
About a surprising computer program of Matthias Müller

Mihai Prunescu ∗

Abstract

Matthias Müller published on the net a C++ code and a text describing the implemented
algorithm. He claimed that the algorithm ”maybe” solves the NP-complete problem 3-SAT
in polynomial time. The program decided correctly so far the solvability for all instances that
have been checked. This intriguing fact must be understood.
In order to achieve this goal, we introduce the graph of all possible k-SAT clauses with edges
connecting every two non-conflicting clauses. We prove that a k-SAT instance I is satisfiable
if and only if there is a maximal clique of the clause graph that does not intersect I.

Key Words: computational complexity, 3-SAT, clause table, polynomial time, P = NP.

A.M.S.-Classification: 03D15, 03D55, 03D80.

1 Introduction

Matthias Müller published on the net a C++ code and a text describing the implemented algo-
rithm, see [1] (started in December 2013 and updated some times). He claimed that the algorithm
”maybe” solves the NP-complete problem 3-SAT in polynomial time. All objects and a lot of the
ideas below are suggested by Matthias’ Müller program and companion text. However, objects
and ideas are presented by him only intuitively, and proofs are reduced to arguments on some
examples. I consider that his approach is more credible if it is described in a better founded
mathematical language and with rigorous proofs. This is the goal of the present paper.

In order to achieve this goal, we introduce the graph of all possible k-SAT instances with edges
connecting every two non-conflicting clauses. We prove that a k-SAT instance I is satisfiable if
and only if there is a maximal clique of the clause graph that does not intersect I.

2 General definitions

The problem we are concerned here is k-SAT with exactly k variables per clause, seen as decision
problem. The most important case is 3-SAT, because k = 3 is the smallest value of k for which it
is known that the corresponding problem is NP-complete. See [2].

Definition 2.1 An instance of k-SAT is a formula written in conjunctive normal form with exactly
k different variables in every disjunctive clause:

I =

m∧
i=1

(εi1xi1 ∨ εi2xi2 ∨ · · · ∨ εikxik),

where k ≥ 1 and for all i = 1, . . . ,m, the variables xi1 , xi2 , . . . , xik are pairwise distinct, and every
εij means a negation or its absence. In fact, it is useful to consider that εij ∈ {0, 1} such that

∗Simion Stoilow Institute of Mathematics of the Romanian Academy, Research unit 5, P. O. Box 1-764, RO-
014700 Bucharest, Romania. mihai.prunescu@imar.ro, mihai.prunescu@gmail.com

1



εij = 0 means negation. The set of all occurring variables is considered to be {x1, . . . , xn}, where
n ≥ k is part of the input. The number n will be considered the measure of the complexity of the
instance, because the number of all possible clauses for fixed k is a polynomial in n. The instance
is solvable if there is an assignment of the variables with truth-values 0 (false) or 1 (true), such
that the whole expression evaluates 1 (true).

It is known that 1-SAT is trivially solvable in linear time, because the instance is solvable if and
only if no variable occurs both negated and positive in the instance. 2-SAT is also solvable in
linear time, see [3].

Definition 2.2 For a clause C, we call its support the k-element subset of {x1, . . . , xn} consisting
of the variables occurring in C. We call the set of all supports Σ(k, n).

Definition 2.3 For a clause C, we say that C[i] = 0 if the variable xi occurs negated in C and
that C[i] = 1 if the variable xi occurs positive in C. If xi does not occur in C, we write C[i] = −.

Definition 2.4 We fix a total order < on the set Σ(k, n) of all supports.

According to this order, the supports build a sequence s1, s2, . . . , s(n
k).

Definition 2.5 Let K(k, n) be the set of all possible k-SAT clauses with n variables.

Every clause is completely defined by giving its support and a k-letter word w ∈ {0, 1}k, that
encodes the information about which of the k variables is negated, or positive. Consequently,
K(k, n) has 2k

(
n
k

)
elements.

