SNSB Winter Term 2010/2011 Ergodic Ramsey Theory Laurențiu Leuștean

26.10.2010

Seminar 1

(S1.1) Let (X,T) be a TDS and $x \in X$. Then

- (i) x is a forward transitive point if and only if $x \in \bigcup_{n\geq 0} T^{-n}(U)$ for every nonempty open subset U of X.
- (ii) Assume that (X,T) is invertible. Then x is a transitive point if and only if $x \in \bigcup_{n \in \mathbb{Z}} T^n(U)$ for every nonempty open subset U of X.

Proof. See Lemma 1.4.0.6.

(S1.2) Let (X,T) be a TDS with X metrizable and $(U_n)_{n\geq 1}$ be a countable basis of X. Then

(i)
$$\{x \in X \mid \overline{\operatorname{orb}}_+(x) = X\} = \bigcap_{n \ge 1} \bigcup_{k \ge 0} T^{-k}(U_n).$$

(ii) If (X,T) is invertible, then $\{x \in X \mid \overline{\operatorname{orb}}(x) = X\} = \bigcap_{n \ge 1} \bigcup_{k \in \mathbb{Z}} T^k(U_n)$.

Proof. See Lemma 1.4.0.7.

(S1.3) Let (X,T) be an invertible TDS. The following are equivalent:

- (i) If U is a nonempty open subset of X such that T(U) = U, then U is dense.
- (ii) If $E \neq X$ is a proper closed subset of X such that T(E) = E, then E is nowhere dense.

Proof. Take $U \coloneqq X \setminus E$. Then U is nonempty iff E is proper, U is open iff E is closed, U is dense in X iff E is nowhere dense, by B.1.0.13.(iv). Furthermore, since T is bijective, $T(U) = T(X \setminus E) = X \setminus T(E)$, hence, T(U) = U iff T(E) = E.

(S1.4) Define an equivalence relation on \mathbb{R} by

$$x \sim y$$
 if and only if $x - y \in \mathbb{Z}$, (C.3)

let \mathbb{R}/\mathbb{Z} be the set of equivalence classes [x], and $\pi : \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ be the natural projection. Endow \mathbb{R}/\mathbb{Z} with the quotient topology and for every $\alpha \in [0, 1)$ define

$$T_{\alpha}: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}, \ T_{\alpha}([x]) = [x + \alpha].$$

Prove that $(\mathbb{R}/\mathbb{Z}, T_{\alpha})$ is a TDS isomorphic with (\mathbb{S}^1, R_a) , where $\alpha \in [0, 1)$ and $a = e^{2\pi i \alpha}$.

Proof. It is easy to see that ~ is indeed an equivalence relation. For every $\alpha \in [0,1)$, let us define

$$\pi_{\alpha} : \mathbb{R} \to \mathbb{R}/Z, \quad \pi_{\alpha}(x) = [x + \alpha]$$

Then π_{α} is a quotient map, and for every $x, y \in \mathbb{R}$, $\pi_{\alpha}(x) = \pi_{\alpha}(y)$ if and only if $\pi(x) = \pi(y)$. Thus, we can apply B.8.0.21 to conclude that T_{α} is the unique homeomorphism making the following diagram commutative:

Let us consider the map

$$\varepsilon : \mathbb{R} \to \mathbb{S}^1, \quad \varepsilon(t) = e^{2\pi i t}.$$

Then ε is a quotient map, by B.11.0.13. Furthermore, for every $x, y \in \mathbb{R}$, $\pi(x) = \pi(y)$ if and only if $x - y \in \mathbb{Z}$ if and only if $\varepsilon(x) = \varepsilon(y)$. Thus, we can apply again B.8.0.21 to conclude that there exists a unique homemorphism $\varphi : \mathbb{R}/\mathbb{Z} \to \mathbb{S}^1$ such that the following diagram is commutative:

Thus, $\varphi([x]) = \varepsilon(x) = e^{2\pi i x}$. Furthermore, since \mathbb{S}^1 is compact Hausdorff, it follows that \mathbb{R}/\mathbb{Z} is also compact Hausdorff. Hence, $(\mathbb{R}/\mathbb{Z}, T_{\alpha})$ is an invertible TDS.

Finally, for $a = e^{2\pi i \alpha}$,

$$(\varphi \circ T_{\alpha})([x]) = \varphi([x + \alpha]) = e^{2\pi i (x + \alpha)} = e^{2\pi i \alpha} \cdot e^{2\pi i x} = a \cdot \varphi([x])$$
$$= (R_a \circ \varphi)([x]).$$

Hence, $\varphi : (\mathbb{R}/\mathbb{Z}, T_{\alpha}) \to (\mathbb{S}^1, R_a)$ is an isomorphism of TDSs.

(S1.5) Let (G, L_a) $(a \in G)$ be the left translation on a compact group (see Example 1.1.3 in the lecture). Prove that if (G, L_a) is (forward) transitive, then actually all points are (forward) transitive.

Proof. For every $g \in G$, let $R_g : G \to G$, $R_g(h) = h \cdot g$ be the right translation by g. Then R_g is a homeomorphism, and $\operatorname{orb}_+(g) = R_g(\operatorname{orb}_+(1))$, $\operatorname{orb}(g) = R_g(\operatorname{orb}(1))$. Apply B.4.1.3.(iv) to get that g is a (forward) transitive point if and only if 1 is a (forward) transitive point.

Let \mathcal{F} be a collection of blocks over W, which we will think of as being the **forbidden blocks**. For any such \mathcal{F} , define $X_{\mathcal{F}}$ to be the set of sequences which do not contain any block in \mathcal{F} .

