pa, we have that
BVSVar(OSDw) = BVSV(M’(SD) ) BVSVG.T‘(’ll)) = GO(BVSVar(QO)v BVSVar(w)v @ 1/})

(iv) For ~€ Equal, we have that

BVSVar(N @w) = BVSVaT‘(QD) U BVSVar(w) - GN(BVSVM“(SO)’ BVSVar(w)v @, 1/})
(v) For @Q € Q and = € EVar, we have that
BVSVar(QxSD) = BVSVG/I“(SO) - GQ(BVSVar(SO)vxa SO)

(vi) For Q € Q and X € SVar, we have that
BVSVar(@X(p) = BVSVar(SD) U {X} = GQ(BVSVGT(SDL Xa <P)

Thus, BVsvar : Pattern — 25V is the unique mapping given by Proposition 2.11.

Remark 10.8 (Definition by recursion of NotFVsy ).

The mapping

NotFVsyar(p) = 0 if @ is an atomic pattern,
NotFVsyar(—¢) = NotFVsyar(p) for any — € Py,
NotFVgyar(opy) = NotFVsyae(p) N NotEVeya, () for any o € Pa,
FVsvar(~ @v) = NotFVsyar(¢) N NotFVsyar (1) for any ~€ Equal,
NotFVsyar(Qre) = NotFVsyae(p) for any Q € Q and x € EVar,
NotFVsyar(QXep) = NotFVsyar(p)U{X} for any Q € Q and X € SVar.
Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = 25V9" and

Go(p) = 0,

G_(V,9) =V for any — € Py,

Go(V1, Va,,1) ViNVy  for any o € Py,

G.(V1,Va,0,0) = VinVy  for any ~€ Equal,

Go(V.z,p) =V for any Q € Q and z € EVar,

GQ(V,X,QO) = VU{X} forany Q € Q and X € SVar.

Then

NotFVgyar : Pattern — 25V ¢ — NotFVsyar(p)

can be defined by recursion on patterns as follows:
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(i) NotFVgyar(p) =0 = Go(p) if ¢ is an atomic pattern.
(ii) For — € Py, we have that
NotFVgyar(—p) = NotFVsyar (@) = G (NotFVgyar(@), ©).

(iii) For o € Po, we have that
NotFVgyar(op)) = NotFVgyar(¢) N NotFVeyar (1)
= Go(NotFVsvar(p), NotFVsyar (1), o, ).
(iv) For ~€ Equal, we have that
NotFVsyar(~ @) = NotFVgvar(¢) N NotFVsyar(¥)
=G (NotFVsvar(p), NotEVgvar (1), 0,9).
(v) For Q € Q and x € EVar, we have that
NotFVsyar(Qre) = NotFVsyar(¢) = Go(NotFVsyar (@), x, ¢)

(vi) For Q@ € Q and X € SVar, we have that
NotFVsva(QXe) = SVar(QXe) \ FVsyar(QXp)

= <SVa7“(<p) U {X}) \ (FVSW@) \{X })

(L ((SVar(go) U{X})\ FVSVar(SD)) u{X}

2 (SVar(e) \ FVsvar() U{X} = NotFVsvar(e) U {X)
= G@(NOtFVSVar (¢), X, ).

Thus, NotFVsya, : Pattern — 29V is the unique mapping given by Proposition 2.11. O

11 Substitution of free occurrences of set variables

Let X € SVar and ¢, 6 be patterns.

Definition 11.1. We define SubfiX to be the expression obtained from o by replacing every free
occurrence of X in o with §.
Remark 11.2.
Subf ¢ = Reply (¢; FreeOccurx (¢)).
Proposition 11.3 (Definition by recursion).
The mapping
Subf : Pattern — Expr, Subfs* (¢) = Subfi ¢

can be defined by recursion on patterns as follows:

SubfX(Z) - {‘; Z§ #g if Z € SVar,

Subf* (¢) = ¢ if o € EVar US U Pc,
Subfi(—¢) = —Subf(yp) for any — € P,

Subfi (opy) = oSubfs (¢)Subfi () for any o € P,

Subf(~ @) =~ Subf{(p)Subfs* (1) for any ~¢€ Equal,
Subf(Qre) = QxSubf{(p) for any Q € Q and x € EVar,

for any Q € Q and Z € SVar.

XA ] QZe if X =2
Subfi Q) = {stubfgf (@) fX+7
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Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = Expr and

Gol) 6 ife=X
o= v ifpe(SVar\{X})UEVarJXUPc

G_(0,p) = -0 for any — € Py,

Go(0,7,0,9) = ofr for any o € P,

G (0,7,0,0) = ~0Ot for any ~€ FEqual,

Go(8,z,¢) = Q0 for any @Q € Q and = € EVar,
0Zp itX =2 _

GQ(Q, Z, ) {QZ@ X 27 for any @ € Q and Z € SVar.

Then
(i) If ¢ is an atomic pattern, we have the following cases:

(a) ¢ = X. Then SubfiX(¢) = Subf(X) =0 = Go(p).
(b) ¢ € (SVar\ {X})UEVarUXUPc. Then Subfi (o) = ¢ = Go(p).

(ii) For — € Py, we have that
Subfs* (—p) = —Subfi* (p) = G_(Subf* (), ¢)-
(iii) For o € P, we have that
Subfs (opyh) = oSubf (@) Subfi () = Go(Subf* (0), Subfi (), @, ).
(iv) For ~€ Equal, we have that
Subfi (~ @) =~ Subfs* (p)Subfi (1) = G (Subfs* (), Subf5 (1), ¢, ).
(v) For Q € Q and = € EVar, we have that
Subfs* (Qup) = QuSubfi* (v) = G(Subfs* (), z,¢)
(vi) For Q € Q and Z € SVar we have that

QZyp ifX=2

_ X
@ZSubf(SX(go) it X £ 2 - GQ(SUbe (90)727 50)

Subfs* (QZ¢) = {

Thus, Subf(gx is the unique mapping given by Proposition 2.11. O
Proposition 11.4. SubfiX¢ is a pattern.

Proof. The proof is immediate by induction on ¢, using Proposition 11.3. O
Lemma 11.5. Subf))gcp = .

Proof. By Remark 11.2 and Lemma A.8.(i) with a := ¢, b := X, ¢ := X, I := FreeOccurx(p).
O

Lemma 11.6. If X does not occur (free) in o, then Subfi ¢ = ¢.
Proof. Apply Remark 11.2; the fact that FreeOccurx(¢) = () and Lemma A.8.(ii) with a := ¢,
b:=X, c:=9. O
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12 Bounded substitution of set variables

Let ¢ be a pattern and X, Y be set variables.

Definition 12.1. We define Subbss ¢ to be the expression obtained from ¢ by replacing every
bound occurrence of X in ¢ with Y.

Remark 12.2. Then
Subby o = Replys (p; BoundOccurx (¢)).