Definition 2.6 We fix a total order < on the set K(k, n) of all possible k-SAT clauses. According
to this order, the clauses build a sequence C0, C1, . . . , C2k(n

k)−1. We say that the clause order is

compatible with the support order, if the following condition is fulfilled:

For all t ∈ N with 0 ≤ t ≤
(
n
k

)
− 1, the set of all 2k clauses with support st occur in the clause

sequence as the set {C2kt, C2kt+1, . . . , C2kt+2k−1}.
We call the set {C2kt, C2kt+1, . . . , C2kt+2k−1}, the clause type set corresponding to the given
support.

The following definition has been given by Matthias Müller:

Definition 2.7 Two clauses C and C ′ are said to conflict if there is a variable xi present in both
clauses, once negated and once positive.

Definition 2.8 On the set K(k, n) we define the binary relation E by E(C,C ′) if and only if C
and C ′ does not conflict.

We observe that the relation E is symmetric and reflexive but not transitive. The undirected
clause graph (K(k, n), E) will be considered in the next sections.

3 Clause tables

In this section we introduce Müller’s notion of a clause table. Differently from Müller, we make
the definition independent of any given effective routine that generates all possible k-SAT clauses.
For the rest of the paper we fix an order of the set Σ(k, n) of all supports and an order of the set
K(k, n) of all possible k-SAT clauses, which is compatible with the order of Σ(k, n). We recall
that {0, 1}n is the set of all assignments of truth-values for the set of variables {x1, x2, . . . , xn}.
This set has 2n elements and can be alternatively seen as set of all {0, 1}-words of length n.

2



Definition 3.1 For any support s ∈ Σ(k, n) we define the projection πs : {0, 1}n → K(k, n) as
follows: If s = {i1, i2, . . . , ik} and ~a ∈ {0, 1}n, πs(~a) is the clause

ai1xi1 ∨ ai2xi2 ∨ . . . ∨ aikxik ,

where aij = 0 is interpreted as a negation. This set of projections can be seen as an application
π : Σ(k, n)× {0, 1}n → K(k, n) given by π(s,~a) = πs(~a) for all s ∈ Σ(k, n) and ~a ∈ {0, 1}n.

Definition 3.2 The clause table is a matrix with
(
n
k

)
columns and 2n rows containing all possible

k-SAT clauses with n variables. The set of columns is indexed using the ordered set of supports
Σ(k, n). The set of rows is indexed using the set of binary words of length n, {0, 1}n. (We can
see the set {0, 1}n as lexicographically ordered, but in fact its ordering is not important.) The
column s and the row ~a intersect in the element π(s,~a).

Lemma 3.3 All clauses occurring in a row of the clause table are distinct and pairwise non-
conflicting. Any two different rows of the clause table are different as sets of clauses. All clauses
occurring in a column of the clause table are pairwise identical or conflicting. In fact, if K(k, n)
has an order that is compatible with Σ(k, n), in the column indexed by st ∈ Σ(k, n) occur all 2k

many clauses {C2kt, . . . , C2kt+2k−1} and every one of them arises 2n−k many times in the column.

Proof: The clauses occurring in a row of the clause table are distinct because they have different
supports. They are non-conflicting because they are projections of the same assignment ~a on
different supports, so even if the supports have elements xi in common, it is impossible that xi
occurs negated in C and positive in C ′, or vice-versa. Two different rows of the clause table are
sets of projections from different assignments, and if ~a 6= ~b, there is some support s such that
π(s,~a) 6= π(s,~b). All clauses occurring in a column of the clause table have the same support, so
they are equal or differ on at least one element of the support - in this case they are different and
conflicting. All clauses with support s occur in the column defined by s because all assignments
are projected on this support. If we fix k booleans, there are 2n−k possibilities to complete the
assignment. 2

Lemma 3.4 For t ≥ 1, if t many clauses are pairwise non-conflicting, then there is a row of the
clause table such that all t clauses occur in that row.

