SNSB
Winter Term 2010/2011
Ergodic Ramsey Theory
Laurenţiu Leuştean
07.12.2010

Homework 4

(H4.1) Let $A \subseteq Z$. Prove the following
(i) If $m \notin A$ for some $m \in \mathbb{Z}_{+}$, then $\sigma(A) \leq 1-\frac{1}{m}<1$.
(ii) $\sigma(A)=1$ if and only if A contains \mathbb{Z}_{+}.
(iii) If A is finite, then $\sigma(A)=0$.
(iv) If $A \subseteq \mathbb{Z}_{+}$is the set of even integers, then $\sigma(A)=0$.
(v) If $A \subseteq \mathbb{Z}_{+}$is the set of odd integers, then $\sigma(A)=\frac{1}{2}$.
(H4.2) Prove the following.
(i) If $A \subseteq Z$ contains \mathbb{Z}_{+}, then $d(A)=1$.
(ii) Finite sets have density 0 .
(iii) If $A=\{a+i d \mid i \geq 0\}, a, d \in \mathbb{Z}_{+}$is an arithmetic progession, then $d(A)=\frac{1}{d}$. In particular, the set of positive even (resp. odd) integers has density $\frac{1}{2}$.
(iv) The set $A \subseteq \mathbb{Z}_{+}$of prime numbers has density 0 .
(v) Let A be the set of positive integers with leading digit equal to 1 in the expansion to base 10. Then $\underline{d}(A) \neq \bar{d}(A)$.
(vi) If $A, B \subseteq \mathbb{Z}$, then $\bar{d}(A \cup B) \leq \bar{d}(A)+\bar{d}(B)$.
(vii) If $\bar{d}(A)>0$ and $A=\bigcup_{i=1}^{r} C_{i}$, then there exists $i \in[1, r]$ such that $\bar{d}\left(C_{i}\right) \geq \frac{\bar{d}(A)}{r}>0$.
(H4.3) Prove the following.
(i) If $A \subseteq \mathbb{Z}$ contains \mathbb{Z}_{+}, then $B d^{\star}(A)=1$.
(ii) Finite sets have Banach density 0.
(iii) If $A, B \subseteq \mathbb{Z}$, then $B d^{\star}(A \cup B) \leq B d^{\star}(A)+B d^{\star}(B)$.
(iv) If $A=\{a+i d \mid i \geq 0\}, a, d \in \mathbb{Z}_{+}$is an arithmetic progession, then $B d(A)=\frac{1}{d}$. In particular, the set of positive even (resp. odd) integers has Banach density $\frac{1}{2}$.
(v) If $B d^{\star}(A)>0$ and $A=\bigcup_{i=1}^{r} C_{i}$, then there exists $i \in[1, r]$ such that $B d^{\star}\left(C_{i}\right) \geq$ $\frac{B d^{\star}(A)}{r}>0$.
(H4.4) Let $A=\bigcup_{n=1}^{\infty}\left[n^{3}, n^{3}+n\right]$. Prove that $B d^{\star}(A)>0$ and $d(A)=0$.