Proposition 12.3 (Definition by recursion).
If X =Y, then obviously Subbs o = . Assume that X #Y . Then the mapping

Subbys : Pattern — Expr,  Subby (@) = Subbys

can be defined by recursion on patterns as follows:

Subbss (p) = o if v is an atomic pattern,

Subbss (—¢p) = —Subb (p) for any — € Py,

Subbss (op1h) = oSubbss (¢)Subbis () for any o € Py,

Subbss (~ @) =~ Subbss (¢)Subbis (1)) for any ~€ Equal,

Subby (Qzp) = QuSubbis (p) forany Q@ € Q and x € EVar,

Subbys (QZp) = {QYSubff (Subbff (<‘0)) Z.fX =2z for any Q € Q and Z € SVar.
QZ Subby (¢) fX#£2Z

Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = Expr and

Go(¥) = ¥ if ¢ is an atomic pattern,

G_(0,¢) = —0 for any — € P,

Go(0,7,0,0) = ofr for any o € P,

G0, 7,0,9) = ~01 for any ~€ FEqual,

Go(0,z,¢) = Qub for any @Q € Q and z € EVar,
) X ey

G0, Z, p) = {QYSUbfY (6) ?f X=2 for any Q € Q and Z € SVar.
Q76 i X 47

Then
(i) If ¢ is an atomic pattern, Subbss (¢) = ¢ = Go(p).
(ii) For — € Py, we have that

Subbif (—p) = —Subbif (1p) = G_(Subb¥ (1), 9)-

(iii) For o € Po, we have that

Subbs (op)) = oSubby’ () Subby (1) = Go(Subbyf (), Subby (v), ¢, ).

(iv) For ~€ Equal, we have that

Subb (~ i) =~ Subby () Subby (1) = G~ (Subby (), Subby (v), ¢, ).

(v) For @Q € Q and z € EVar, we have that

Subby (Qrp) = QuSubby (p) = Go(Subby (¢), z, ¢).
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(vi) For Q € Q and Z € SVar, we have that

QY Subfi¥ (Subbss (¢)) if X =2

0 = G5(Subbis (@), Z, ).
QZ Subbss () if X #£ 27 g(Subby (¢), Z, ¢)

Subb (QZ ) = {

Thus, Subbys is the unique mapping given by Proposition 2.11. O
Proposition 12.4. Subbss ¢ is a pattern.

Proof. The proof is immediate by induction on ¢, using Proposition 12.3. U
Lemma 12.5. Subbxp = ¢.

Proof. By Remark 12.2 and Lemma A.8.(i) with a := ¢, b := X, ¢ := X, I := BoundOccurx (p).
O

Lemma 12.6. If z does not occur (bound) in ¢, then Subby ¢ = .

Proof. Apply Remark 12.2, the fact that BoundOccurx () = 0 and Lemma A.8.(ii) with a := ¢,
b:=X,c:=Y. O

13 Variable free for patterns

Let X € EVar U SVar and §, ¢ be patterns.

Definition 13.1. We say that xX is free for § in ¢ or that 0 is substitutable for xX in ¢ if
the following hold:

(i) if z is an element variable occuring free in § and Q is a quantifier on z in @ with scope 6,
then X does not occur free in 6.

(ii) if Z is a set variable occuring free in § and Q is a binder on Z in o with scope 0, then xX
does not occur free in 6.

Definition 13.2. Define the mappings

FreeForg : Pattern — 2FVerWSVar  precForEs : Pattern — 2FVar,

FreeForSs : Pattern — 25V7

as follows: for any pattern o,

FreeFors(p) = {zX € EVarUSVar |zX is free for § in o},
FreeForEs(p) = FreeFors(p)N EVar,
FreeForSs(¢) = FreeFors(p)NSVar.

As EVar N SVar = 0, we have that FreeForEs(p) N FreeForSs(¢) = 0 and FreeFors(p) =
FreeForEs(p) U FreeForSs(p).

Proposition 13.3 (Definition by recursion).
The mapping

FreeFors : Pattern — 2EVarusVar
can be defined by recursion on patterns as follows:
FreeFors(p) = EVaruSVar if ¢ is an atomic pattern,
FreeFors(—y) = FreeFors(vy) for any — € Px,
FreeFors(0wyx) = FreeFors(y)N FreeFors(x) for any © € Py U Equal,
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FreeFors(Quy) = {FreshF(w) U Freshsvar () if x occurs in &

FreeFors(y) if © does not occur in &
for any Q € Q and x € EVar,

FreeFors(OXv) = FreshF() U Freshsyqr(¢) if X occurs in §
’ | FreeFors(1) if X does not occur in §
for any Q € Q and X € SVar.

Lemma 13.4. Let ¢ be a pattern.

(i) FreshF(p)U Freshsya(p) C FreeFors(p), that is any element or set variable that
either (1) does not occur in ¢ or (2) occurs in @, but does not occur free in ¢

is free for & in .

(it) If EVar()NEVar(e) =0 and SVar(6)NSVar(p) = 0, then FreeFors(¢) = EVaruSVar,
that is if element/set variables of 6 do not occur in @, then any element/set variable is free
for é in .

(i11) If EVar(d) = SVar(§) =0, then FreeFors(p) = EVar U SVar.

() If EVar(§)NBV () =0 and SVar(§)NBVsyar(p) = 0, then FreeFors(¢) = EVaruSVar,
that is if element/set variables of § do not occur bound in @, then any element/set variable
is free for § in .

13.1 =z free for y
Remark 13.5. Let x,y € EVar. The following are equivalent:

(i) x is free fory in .

(ii) For every quantifier Q on y in ¢ with scope 0, we have that x does not occur free in 0.
(iii) For every subpattern Qyv of ¢, we have that x does not occur free in Qyi.

Definition 13.6. Lety € EVar. Define the mapping FreeForE, : Pattern — EVar as follows:
for any pattern ¢,

FreeForE,(p) = {x € EVar |z is free for y in ¢}.
Lemma 13.7. Let x, y € EVar and ¢ be a pattern.
(i) y € FreeForEy(p), that is y is free for y in .
(it) If x does not occur in ¢, then x € FreeForEy(p).
(i11) If x occurs in ¢, but x does not occur free in @, then x € FreeForE,(yp).
(iv) FreshF(p) C FreeForEy(p).
(v) If y does not occur in @, then FreeForE,(p) = EVar.
(vi) If y occurs in ¢, but y does not occur bound in @, then FreeForE,(¢) = EVar.
(vii) If y € FreshB(y), then FreeForEy(p) = EVar.
(viii) If BV () =0, then FreeForEy(p) = EVar.
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Proof. (i) Obviously. If Qyi is a subpattern of ¢, then y occurs bound in Qyt, hence y does
not occur free in Qyi.

(ii) Obviously. Assume that x does not occur in . If Qyi) is a subpattern of ¢, then x does not
occur in Qui. In particular, x does not occur free in Qyi.

(iii) Obviously. Assume that  occurs in @, but « does not occur free in ¢. If Qyv is a subpattern
of ¢, then x does not occur free in Qyi).

(iv) Apply (i), (iii) and Lemma 6.3(iv).
(v) Obviously. If y does not occur in ¢, then there exists no subpattern Qyv of .

