SNSB Winter Term 2010/2011 Ergodic Ramsey Theory Laurențiu Leuștean

16.11.2010

Homework 3

(H3.1) Give an example showing that the Multiple Recurrence Theorem 1.7.0.3 does not hold if the condition of commutativity of the homeomorphisms is omitted.

(H3.2) Let $l \ge 1$ and $T_1, \ldots, T_l : X \to X$ be commuting continuous mappings of a compact metric space (X, d). Then there exists a multiply recurrent point for T_1, \ldots, T_l .

(H3.3) Prove that the following statement is in general false: For any finite partition of \mathbb{N} , one of the cells contains an infinite arithmetic progression.

(H3.4) Let us consider the following statement

- (*) Let X be a compact metric space, $T: X \to X$ be a homeomorphism, and $(U_i)_{i \in I}$ be an open cover of X. Then there exists an open set U_{i_0} such that for all $k \ge 1$, $U_{i_0} \cap T^{-n}(U_{i_0}) \cap \ldots \cap T^{-(k-1)n}(U_{i_0}) \ne \emptyset$ for infinitely many n.
- (i) Prove (*) in two ways:
 - (a) applying Multiple Recurrence Theorem.
 - (b) using van der Waerden theorem.
- (ii) Deduce van der Waerden theorem from (*).
- (H3.5) Prove the multidimensional van der Waerden theorem 2.1.4.1.