Proof: Denote the support of a clause C by support(C). Let D1, . . . , Dt be the t clauses. We are
looking for an assignment ~a ∈ {0, 1}n in order to prove that all clauses are on the row indexed by ~a.
In fact, ~a is uniquely determined on the set S = support(D1) ∪ support(D2) ∪ · · · ∪ support(Dt),
because for i ∈ S one takes any j such that i ∈ support(Dj) and takes ai = Dj [i]. Clauses are not
conflicting, so the definition is correct. If i ∈ {1, . . . n} \S 6= ∅, for these values one may choose ai
arbitrarily. 2

Lemma 3.5 The clause graph (K(k, n), E) has exactly 2n many maximal cliques. Every maximal
clique contains

(
n
k

)
elements, which are the elements of some row in the clause table. For all t ≥ 0,

the 2k clauses with support st build a set {C2kt, . . . , C2kt+2k−1} that intersects every maximal clique
of K(k, n) in exactly one vertex. Every vertex of K(k, n) belongs simultaneously to exactly 2n−k

maximal cliques.

Proof: As already seen in Lemma 3.4, a set of pairwise non-conflicting clauses can be always
found as a subset of a row of the clause table. So the number of elements of a maximal clique is
bounded by the length of a row of the clause table, and the number of maximal cliques is bounded
by the number of clause table rows. On the other side, as already seen in Lemma 3.3, every clause
table row is a clique. The last two statements are properties of the clause table (see Lemma 3.3)
translated in terms of graphs. 2

Recall that one can see an instance of k-SAT as a set of clauses that must be simultaneously
satisfied by some assignment.

3



Lemma 3.6 An instance I of the k-SAT problem is solvable if and only if there is some row R
of the clause table such that I ∩R = ∅.

Proof: For any assignment ~a ∈ {0, 1}n, let ¬~a be the assignment (¬a1,¬a2, . . . ,¬an).

Consider that I ∩ R = ∅ and R is the row defined by an assignment ~a ∈ {0, 1}n. Let C ∈ I be
some clause. We find C somewhere in the clause table. The column of C intersects the row R
in a clause C ′ which is different of C, so by Lemma 3.3 this clause is conflicting with C but has
the same support as C. Let s be their common support. There is an element i ∈ s such that
(C[i] = 0 and C ′[i] = 1) or (C[i] = 1 and C ′[i] = 0). In both cases ¬~a is satisfying C in the literal
containing the variable xi. But C was chosen arbitrary, so ¬~a satisfies I and I is solvable.

Now consider the case that for all rows R of the clause table, I∩R 6= ∅. Consider some assignment
~a and its negation ¬~a. Let R be the clause table row corresponding to ~a. As we have seen when
proving the other direction, all clauses of I that do not belong to R are satisfied by ¬~a. However,
no clause contained in R is satisfied by ¬~a, and there is at least one clause of I in R. So ¬~a is not
a solution of I. As ~a has been chosen arbitrarily, no assignment can be a solution of I, and so I
is unsolvable. 2

Theorem 3.7 An instance I of the k-SAT problem is solvable if and only if there is some maximal
clique R of the clause graph (K(k, n), E) such that I ∩R = ∅.

Proof: This follows directly from Lemma 3.5 and Lemma 3.6.

Remark 3.8 The graph (K(k, n), E) is a
(
n
k

)
-partite graph and the maximal cliques in this graph

have
(
n
k

)
elements, one for every partition subset. The partition subsets correspond with the set of

all k-SAT clause supports and every one contains exactly 2k many clauses with the same support.

4 Algorithm

I present Müller’s Algorithm in a modified form. I consider that the form below makes things
easier to understand. Moreover, this modified form runs faster.

Definition 4.1 Let (G,E) be a graph. We say that an edge AB is seen from a vertex C if edges
CA and CB exist in the graph. We say that the edge AB is seen from a subset S ⊂ G if and only
if there is a vertex C in S such that AB is seen from C. This definition will be applied to S, the
set of all 2k clauses with support s ∈ Σ(k, n). We recall that such a set has been called a clause
type set.