(vi) Obviously. If y occurs in ¢, but y does not occur bound in ¢, then there exists no subpattern

Quy of .
(vii) Apply (v), (vi) and Lemma 6.3(v).
(viii) By (vii).
Proposition 13.8 (Definition by recursion).
Let y € EVar. The mapping
FreeForEy : Pattern — EVar

can be defined by recursion on patterns as follows:

FreeForEy,(y) = FEVar if p is an atomic pattern,

FreeForE,(—) = FreeForE,(y) for any — € Py,

FreeForEy(oyyx) = FreeForE,(y)N FreeForEy(x) for any © € Py U Equal,

FreeForE,(Qzy) = FreshF(Qz1) zfz —Y forany Q € Q and z € EVar,
FreeForE,(¢y) ifz#vy

FreeForE,(QXvY) = FreeForE,(¢) for any Q € Q and X € SVar.

Proof. Let us verify that FreeFork, as in Definition 13.6 satisfies the conditions.
(i) If ¢ is an atomic pattern, then BV () = (). Apply Lemma 13.7(viii).

(ii) ¢ = —1 for — € Py. For every x € EVar, we have that
x € FreeForE,(p) iff for every subpattern Qyd of ¢, x ¢ FV(Qyd)
iff  for every subpattern Qyé of v, x ¢ FV(Qyd),
by Proposition 2.14 and the fact that Qyd # —1
if x € FreeForE,(v).

(iii) ¢ = Oy x for © € Py U Equal. For every © € EVar, we have that
x € FreeForEy(p) iff for every subpattern Qyé of p, x ¢ FV(Qyd)

iff  (for every subpattern Qyd of ¥, x ¢ FV(Qyd)) and
(for every subpattern Qud of x, ¢ FV(Qyd)),

by Proposition 2.14 and the fact that Qyd # OYx
if x € FreeForE,(¢)N FreeForE,(x).

(iv) o =Qzt for Q € Q and z € EVar. We have two cases:
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(a) z # y. Then for every x € EVar, we have that
x € FreeForE,(p) iff for every subpattern Qyd of ¢, x ¢ FV (Qyd)
iff  for every subpattern Qyd of ¥, x ¢ FV(Qyd),
by Proposition 2.14 and the fact that Qyd # Qzvy
iff a€ FreeForEy(vy).

(b) z =y, hence ¢ = Qyv». We prove that FreeForE,(Qyy) = FreshF(Qyi) by double

inclusion.

C Let ¢ € FreeForE,(Qyv). As Qui is a subpattern of Qyi), we must have that «
does not occur free in Qyi. Thus, x € FreshF(Qy).

2O By Lemma 13.7(iv).
(v) o = QX for Q € Q and X € SVar. For every x € EVar, we have that
x € FreeForEy(p) iff for every subpattern Qyé of ¢, x ¢ FV(Qyo)
iff  for every subpattern Qyé of ¢, x ¢ FV(Qyd),
by Proposition 2.14 and the fact that Qyé # QX1
iff x € FreeForE,(¢).

13.1.1 Useful lemmas for Subb

Proposition 13.9. Assume that x,y € EVar are such that x # y and y does not occur in p.
Then x is free fory in Subbyep.

Proof. The proof is by induction on ¢.
(i) ¢ is an atomic pattern. Then Subby¢ = ¢ and x is free for y in ¢, as y does not occur in .

(ii) ¢ = —4 for — € P;. As y does not occur in ¥, we can apply the induction hypothesis to get
that z is free for y in Subbyt. It follows that z is free for y in Subbyp = —Subby.

(iii) ¢ = oypx for o € Py. As y does not occur in ¢, x, we can apply the induction hypothesis
to get that x is free for y in Subbyy, Subbyx. It follows that z is free for y in Subbyp =
oSubby (1) Subby ().

(iv) ¢ =~ 1y for ~€ Equal. As y does not occur in v, x, we can apply the induction hypothesis
to get that x is free for y in Subbyv, Subbyx. It follows that z is free for y in Subbyp =~
Subby; (1) Subbi (x)-

(v) ¢ = Qzyp. We have two cases:

(a) = z. Then Subblp = QySubfy (Subbi(¢)). It is obvious that = does not occur in
Subbyp, so x is free for y in Subbyp.

(b) = # 2. Then Subbjp = QzSubb;(y)). As y does not occur in ¢, we can apply the
induction hypothesis to get that z is free for y in Subbji. As y does not occur in ¢,
we must have that y # z. Then, obviously z is free for y in Subby .

(vi) ¢ = QX1. As y does not occur in v, we can apply the induction hypothesis to get that
is free for y in Subbyy. Then, obviously x is free for y in Subbyp = QX Subby (¥).

O

Lemma 13.10. Let ¢ be a pattern and y, z be distinct variables. Then FreeForE, (Subbly) =
EVar, that is any element variable is free for y in Subb¥e.
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Proof. By Lemma 8.7(i), y does not occur bound in Subb¥yp, that is y ¢ BV (Subblep)), so y €
FreshB (Subb?y)). Apply Lemma 13.7(vii) to conclude that FreeForE, (Subbly) = EVar. U

Lemma 13.11. Let ¢ be a pattern and x, y, z be variables. Then
x 15 free for y in @ iff x is free for y in Subbip.

Proof. If x = z, then Subbfp = ¢, by Lemma 8.5. The conclusion is obvious. If = y, then, by
Lemma 13.7(i), both y is free for y in ¢ and y is free for y in Subb?p hold.

Assume in the sequel that z # y and = # 2.

We prove by induction on ¢, using the definition by recursion of SubbZy (Proposition 8.3).

(i) ¢ is an atomic pattern. Then ¢ = Subb?.The conclusion is obvious.

(ii) ¢ = —1 for — € P;. We get that

x € FreeForE,(¢) iff x¢& FreeForE,(y)
by Proposition 13.8
if x € FreeForE,(Subbly)
by the induction hypothesis for v
iff = € FreeForE,(—Subbliy)
by Proposition 13.8
if x € FreeForE,(Subbly)
by Proposition 8.3.

(iii) ¢ = OYx for © € Py U Equal.
We get that

x € FreeForE,(p) iff € FreeForE,()N FreeForE,(x)

by Proposition 13.8

if x € FreeForE,(Subbly)N FreeForE,(Subblx)
by the induction hypothesis for ¥, x

iff € FreeForE,(OSubb?ySubbly)
by Proposition 13.8

if x € FreeForE,(Subbly)
by Proposition 8.3.

(iv) ¢ = QX9 for Q € Q and X € SVar. We get that

x € FreeForE,(¢) it x¢& FreeForE,(y)
by Proposition 13.8
if x € FreeForE,(Subbly)
by the induction hypothesis for v
iff z € FreeForE,(QXSubby)
by Proposition 13.8
if x € FreeForE,(Subbly)
by Proposition 8.3.

(v) ¢ =Qui for Q € Q and v € EVar. We have the following cases:
(a) v #y and v # x. Then
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x € FreeForEy(p) iff « € FreeForEy,(1)
by Proposition 13.8, as v # y
iff x € FreeForE,(Subbli)
by the induction hypothesis for 1
iff x € FreeForE,(QuSubbliy)
by Proposition 13.8, as v # y
iff € FreeForE,(Subb%y)
by Proposition 8.3, as v # x.