Definition. A shift space (or simply shift) is a subset X of a full shift $W^{\mathbb{Z}}$ such that $X = X_{\mathcal{F}}$ for some collection \mathcal{F} of forbidden blocks over W.

Note that the empty space is a shift space, since putting $\mathcal{F} = W^{\mathbb{Z}}$ rules out every point. Furthermore, the full shift $W^{\mathbb{Z}}$ is a shift space; we can simply take $\mathcal{F} = \emptyset$, reflecting the fact that there are no constraints, so that $W^{\mathbb{Z}} = X_{\mathcal{F}}$.

The collection \mathcal{F} may be finite or infinite. In any case it is at most countable since its elements can be arranged in a list (just write down its blocks of length 1 first, then those of length 2, and so on).

Definition. Let X be a subset of the full shift $W^{\mathbb{Z}}$, and let $\mathcal{B}_n(X)$ denote the set of all n-blocks that occur in points of X. The **language of** X is the collection

$$\mathcal{B}(X) = \bigcup_{n \ge 0} \mathcal{B}_n(X). \tag{C.4}$$

For a block $u \in \mathcal{B}(X)$, we say also that u occurs in X or x appears in X or x is allowed in X.

(S1.6) Let $X \subseteq W^{\mathbb{Z}}$ be a nonempty subset of $W^{\mathbb{Z}}$.

- (i) $X \subseteq X_{\mathcal{B}(X)^c}$.
- (ii) If X is a shift space, then $X = X_{\mathcal{B}(X)^c}$. Thus, the language of a shift space determines the shift space.
- *Proof.* (i) Let $\mathbf{x} \in X$. If u is a block in $\mathcal{B}(X)^c$, then u does not occur in X; in particular, u does not occur in \mathbf{x} .
 - (ii) We have that $X = X_{\mathcal{F}}$ for some collection \mathcal{F} of forbidden blocks. Let $\mathbf{x} \in X_{\mathcal{B}(X)^c}$. If u is a block in \mathcal{F} , then u does not occur in X, hence $u \in \mathcal{B}(X)^c$, so u does not occur in \mathbf{x} .

(S1.7) Let $X \subseteq W^{\mathbb{Z}}$ be a nonempty subset of $W^{\mathbb{Z}}$. The following are equivalent

- (i) X is a shift space.
- (ii) For every $\mathbf{x} \in W^{\mathbb{Z}}$, if $\mathbf{x}_{[i,j]} \in \mathcal{B}(X)$ for all $i \ge j \in \mathbb{Z}$, then $\mathbf{x} \in X$.
- (iii) X is a closed strongly T-invariant subset of $W^{\mathbb{Z}}$.

Proof. $(i)(\Leftrightarrow)(ii)$ It is easy to see that (ii) is equivalent with $X_{\mathcal{B}(X)^c} \subseteq X$. Apply now S1.6.(ii).

 $(ii)(\Rightarrow)(iii)$ Let $\mathbf{x} \in X$ and $\mathbf{y} \coloneqq T^{-1}(\mathbf{x})$. For all $i \ge j \in \mathbb{Z}$,

$$(T\mathbf{x})_{[i,j]} = \mathbf{x}_{[i+1,j+1]} \in \mathcal{B}(X), \quad \mathbf{y}_{[i,j]} = \mathbf{x}_{[i-1,j-1]} \in \mathcal{B}(X).$$

Apply (ii) to conclude that $\mathbf{x}, \mathbf{y} \in X$. Thus, T(X) = X, so X is strongly T-invariant. An inspection of the proof the sequential compactness of the full shift $W^{\mathbb{Z}}$ (see Theorem 1.2.0.5), shows that in fact it holds for any subset X satisfying (ii).

We get that X is T-invariant and compact, hence closed, since $W^{\mathbb{Z}}$ is Hausdorff. $(iii) \Rightarrow (ii)$ We prove the contrapositive of (ii). Assume that $\mathbf{x} \in W^{\mathbb{Z}} \setminus X$. Since $W^{\mathbb{Z}} \setminus X$ is open, there exists $k \ge 0$ such that $B_{2^{-k+1}}(\mathbf{x}) \subseteq W^{\mathbb{Z}} \setminus X$. Let $u \coloneqq \mathbf{x}_{[-k,k]}$. If $u \in \mathcal{B}(X)$, then $u = \mathbf{y}_{[i,i+2k]}$ for some $\mathbf{y} \in X$ and $i \in \mathbb{Z}$. Let $l \coloneqq i + k$. Since X is strongly T-invariant, we have that $T^l \mathbf{y} \in X$. On the other hand, $(T^l \mathbf{y})_{[-k,k]} = \mathbf{y}_{[i,i+2k]} = \mathbf{x}_{[-k,k]}$, so $T^l \mathbf{y} \in B_{2^{-k+1}}(\mathbf{x})$, hence $T^l \mathbf{y} \notin X$. We have got a contradiction. Thus, $\mathbf{x}_{[-k,k]} \notin \mathcal{B}(X)$.

(S1.8) Determine whether the following sets are shift spaces or not:

- (i) X is the set of all binary sequences with no two 1's next to each other.
- (ii) X is the set of all binary sequences so that between any two 1's there are an even number of 0's.
- (iii) X is the set of points each of which contains exactly one symbol 1 and the rest 0's.

Proof. (i) X is a shift space: $X = X_{\mathcal{F}}$ with $\mathcal{F} = \{11\}$.

- (ii) Take $\mathcal{F} = \{10^{2n+1} \mid n \ge 0\}$. Then $X = X_{\mathcal{F}}$, hence X is a shift space.
- (iii) X is not a shift space. We have that $0^{\infty} \notin X$, while any block of 0's occurs in X, so (ii) from the above exercise is contradicted.