We observe that the algorithm works in the following way:

Consider (K(k, n), E) and an order of edges compatible with the lexicographic order of Σ(k, n).

Delete all edges AB such that A ∈ I or B ∈ I.

For all supports s ∈ Σ(k, n), excepting the last two supports, do:

Make the list of all edges that can be seen from the corresponding clause type set S.

Delete all other edges in graph.

Delete the 2k vertices in S.

If there is an edge connecting two of the 2k+1 remained vertices, return true. If not, return false.

4



The idea is quite natural in the following sense. Every maximal clique intersects a clause type set
in a one element set. If an edge cannot be seen from a clause type set, it cannot belong to any
maximal clique, so it can be deleted. Unhappily it is not clear so far, why the program should
always give correct positive answers. (All negative answers are correct, but we cannot exclude false
positive answers.) The algorithm is not good enough for finding (maximal) t-cliques in arbitrary
t-partite graphs, but we don’t know either if it does work or not for the special family of graphs
(K(k, n) \ I). Matthias Müller tried the program successfully for a lot of 3-SAT instances.

If k = 3, the algorithm practices at most ((n
3

)
3

)
many edge checks, which is a polynomial of degree 9. An edge check can be done in logarithmic
time, because we might need logarithmic time to read a name of variable like xn. Looking for
clauses in a list I of length O(n3) can be done by binary search in time O(3 log n), because the
list could have been ordered lexicographically before. So I appreciate the computation time for
3-SAT to an order like O(n9 log n).

Lemma 4.2 Let n be ≥ k+ 1. If the clause graph (K(k, n), E) contains a maximal clique R such
that R ∩ I = ∅, then the algorithm returns true.

Proof: Indeed, all edges in this maximal clique R are seen from the clause where the maximal
clique intersects the first clause type set. After deleting this first clause type set, all edges of the
maximal clique R, which are still in the graph, are seen from a vertex of the second clause type
set, so they will not be deleted. And so on. 2

5 A counterexample to order issues

Despite the fact that in Müller’s argumentation the order of supports does not play any role, I
will show here that his algorithm is sensitive to order issues.

Consider the following instance I of the problem 3-SAT. I has 20 clauses and contains 8 variables:

(¬x2 ∨ ¬x5 ∨ ¬x8) ∧ (¬x3 ∨ x7 ∨ x8) ∧ (x3 ∨ x7 ∨ x8) ∧ (x2 ∨ ¬x5 ∨ ¬x6) ∧ (x4 ∨ ¬x6 ∨ x8) ∧ (x4 ∨ x6 ∨ x8) ∧ (¬x3 ∨ x5 ∨ x6)∧

(x2 ∨ ¬x4 ∨ x6) ∧ (¬x1 ∨ x4 ∨ x5) ∧ (¬x5 ∨ x6 ∨ x8) ∧ (x5 ∨ ¬x6 ∨ ¬x8) ∧ (¬x3 ∨ x6 ∨ ¬x8) ∧ (¬x4 ∨ ¬x6 ∨ ¬x7) ∧ (x2 ∨ x7 ∨ ¬x8)∧

(x2 ∨ x6 ∨ ¬x8) ∧ (x1 ∨ ¬x7 ∨ ¬x8) ∧ (x1 ∨ x7 ∨ ¬x8) ∧ (¬x2 ∨ x6 ∨ x7) ∧ (x3 ∨ x5 ∨ x8) ∧ (¬x2 ∨ ¬x4 ∨ ¬x7)

Lemma 5.1 The instance I introduced above is unsolvable. There is an order A of the 3-SAT
supports such that Müller’s Algorithm returns a false true for this problem. For the lexicographic
order of the supports and for another order B, Müller’s Algorithm correctly returns false.