(b) v =y, hence ¢ = Qyt. Then

FreeForEy(p) = FreeForEy(Qyy)
= FreshF(Qyy) by Proposition 13.8
= FreshF(p)

As x # y, we have, by Proposition 8.3, that Subbfy = SubbiQyyp = QySubblv. It
follows that

FreeForE,(Subbly) = FreeForE,(SubblQyi) = FreeForE,(QySubbii)
= FreshF(QySubbly) by Proposition 13.8
= FreshF (Subbi )

As x # z, we have, by Lemma 8.7(i) that  does not occur bound in Subb?y, that is
x ¢ BV (SubbZp). Apply Lemma 6.3(iii) to get that © ¢ NotFV (Subbiey). It follows
that
x € FreshF(SubbZp) iff a does not occur in Subb®y by Lemma 6.3(iv)
ifft € FreshF(y) by Lemma 8.7(iii)
Thus, x € FreeForE,(p) iff x € FreeForE,(Subbly).
(c¢) v ==, hence ¢ = Qx1p. By Lemma 13.7(iii), we have that z € FreeForE,(y)

Apply Lemma 8.7(viii) and the fact that z # z to get that « does not occur in SubbZep.
By Lemma 13.7(ii), x € FreeForE,(Subbly).
Thus, both « € FreeForE,(y) and = € FreeForE,(Subbly).

13.1.2 Useful lemmas for Subf
Lemma 13.12. Let ¢ be a pattern and x, y, z be variables such that z does not occur in p. Then
x is free fory in ¢ iff  z is free for y in SubfZp.

Proof. If © = z, then Subf?¢ = ¢, by Lemma 7.5. The conclusion is obvious.
Assume in the sequel that z # y and = # z.
We prove by induction on ¢, using the definition by recursion of SubfZ¢ (Proposition 7.3).

(i) ¢ is an atomic pattern. Then Subf¥p = . The conclusion is obvious.

(ii) ¢ = —1 for — € P;. We get that

x € FreeForEy(p) iff x € FreeForE,(v)
by Proposition 13.8
if z € FreeForE,(Subffiy)
by the induction hypothesis for v
it ze€ FreeForE,(—Subffy)
by Proposition 13.8
iff 2z € FreeForE,(Subfy)
by Proposition 7.3.
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(iii) ¢ = OYx for © € Py U Equal.
We get that

x € FreeForE,(p) iff € FreeForE,(i) N FreeForE,(x)

by Proposition 13.8

iff z € FreeForE,(Subffy)N FreeForE,(Subffx)
by the induction hypothesis for 1, x

iff ze€ FreeForE,(©SubblySubfyx)
by Proposition 13.8

iff 2z € FreeForE,(SubfZy)
by Proposition 7.3.

(iv) o = QX9 for Q € Q and X € SVar. We get that

x € FreeForE,(¢) it x € FreeForE,(y)
by Proposition 13.8
it ze€ FreeForE,(Subffy)
by the induction hypothesis for ¢
iff ze€ FreeForE,(QXSubfr)
by Proposition 13.8
if ze FreeForE,(SubfZy)
by Proposition 7.3.

(v) ¢ =Quy for Q € Q and v € EVar. We have the following cases:

(a) v# x and v # y. Then
x € FreeForE,(p) iff €& FreeForE,(y)

by Proposition 13.8, as v # y

iff ze€ FreeForE,(SubfZy)
by the induction hypothesis for ¥

ifft 2z € FreeForE,(QuSubffiy)
by Proposition 13.8, as v # y

iff 2z € FreeForE,(SubfZy)
by Proposition 7.3, as v # x.

(b) v =y and v # x, hence ¢ = Qyv and = # y. Then

FreeForE,(p) = FreeForE,(Qyy)
= FreshF(Qyy) by Proposition 13.8
= FreshF(y)

As x # y, by Proposition 7.3, we have that Subffp = SubfIQuyy = QuSubfiy. It
follows that

FreeForE,(Subfiy¢) = FreeForE,(Subf;Qyy) = FreeForE,(QySubfi)
= FreshF(QySubf ) by Proposition 13.8
= FreshF(Subf )

We have that
x € FreeForE,(p) iff € FreshF(yp)
it FreeOccury(p) =0 by Lemma 6.5(ii)
iff  FreeOccur,(Subffyp) =0 by Lemma 7.9(iii),
as z does not occur in ¢
ifft z € FreshF(SubfZy) by Lemma 6.5(ii)
iff 2z € FreeForE,(SubfZy)
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(¢) v ==, hence ¢ = Qxtp. Then SubfZ¢ = .
By Lemma 13.7(iii), we have that x is free for y in ¢.

Furthermore, by Lemma 13.7(ii) and the fact that z does not occur in ¢, we have that
z is free for y in ¢.

O

13.2 X free for Y
Remark 13.13. Let X, Y € SVar.

(i) X is free for Y in ¢ if the following holds: for every binder Q on'Y in ¢ with scope 6, we
have that X does not occur free in 6.

(ii) X is not free for Y in ¢ if the following holds: there exists a binder Q on'Y in ¢ with scope
0 such that X occurs free in 6.

Definition 13.14. Let Y € SVar. Define the mapping FreeForSy : Pattern — SVar as
follows: for any pattern ¢ andY € SVar,

FreeForSy(p) ={X € SVar | X is free for Y in ¢}.

Proposition 13.15 (Definition by recursion).
Let Y € SVar. The mapping

FreeForSy : Pattern — SVar

can be defined by recursion on patterns as follows:

FreeForSy (p) = SVar if ¢ is an atomic pattern,
FreeForSy (—) = FreeForSy(v) for any — € Py,
FreeForSy(Oyyx) = FreeForSy ()N FreeForSy(x) for any © € Py U Equal,
FreeForSy (Qxzy) = FreeForSy(y) for any Q € Q and x € EVar,

Freshsyar(v) X =Y

Q€ Qand X € SVar.
FreeForSy(vy) if X #£Y Jor any @ € Q an o

FreeForSy (QXv) = {

Lemma 13.16. Let Y € SVar and ¢ be a pattern.
(i) Y € FreeForSy(p), that is Y is free for Y in ¢.

(i) Freshsyar(p) C FreeForSy (p), that is any set variable that
either (1) does not occur in ¢ or (2) occurs in @, but does not occur free in ¢

is free for'Y in .

(iii) If Y ¢ SVar(p), then FreeForSy (p) = SVar, that is if Y does not occur in ¢, then any
set variable is free for' Y in .

(iv) If Y ¢ BVsyar(v), then FreeForSy (¢) = SVar, that is if Y occurs in o, but Y does not
occur bound in ¢, then any set variable is free for Y in .

Proposition 13.17. Assume that X,Y € SVar are such that X #Y and Y does not occur in .
Then X is free for Y in Subbss .

Proof. The proof is by induction on ¢.
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(i) ¢ is an atomic pattern. Then Subbyip = ¢ and X is free for Y in ¢, as Y does not occur in
®.