The proof can be done only by dirrect computation. Let s1, s2, . . . , s16 be the supports of all
clauses in I, in the order of their occurrence in I, according to the list above. Consider the order
A consisting of: all 40 supports for 8 variables that do not occur in I, put in an arbitrary order
(e. g. the lexicographic one), followed by the 16 supports occurring in I, in the order in which
they occur in I. If run over this order of supports, Müller’s Algorithm returns a false true. This
fact also answers another possible question: Is it important that all supports are present, and not
only those which contain the clauses of the instance? The answer is yes. It is also important to
notice the following lemma:

Lemma 5.2 Consider an order of Σ(3, n) such that the first m supports do not contain any clause
from I. As long as the algorithm runs over those m supports, no edge connecting clauses of the
remaining supports is deleted.

5



Proof: Indeed, this does not happen by the first support, because all maximal cliques pass through
this support, and all edges which connect vertexes from the remaining supports are visible from
the first support. This happens exactly so during the second support and up to support m. 2

So, running the algorithm only with supports intersecting I or running the algorithm with the
order A produce the same false positive result.

The order B is constructed in a way opposite to which the order A has been constructed. First we
write down the 16 supports of clauses occurring in I, and then all other 40 supports lexicograph-
ically ordered. This order returns the correct negative answer. Even if the 40 supports do not
contain missing vertexes, there are lots of edges which are deleted when running over them. This
is the effect of the edges deleted when running through the first 16 supports: some later edges are
no more seen from some later supports. 2

In general, in order to prevent that elements from I are too close to the end, and do not express
their whole power, I recommend that one always build a support order like order B and runs
the algorithm over this order. I also recommend that after every support, one checks the stop
condition. If I is such that it contains elements in all supports, or in almost all supports and
very close to the end, one can introduce a dummy variable more and consider I as an instance of
n + 1 variables. For this ”new” I, construct order B and run Müller’s Algorithm. The improved
algorithm is presented below:

Order the set of supports Σ(k, n) such that the supports containing clauses from I are put before.

Optional: Permute the supports in the decreasing order of the number of clauses from I contained
in the corresponding clause type sets.

Optional: If at least
(
n
k

)
− 2 clause type sets contain clauses from I, consider I as instance in

variables {x1, . . . , xn, xn+1} and restart the algorithm.

Consider (K(k, n), E) and an order of edges compatible with the order of Σ(k, n).

Delete all edges AB such that A ∈ I or B ∈ I.

For all supports s ∈ Σ(k, n), excepting the last two supports, do:

Make the list of all edges that can be seen from the corresponding clause type set S.

Delete all other edges in graph.

Delete the 2k vertices in S.

If there are no more edges between the last two clause type sets, stop and return false.

If there is an edge connecting the last two clause type sets, return true. If not, return false.

I believe that, for the problem 3-SAT, the algorithm improved this way always returns false if
all maximal cliques intersect I. It looks to be so, that missing elements produce holes that
become bigger and bigger along the former maximal cliques, if they have enough place to do this.
Unhappily, I could not prove (or disprove) this so far, and the problem remains open.

6 Obsevations

This section contains some partial results.

Lemma 6.1 Both algorithms given above correctly solve 1-SAT.

6



Proof: A 1-SAT instance is unsolvable if and only if a variable x occurs both negated and positive
in the instance. On the other hand, the algorithm deletes some edge if and only if both clauses x
and ¬x are absent in the clause type set of x. In this case, no further edge can be seen from x
and all following edges are deleted. The algorithm stops and returns a right false. 2

Observation 6.2 For all k ≥ 1 is true that if an instance I of the problem k-SAT contains a
whole clause type set (corresponding to some support), then I is unsolvable. Of course, from this
clause type set one cannot see any further edge.

Definition 6.3 A 2-SAT clause is denoted AB, where A and B are literals, i. e. negated or
positive variables. An edge of the graph K(2, n) connecting clauses AB and CD is denoted
AB−CD. A 3-SAT clause is denoted ABC, where again A, B and C are literals. An edge of the
graph K(3, n) connecting clauses ABC and DEF is denoted ABC −DEF .