(ii) ¢ = =1 for — € P;. As Y does not occur in ¥, we can apply the induction hypothesis to
get that X is free for Y in Subbystp. It follows that X is free for Y in Subbsf p = —Subbis 1.

(iii) @ = oy for o € Py. As Y does not occur in ¥, x, we can apply the induction hypothesis to
get that X is free for Y in Subbis, Subbyx. It follows that X is free for Y in Subbp =
0 Subbis (1)) Subbss ().

(iv) ¢ =~ 1y for ~€ Equal. AsY does not occur in ¢, y, we can apply the induction hypothesis
to get that X is free for Y in Subbss1p, Subbsys . It follows that X is free for Y in Subbss ¢ =~
Subbss (1) Subbss (x).

(v) ¢ = Quzvp. As'Y does not occur in ¢, we can apply the induction hypothesis to get that X
is free for Y in Subbss¢p. Then, obviously X is free for Y in Subbsp = QxSubbss (1)).

(vi) ¢ = QZ1. We have two cases:

(a) X = Z. Then Subbyf ¢ = QY Subfi¥ (Subbs (1)). It is obvious that X does not occur
in Subbp, so X is free for Y in Subbsl .

(b) X # Z. Then Subbss o = QZSubbss (). As'Y does not occur in 9, we can apply the
induction hypothesis to get that X is free for Y in Subbist. As Y does not occur in ¢,
we must have that Y # Z. Then, obviously X is free for Y in SubbX .

O

14 Positive and negative occurences of set variables

Assume that —€ P and that SVar # (). Let X be a set variable.
Definition 14.1. Let ¢ = @op1 ... on—1 be a pattern.

(i) We say that — is an implication at the ith place of ¢ with left scope ¢ and right
scope x if ¢ == and Y = Qiy1...95, X = @jt1...91 are the unique patlerns given by
Proposition 2.10.

(i) X occurs left at the kth place of ¢ if X occurs free at the kth place of ¢ and there exist
0<i<k<j<n—1suchthat = @ir1...p; is the left scope of an implication — at the
ith place of .

Definition 14.2. We define the mapping
Nx 1 : Pattern — Fun(N,N)
by recursion on patterns as follows:
(i) ¢ is an atomic pattern. Then Nx 1(¢)(k) =0 for every k € N.

(ii) o = —1), where — € Py. Thus, ¢ = Qo1 ...n—1 With o9 = —, Y = @1 ...p_1. We have
the following cases:

(a) k=0 or k>mn. Then Nx r(¢)(k) =0.
(b)) 1<k <n—1. Then Nx r(p)(k) = Nx.(¥)(k - 1).

(iii) o = Oy, where © € Equal U (Py\ {—}). Thus, ¢ = ©o@1...¢n—1 with o9 = O, ¢ =
@1...95 and X = Qj41...¢n—1 for some 1 < j <n—1. We have the following cases:

(a) k=0 ork>n. Then Nx r(¢)(k) =0.
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(b) 1 <k <j. Then Nx r(¢)(k) = Nx r(¢)(k—1).
(¢) j+1<k<n—1. Then Nx (¢)(k) = Nx,o(x)(k —j—1).

() ¢ == Yx. Thus, ¢ = PoP1 ... pn—1 With pg ==, b = p1...@; and X = Pji1...pn-1 for
some 1 < j <n—1. We have the following cases:

(a) k=0 or k>n. Then Nx r(¢)(k) =0.
(b) 1<k <j. Then Nx,()(k) = Nx,.(¥)(k—1) + 1.
(¢) j+1<k<n—1. Then Nxr(¢)(k) = Nx()(k—j—1).

(v) o = Qxb, where Q € Q and x € EVar. Thus, gop1 = Qr and ¥ = @o...pn—1. We have
the following cases:

(a) k€ {0,1} or k> n. Then Nx r(¢)(k) = 0.
(b) 2< k< n— 1. Then Nx.o(o)(K) = Ny () (k —2).

(vi) o = QZp, where Q € Q and Z € SVar. If X = Z, then Nx (uZ)(k) = 0 for all k € N.
If X # Z, then we have the following cases:

(a) k€ {0,1} or k> n. Then Nx r(¢)(k) = 0.
(b) 2< k< n— 1. Then Nx.o(o)(K) = Ny () (k - 2).

Proof. Apply Recursion principle on patterns (Proposition 2.11) with D = Fun(N,N) and

Go(p)(k) = 0 if ¢ is an atomic pattern,
0 ifk=0ork >n,
Go(f,9,9,x)(k) = { f(k-1) if1<k<j, for any © € Equal U (P2 \ {—}),
gk—j—1) ifj+1<k<n-—1
0 ifk=0ork>n,
Go(f,90,0)(k) = §f(k=1)+1 if1<k<y ,

gk—j—1) ifj+1<k<n-—1

o it ke {01} ork>mn,
Gq(f iz, )(k) = {f(k_g) if2<k<n-1
for any Q € Q and x € EVar,

0 if 7 =X,

0 if Z# X and (k € {0,1} or k > n),
flk=2) fZ#Xand2<k<n-1

for any Q € Q and Z € SVar.

Then
(i) Nx.r(p)(k) =0= Go(p)(k) for every k € N if ¢ is an atomic pattern.
(i) ¢ = Oyx. Then

0 if k=0ork>n,
Nx (©Yx)(k) = ¢ Nx,.(¥)(k —1) if1<k<j,
Nxr(x)(k—j—1) ifj+1<k<n-1

= G@(NX7L(1/))a NX,L(X)?¢7X)(I€)
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(iii) ¢ =— ¥x. Then

0 ifk=0ork >n,
Nx.o(—=¥x)(k) = { Nxp(¥)(k-1)+1 if1<k<y,
Nxr(x)(k—j—-1) ifj+1<k<n-1

= GH(NX’L(¢),NX,L(X)7w7X)(k)'
(iv) ¢ = Qxp. Then

0 if k € {0,1} or k > n,

NX,L(QM/’)(k) = {NX,L(¢)(R_2) if2a2<k<n-1

= GQ(NX,L(’L/))VI’ 11[})(]{:)

(v) ¢ =QZy. If Z = X, then Nx 1(QX¢)(k) = 0 = G5(Nx,L(¥), Z,9) (k).
Assume that Z # X. Then

0 if ke {0,1} or k > n,

Nx..(QZv) (k) = {NX,L(w)(k -2) if2<k<n-—1

= Go(Nx L(6). Z, ) ().

Notation 14.3. Let k € N and ¢ be a pattern. We denote Nx 1()(k) with N(p, X, k).
Definition 14.4. Let X k € N and ¢ be a pattern such that X occurs free at the kth place of .

(i) We say that X occurs positively at the kth place of ¢ (or that X has a positive
occurence at the kth place of ¢) if Ni(p, X, k) =0 or Np(p, X, k) is an even natural
number.

(ii) We say that X occurs negatively at the kth place of ¢ (or that X has a negative
occurence at the kth place of ¢) if Ni(p, X, k) is an odd natural number.

Definition 14.5. We say that ¢ is positive in X if one of the following is true:
(i) X does not occur free in p.

(i) For every k € N, if X occurs free at the kth place of ¢, then X occurs positively at the kth
place of p.

Definition 14.6. We say that ¢ is negative in X if one of the following is true:
(i) X does not occur free in .

(i) For every k € N, if X occurs free at the kth place of ¢, then X occurs negatively at the kth
place of .

Remark 14.7 (Alternative definition). The property that ¢ is positive in X can be defined by
recursion on patterns as follows:

(i) If ¢ is atomic, then

(a) ¢ is positive in X;
(b) ¢ is negative in X iff o # X.

(ii) If p = —1), where — € Py, then
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(a) ¢ is positive in X iff ¢ is positive in X ;
(b) ¢ is negative in X iff ¢ is negative in X.
(iii) If ¢ = OYx, where © € Equal U (P2 \ {—}), then
(a) ¢ is positive in X iff both v, x are positive in X ;
(b) ¢ is negative in X iff both ¢, x are negative in X.
(iv) If ¢ =— X, then
(a) ¢ is positive in X iff ¥ is negative in X and x is positive in X ;
(b) ¢ is negative in X iff 1 is positive in X and x is negative in X.
(v) If ¢ = Qxp, where Q € Q and x € EVar, then
(a) ¢ is positive in X iff ¥ is positive in X.
(b) o is negative in X iff 1 is negative in X.
(vi) If p = QX, where Q € Q, then

(a) ¢ is positive in X;
(b) ¢ is negative in X.

(vii) If ¢ = QZ1, where Q € Q and Z € EVar \ {X}, then

(a) ¢ is positive in X iff 1 is positive in X.
(b) @ is negative in X iff ¢ is negative in X.

15 Proof systems

Let £ be a language for abstract matching logic.
Definition 15.1. An L-proof system is a pair P = (Azm, DedRules), where
(i) Axzm C Patterng is a set of axioms.

(i) DedRules is a set of deduction rules (or inference rules). A deduction rule has one of
the following forms:

I Y1 P2 ... Pn II Y1 Y2 ...
() m , (1D m

where n > 1, 1,92 ...pn, Y € Patterny and C' is a condition.

(o)

©1, 92 ... p, are said to be the premises of the rule and ¢ is the condition of the rule. For a
deduction rule of form (II), C is said to be the conclusion of the rule.

A deduction rule of form (I) is read as: from 1, @, ..., p, deduce/infer ).

A deduction rule of form (II) is read as: if condition C holds, from @1, s, ..., ¢, deduce/infer 1.
We denote deduction rules by D, D’, Dy, Ds, etc.

Let P = (Axm, DedRules) be an L-proof system.

Definition 15.2. A set I' of L-patterns is said to be closed to DedRules if the following hold:

(i) For every deduction rule D € DedRules of form (I), if T contains the premises of D, then
the conclusion of D is also in T.

(i) For every deduction rule D € DedRules of form (II), if the condition C' of D holds and T
contains the premises of D, then the conclusion of D is also in T'.
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Let T' be a set of L-patterns.

Definition 15.3. The set of I'-P-theorems is the intersection of all sets A of L-patterns that
have the following properties:

(i) Azm C A.
(i1) T C A.
(#ii) A is closed to DedRules.

The set of I'-P-theorems is denoted by I'=Thmp. If ¢ is a I'-P-theorem, then we also say that ¢
is deduced from the hypotheses I'.
As an immediate consequence of Definition 15.3, we get the induction principle for I'-P-theorems.

Proposition 15.4. [Induction principle on I'-P-theorems]
Let A be a set of L-patterns satisfying the following properties:

(i) Azm C A.
(ii) T C A.
(i4i) A is closed to DedRules.
Then I'—Thmp C A.
Proof. By hypothesis, A C Pattern,. By Definition 15.3, we get that '—=Thmp C A. O
Definition 15.5. The set Thmp of P-theorems is defined by Thmp = 0—Thmop.

Notation 15.6. Let I'; A be sets of L-patterns and ¢ be an L-pattern. We use the following
notations
'kpe = ¢ isal-P-theorem,

Fp o = is a P-theorem,
I'kp A & T'kFppforany p €A
Proposition 15.7. Let I', A be sets of L-patterns.

(i) Assume that A CT. Then for every L-pattern ¢, A—Thmp C T'—Thmp, that is

A Fp ¢ implies T'Fp .

(i) For every L-pattern @, Thmp C T —Thmp, that is

Fp o implies T Fp .

(iii) Assume that T'Fp A. Then for every L-pattern ¢, A—Thmp C T'—Thmyp, that is
A Fp ¢ implies T' Fp .

(iv) For every L-pattern ¢, (—Thmp)—Thmp =T —Thmp, that is

I—Thmptp e iff I'Fp .

Proof. (i) As A C T, one proves immediately by induction on A-theorems that A—Thmp C
F*Thmp.

(ii) Apply (i) with A = 0.
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(iii) As, by hypothesis, A C Thm,(T'), one proves immediately by induction on A-theorems that
A*Thmp Q F*Thm'p.

(iv) < As, by definition, I' C '—=Thmp, we can apply (i) to get that T—Thmp C (' —=Thmp)—
Thmp.

= We have that ' bp T'—Thmp, so we can apply (iii) with A = T'—Thmp to get that
(T—=Thmp)—Thmp CT—Thmp.
O

15.1 I'-P-proof
Let P = (Axm, DedRules) be an L-proof system and I" be a set of L-patterns.

Definition 15.8. A T'-P-proof is a sequence of L-patterns 01,...,0, such that for all i €
{1,...,n}, one of the following holds:

(1) 6; € Azm.
(ii) 0; € T.

(iii) 0; is the conclusion of a deduction rule D € DedRules of form (I) and the premises of D
are previous L-patterns.

(iv) 6; is the conclusion of a deduction rule D € DedRules of form (II), the premises of D are
previous L-patterns and the condition C' of D holds.

An 0-P-proof is called simply a P-proof.
Definition 15.9. Let ¢ be an L-pattern. A I'-P-proof of ¢ is a I'-P-proof 01, ..., 0, such that
0, = .
Proposition 15.10. For any L-pattern o,
T'kFp @ iff there exists a I'-P-proof of .

Proof.
O = {¢ € Pattern, | there exists a I'-P-proof of ¢}.

= We prove by induction on I'-P-theorems that I'—Thmp C ©:
If  is an axiom or a member of I, then 6y = ¢ is a ['-P-proof of p. Hence, ¢ € O.
Let us prove that © is closed to DedRules.

(i) Let D = W—“"P" be a deduction rule of form (I) such that p1, @, ..., ¢, € ©. Then
for every i = 1,...,n there exists a [-P-proof &%,5% . .. ,5}% = ; of p;. It follows that
61,0 . Op = ©1,01,05 ..., 65, = P2y, 00,88 ... 61 =,
is a ['-P-proof of ¢. Thus, ¥ € O.