Lemma 6.4 When running both algorithms given above:

If the algorithms are applied for 2-SAT: If a clause AB is missing in a given clause type set, all
edges Au− Bv there are still in the graph will be deleted when the clause type set of AB is
processed.

If the algorithms are applied for 3-SAT: If a clause ABC is missing in a given clause type set,
all edges Xuv − Y Zw there are still in the graph will be deleted when the clause type set of
ABC is processed, where {A,B,C} = {X,Y, Z}.

Proof: In both cases, the edges mentioned above can be seen from the clause type set of the
clause AB (respectivlely, ABC) only from the corresponding clauses, because they conflict with
all otherclauses in the given clause type set. 2

If one checks in detail how the algorithms work, one sees that the edges mentioned in the Lemma
6.4 are only a small part of the edges deleted by the algorithms. Of course, there are a lot of edges
which are no more seen from some clause type set, because at least one edge between each vertex
in the clause type set and the given edge has been deleted before. One can introduce a notion of
rank for the edges deleted by the algorithms, such that the edges mentioned in Lemma 6.4 are the
deleted edges of rank one.

Definition 6.5 Only deleted edges get a rank.

Edges C1 − C2 which are deleted because C1 ∈ I or C2 ∈ I, get rank 0.

Suppose that an edge C1 − C2 is deleted after proceeding a clause type set S.

Start with the rank value r = 0. For each vertex C ∈ S:

If the edge C − C1 is still present and C − C2 has rank a, replace r with max(r, a+ 1).

If the edge C − C2 is still present and C − C1 has rank b, replace r with max(r, b+ 1).

If edges C − C1 and C − C2 have ranks a and b, replace r with max(r,min(a, b) + 1).

The last value of the rank reached during this procedure will be the rank of C1 − C2.

Experiments show that the rank ist most probably unbounded. In some 3-SAT instances with
14 variables, the author meat edges of rank 12. The fact that the rank is not bounded seems to
increase the difficulty of the problem.

We finish with an illustrated example. The following instance consists of eight clauses in five
variables. The instance is minimally unsolvable, in the sense that all proper subsets are solvable,
and all five variables occur in the clauses.

7



Figure 1: Edges seen from the first clause type set.

Figure 2: Edges seen from the second clause type set.

8



Figure 3: Edges seen from the third clause type set.

I = (¬x2 ∨ ¬x4 ∨ x5) ∧ (¬x2 ∨ x4 ∨ x5) ∧ (¬x2 ∨ ¬x3 ∨ ¬x5) ∧ (¬x2 ∨ x3 ∨ ¬x5)∧
∧(¬x1 ∨ x2 ∨ ¬x4) ∧ (¬x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x3)

The set of supports is ordered as follows: (2, 4, 5), (2, 3, 5), (1, 2, 4), (1, 2, 3), (1, 2, 5), (1, 3, 4),
(1, 3, 5), (1, 4, 5), (2, 3, 4), (3, 4, 5). Only the first four supports contain clauses from I, the remain-
ing six supports are ordered lexicographically. The images below represent the successive graphs
produced by the second algorithm. The clause type sets corresponding to each support contain
eight elements and are displayed vertically. The graph is 10-partite. Clauses from I are marked
by red vertexes.

References

[1] Matthias Müller: Polynomial SAT-solver. http://vixra.org/author/matthias mueller

[2] Michael R. Garey and David S. Johnson: Computers and intractability: A guide to
the theory of NP-completeness. W. H. Freeman & Co., 1979.

[3] Bengt Aspvall, Michael F. Plass, Robert E. Tarjan: A linear-time algorithm for
testing the truth of certain quantified boolean formulas. Information Processing Letters 8
(3), 121123, 1979.

9



Figure 4: No edge is seen from the fourth clause type set anymore.

Figure 5: After processing the fourth clause type set, all edges vanished.

10