(ii) Let D = #—F2==—%x(C) be a deduction rule of form (II) such that the condition C
of D holds and 1, ¢a,...,p, € ©. Then for every i = 1,...,n there exists a I'-P-proof
5165, (5}% = ; of ¢;. It follows that

61,0 . Op = 01,601,085 ..., 6, = P2, 07,85 .. 61 =,
is a I'-P-proof of 1. Thus, ¢ € ©.
< Assume that ¢ has a I'-P-proof 0y,...,0, = ¢. We prove by induction on 4 that for all
i=1,...,n, T Fp 0;. As a consequence, I' Fp 0, = .
If =1, then #; must be an axiom or a member of I". Then obviously I" Fp 6.
Assume that the induction hypothesis is true for all j = 1,...,i. We have the following cases for
9i+1:
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(i) 641 is an axiom or a member of I'. Then obviously T' Fp 6;41.

(ii) 6,41 is the conclusion of a deduction rule D = W of form (I) and @1, w2, ... vn
are previous L-patterns. Then by the induction hypothesis we have that I' Fp ¢y for all
k=1,...,n. By the definition of I'-P-theorems, it follows that I' Fp 6;1.

(iii) €;41 is the conclusion of a deduction rule D = W(C) of form (II) and ¢y,

Y2, ...y, are previous L-patterns and the condition C' of D holds. Then by the induction
hypothesis we have that I' Fp ¢ for all k = 1,...,n. By the definition of I'-P-theorems, it
follows that I' =p 0;41.

O

15.2 Comparison of L-proof systems

Let Py = (Axmy, DedRulesy), Po = (Axmsg, DedRuless) be two L-proof systems.

Definition 15.11. Py is said to be weaker than Py (we write Py < Pa) if the following holds:
for every L-pattern ¢ and for every set I' of L-patterns,

I'Fp, ¢ tmplies T =p, .
Thus, P; < Py it —Thmp, CT'—Thmp, for every set I' of L-patterns.
Proposition 15.12. Assume that
(i) Fp, @ for every axiom p € Azmy,
(ii) For every set I' of L-patterns, I'—=Thmp, is closed to DedRules .
Then Py < Pa.
Proof. Let I be a set of L-patterns. We have that
(i) Azmy C Thmp, CT—Thmp,.
(i) L CT'—Thmp,.
(iii) I'=Thmp, is closed to DedRules;.

By induction on I'-P;-theorems (Proposition 15.4), we get that I'—Thmp, C T'—Thmp,. Thus,
P1 < Po. O

Definition 15.13. The L-proof systems Py, P are said to be equivalent (we write Py ~ Pa) if
for every set T' of L-patterns,

I'Fp, ¢ implies I' Fp, .
Proposition 15.14. The following are equivalent:
(i) P1 ~ Pa,
(ii) P1 < P2 and Po < Py,
(iii) T—Thmp, =T —Thmp, for every set I of L-patterns.

15.3 Abstract matching logics

Definition 15.15. An abstract matching logic is a pair AML = (L, P), where
(i) L is a language for abstract matching logic. We say that L is the language of AML.
(i) P is an L-proof system. We say that P is the proof system for AML.

We also write £ 4nc instead of £ and Py instead of P.
For every set I' of L-patterns, the set I'—Thmp is called the set of I'-theorems of AML. The
set Thmyp is called the set of theorems of AML.
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A Expressions over a set
Let A be a nonempty set whose elements will be called symbols.
Notation A.1. For every m,n € N be such that m < n. We denote
[m,n]:={m,m+1,...,n—1,n}.
Notation A.2. If I CN and k € N, then
I+k:={n+k|nel}

An expression over A or simply expression is a finite sequence of symbols from A. We denote

an expression over A of length n € N* by agay ...a,_1, where a; € A for every i =0,...,n— 1.
The empty expression (of length 0) is denoted by A. The length of an expression a is denoted by
{(a).

The concatenation of expressions over A is defined as follows: if a = aga;...a,_1 and b =
b() . bk,h then ab = ap ... an,lbo N bkfl.

Definition A.3. Let a = agay ...a,_1 be an expression.

(i) If i,5 € [0,n — 1] are such that i < j, then the expression a;...a; is called the (i,7)-
subexpression of a.

(ii) A proper initial segment of a is an (0, j)-subexpression of a, that is an expression
apay . ..a;, where i € [0,n — 2.

Definition A.4. Let a = agay ...a,_1 and b be expressions.

(i) Let i € [0,n — 1]. We say that b occurs at place i in a if there exists j € [i,n — 1] such
that b is the (i, j)-subexpression of a.

(i1) We say that b occurs in a if there exists i € [0,n — 1] such that b occurs at place i in a.
(i1i) An occurrence of b in a is an i € [0,n — 1] such that b occurs at place i in a.
We denote the set of all occurrences of b in a by Occury(a).

Notation A.5. Let a, b, ¢, d be expressions and I C Occury(a). We denote by Repl?(a; I) the
expression obtained by replacing b with ¢ in a at every place i € I.

If I = {iy,...,ix}, we also write Repl®(a;iy, ..., i) instead of Repl?(a; ).

We shall write, for simplicity, Replall®(a) instead of Repl?(a; Occury(a)).

Lemma A.6. Let a, b, ¢ be expressions and I C Occurp(a). Assume that £(a) = n, {(b) = k
and ¢(c) = p. Then

(i) Ik < n.
(i) €(Replg(a; 1)) =n+ [I|(p — k).

Lemma A.7. Let a, b be expressions such that b occurs in a at 0 <i; < iz < {(a). If b is a not
constant expression, then
iz > i1 + {(b).

Proof. If ¢(b) = 1, then obviously iy > i1 + 1.
Otherwise,
p:=4L(b)>2 and b=by...bp_1.

Assume by contradiction that ia < i3 + ¢(b). As b is a not constant expression, there are
i < j €[0,p— 1] such that b; # b;, so

I:={ie0,p—1]]|b; #b; for some j < i} # (.

Let 49 := min{i € [0,p — 1] | b; # b; for some j < i}. O
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A.1 Useful results
Lemma A.8. Let a, b, ¢ be expressions and I C Occurp(a).
(i) ReplP(a;I) =a.
(ii) Repl®(a; ) = a.
Proof. Obviously. O

Lemma A.9. Let a, b, c be expressions. If a does not occur in b, c, then a does not occur in
bc.

Lemma A.10. Let a, b, c, d be expressions. Then
Replallj(bc) = Replall(b)Replalli(c).

Lemma A.11. Let a = apgay...an_1, b = bgb1...bj_1, c, be expressions and k be such that

ar = b, = d. Assume that
Replalld(a){k} = Replall(b){k}.

Then a = b.
Proof. Let ¢ = cocy ... cp—1. Denote a! = Repld(a; {k}) and b' = Repld(b; {k}). Then

l@)=n—-1+p, a' =aja}...a}, o, (b)=1-1+p, b =bb;...bj_5,,

and
ai for i € [0,k — 1] bi for i € [0,k — 1]
aj =4 cp_i fori € [k, k+p—1] bi =< cpy for i € [k, k+p—1]
Gi—pt1 foriek+pn—2+p bi—pt1 foriek+pmn—2+p

As a' = b!, we must have that n = [, a; = b; for all i € [0,k — 1] and Gi—p+1 = bj_p41 for all
i € [k+p,n—2+pl|, that is a; = b; for all j € [k +1,n —1]. As a, = by, by hypothesis, it follows
that a = b. O

Lemma A.12. Let a, b, c, d be expressions and k € Occurp(a). Then
Replg(a; {k}) = Repl§(Replg (a; {k}); {k}).

Lemma A.13. Let a, b, c, a* be expressions and k € Occury(a) such that a* = ReplP(a; {k}).
Then a = Repl§ (a*; {k}).

Proof. Apply Lemma A.12 with d := b. O
Lemma A.14. Let a, b, c, c1, by be expressions. Assume that
(i) a does not occur in b, c1;
(ii) by is obtained from b by replacing zero or more occurrences of ¢ with c;.
Then a does not occur in by.
Lemma A.15. Let a, b, ¢, d be expressions and k € [0,£(a) — 1] such that
(i) b occurs in a at place k;
(ii) ¢ contains symbols that are not in a;
(iii) d = Repl®(p; {k}).
Then Occure(d) = {k}. Thus, ¢ occurs uniquely in d at place k.
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A.2 /{(b)=/{(c)
Lemma A.16. Let b, c be expressions such that {(b) = ¢(c).
(i) Assume that a is an evpression and I C Occury(a). Then I C Occurc(Repl?(a;I)).

(ii) Assume that a is an expression and I C Occurp(a). Then

{(a) = ((Repl®(a; T)).

(i11) Assume that a is an expression and I,J C Occury(a) are such that INJ = 0. Then

ReplP(a; TU J) = ReplP? (Repl®(a; I);.J) = Repl? (Repl? (a; J); I).

(iv) Assume that a, d are expressions, I C Occurp(a) and £(d) = £(b) = £(c). Then

Repl§(a; I) = Repl§(Replg (a; 1); I).

(v) Assume that a, a* are expressions, I C Occurp(a) and a* = Repl2(a; I). Then

a = Reply (a*; I).

Proof. Let I = ¢(b) = ¢(c) and b =0boby ... bj_1, c=cpc1...c1—1, 1 >1

(i) Let n > 1, a = agay...an—1. If I = (), then the conclusion is obvious. Assume that
I={i,ig,...,ix} #0, where k > 1 and 0 < iy <is <...<ip <n—1. Thus, iz >i;. Let

0 _ 1 _ k _—
a’ =aply ... Qj—1, & = Qj; A1 41 - - Qjp—1, -y A = A, A4 1. An—1.

Then
a=a’ha'b...a* 'ba”

and
a=a’ba'b...a" 'ba”

(ii) TO WRITE

(iii) Apply (iv) with d := b. We have that Repll(a;I) = a and Repl{(ReplP(a;1);1) =
Replg (a*; I).

O

Lemma A.17. Let a, b, ¢, d be expressions and k € Occury(a) such that {(b) = {(c) = p and
d = Repl®(a;{k}). Assume thati <k<k+p—-1<I<n-—1.

(1) Let d* be the (i,1)-subexpression of d. Then k—i € Occury(d*) and a* = Replg (d*; {k —i})
is the (i,1)-subexpression of a.

(ii) Let a* be the (i,1)-subezpression of a. Then k—i € Occurp(a*) and d* = Repl?(a*; {k —i})
is the (i,1)-subexpression of d.
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A.3 Replacement of symbols

Lemma A.18. Let z, y be symbols, a be an expression and I C Occury(a). Then {(a) =
{(Reply(a; I)).

Proof. Apply Lemma A.16 (ii) with b:=z and c:=y O

Lemma A.19. Let x, y be symbols, a be an expression and I C Occur,(a).
Then I C Occury(Repl(a;1)).

Proof. Apply Lemma A.16(i) with b:=2 and c:=y O

Lemma A.20. Let z, y be symbols, a be an expression and I, J C Occury,(a) be such that INJ = {).
Then
Reply(a; 1 U J) = Reply (Reply (a; I); J) = Reply (Reply (a; J); I).

Proof. Apply Lemma A.16(iii) with b := z and ¢ :=y O

Lemma A.21. Let x, y, z be symbols, a be an expression and I C Occur,(a). Then
Repl?(a;I) = Repl?(Reply(a; I);I).

Proof. Apply Lemma A.16(iv) with b:=z, c:=y and d := z. O

Lemma A.22. Let x, y be symbols, a, a* be expressions and I C Occur,(a). Assume that
a* = Repl;(a;I). Then a = Replj(a*;I).

Proof. Apply Lemma A.16(v) with b:=z,c:=yand d :=y O
Lemma A.23. Let x, y be symbols and a be an expression such that y does not occur in a. Then
Occur;(a) = Occury(Replally (a)).

Proof. Let a = agay ...a,—1 and denote d := Replallg(a). Then, by Lemma A.18, we have that
é(a) = é(d) =n, hence d = dodl ‘e dn—l-

C By Lemma A.19.

D Leti€[0,n—1]\I. Then d; = a; # y, as y does not occur in a. O

Lemma A.24. Let x be symbol and a, b be expressions. Then
Occury(ab) = Occur,(a) U (Occury,(b) 4 £(a)).
Lemma A.25. Let a, b, c, d be expressions and x,y be symbols such that
(i) b occurs uniquely in a at place k;
(i) x, y do not occur in b;
(iii) d is obtained from a by replacing zero or more occurrences of x with y.
Then b occurs uniquely in d at place k.
Lemma A.26. Let a, b, ¢, d be expressions, k € [0,4(a) — 1] and x,z be symbols such that
(i) b occurs in a at k;
(i) z does not occur in b;
(#ii) ¢ = Replall?(b);
(iv) d = Repl®(a; {k}).
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Then
d = Repli(a; Occury(b) + k).

Lemma A.27. Let a be an expression and x,y,z € A. Assume that x occurs in a and I C
Occury(a), where n > 1. Let

b := Repl;(a;I), c:= Repl;(a;I).
Then
(i) I C Occur,(c);
(i) b = Repl:(c;I).

Lemma A.28. Let z, y, z be symbols, a be an expression and I,J C Occury(a) be such that
ITUJ = Occurg(a) and INJ = 0.
Then x does not occur in Reply(Repl?(a;J); I).

Lemma A.29. Letx, y, z be symbols such that x # y, z, a be an expression and I, J C Occur,(a)
be such that INJ = 0. Then

Reply (Repl(a; J); I) = Repl; (Reply (a; I); J).

B Set theory

Let A, B be sets. We use the following notations:
(i) AU B for the union of A and B.

(i) AN B for the intersection of A and B.

(iii) A\ B for the difference between A and B.

(iv) AAB for the symmetric difference of A and B.
(v) 24 for the powerset of A.

(vi) CaB for the complementary of B, when B C A.

B.1 Set-theoretic properties used in the lecture notes

Proposition B.1. Let A, B,C be sets. Then
(i) If B,C C A, then

A\ (B\C)=(A\B)uUC. (14)
(ii) If B C A, then
(AuC)\B)uC = (A\ B)UC. (15)
(iii) If BC A and CN A =10, then
(AUC)\B=(A\B)UC. (16)
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