
SNSB
Winter Term 2010/2011
Ergodic Ramsey Theory
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(S1.1) Let (X,T ) be a TDS and x ∈X. Then

(i) x is a forward transitive point if and only if x ∈ ⋃n≥0 T −n(U) for every nonempty
open subset U of X.

(ii) Assume that (X,T ) is invertible. Then x is a transitive point if and only if x ∈
⋃n∈Z T n(U) for every nonempty open subset U of X.

Proof. See Lemma 1.4.0.6.

(S1.2) Let (X,T ) be a TDS with X metrizable and (Un)n≥1 be a countable basis of X.
Then

(i) {x ∈X ∣ orb+(x) =X} = ⋂
n≥1
⋃
k≥0

T −k(Un).

(ii) If (X,T ) is invertible, then {x ∈X ∣ orb(x) =X} = ⋂
n≥1
⋃
k∈Z

T k(Un).

Proof. See Lemma 1.4.0.7.

(S1.3) Let (X,T ) be an invertible TDS. The following are equivalent:

(i) If U is a nonempty open subset of X such that T (U) = U , then U is dense.

(ii) If E ≠ X is a proper closed subset of X such that T (E) = E, then E is nowhere
dense.

Proof. Take U ∶= X ∖E. Then U is nonempty iff E is proper, U is open iff E is closed, U

is dense in X iff E is nowhere dense, by B.1.0.13.(iv). Furthermore, since T is bijective,
T (U) = T (X ∖E) =X ∖ T (E), hence, T (U) = U iff T (E) = E.



(S1.4) Define an equivalence relation on R by

x ∼ y if and only if x − y ∈ Z, (C.3)

let R/Z be the set of equivalence classes [x], and π ∶ R → R/Z be the natural projection.
Endow R/Z with the quotient topology and for every α ∈ [0,1) define

Tα ∶ R/Z→ R/Z, Tα([x]) = [x + α].

Prove that (R/Z, Tα) is a TDS isomorphic with (S1,Ra), where α ∈ [0,1) and a = e2πiα.

Proof. It is easy to see that ∼ is indeed an equivalence relation. For every α ∈ [0,1), let us
define

πα ∶ R→ R/Z, πα(x) = [x + α].

Then πα is a quotient map, and for every x, y ∈ R, πα(x) = πα(y) if and only if π(x) = π(y).
Thus, we can apply B.8.0.21 to conclude that Tα is the unique homeomorphism making
the following diagram commutative:

R
π

- R/Z

R/Z.

πα

?�

T α

Let us consider the map
ε ∶ R→ S

1, ε(t) = e2πit.

Then ε is a quotient map, by B.11.0.13. Furthermore, for every x, y ∈ R, π(x) = π(y) if and
only if x − y ∈ Z if and only if ε(x) = ε(y). Thus, we can apply again B.8.0.21 to conclude
that there exists a unique homemorphism ϕ ∶ R/Z→ S1 such that the following diagram is
commutative:

R
π

- R/Z

S
1.

ε

?�

ϕ

Thus, ϕ([x]) = ε(x) = e2πix. Furthermore, since S1 is compact Hausdorff, it follows that
R/Z is also compact Hausdorff. Hence, (R/Z, Tα) is an invertible TDS.

Finally, for a = e2πiα,

(ϕ ○ Tα)([x]) = ϕ([x + α]) = e2πi(x+α) = e2πiα
⋅ e2πix = a ⋅ ϕ([x])

= (Ra ○ϕ)([x]).

Hence, ϕ ∶ (R/Z, Tα)→ (S1,Ra) is an isomorphism of TDSs.



(S1.5) Let (G,La) (a ∈ G) be the left translation on a compact group (see Example 1.1.3
in the lecture). Prove that if (G,La) is (forward) transitive, then actually all points are
(forward) transitive.

Proof. For every g ∈ G, let Rg ∶ G → G, Rg(h) = h ⋅ g be the right translation by g.
Then Rg is a homeomorphism, and orb+(g) = Rg(orb+(1)), orb(g) = Rg(orb(1)). Apply
B.4.1.3.(iv) to get that g is a (forward) transitive point if and only if 1 is a (forward)
transitive point.

Let F be a collection of blocks over W , which we will think of as being the forbidden
blocks. For any such F , define XF to be the set of sequences which do not contain any
block in F .

Definition . A shift space (or simply shift) is a subset X of a full shift W Z such that
X =XF for some collection F of forbidden blocks over W .

Note that the empty space is a shift space, since putting F =W Z rules out every point.
Furthermore, the full shift W Z is a shift space; we can simply take F = ∅, reflecting the
fact that there are no constraints, so that W Z =XF .

The collection F may be finite or infinite. In any case it is at most countable since its
elements can be arranged in a list (just write down its blocks of length 1 first, then those
of length 2, and so on).

Definition . Let X be a subset of the full shift W Z, and let Bn(X) denote the set of all
n-blocks that occur in points of X. The language of X is the collection

B(X) = ⋃
n≥0

Bn(X). (C.4)

For a block u ∈ B(X), we say also that u occurs in X or x appears in X or x is
allowed in X.

(S1.6) Let X ⊆W Z be a nonempty subset of W Z.

(i) X ⊆XB(X)c .

(ii) If X is a shift space, then X =XB(X)c . Thus, the language of a shift space determines
the shift space.

Proof. (i) Let x ∈X. If u is a block in B(X)c, then u does not occur in X; in particular,
u does not occur in x.

(ii) We have that X = XF for some collection F of forbidden blocks. Let x ∈ XB(X)c . If
u is a block in F , then u does not occur in X, hence u ∈ B(X)c, so u does not occur
in x.



(S1.7) Let X ⊆W Z be a nonempty subset of W Z. The following are equivalent

(i) X is a shift space.

(ii) For every x ∈W Z, if x[i,j] ∈ B(X) for all i ≥ j ∈ Z, then x ∈X.

(iii) X is a closed strongly T -invariant subset of W Z.

Proof. (i)(⇔)(ii) It is easy to see that (ii) is equivalent with XB(X)c ⊆ X. Apply now
S1.6.(ii).
(ii)(⇒)(iii) Let x ∈X and y ∶= T −1(x). For all i ≥ j ∈ Z,

(Tx)[i,j] = x[i+1,j+1] ∈ B(X), y[i,j] = x[i−1,j−1] ∈ B(X).

Apply (ii) to conclude that x,y ∈ X. Thus, T (X) = X, so X is strongly T -invariant.
An inspection of the proof the sequential compactness of the full shift W Z (see Theorem
1.2.0.5), shows that in fact it holds for any subset X satisfying (ii).

We get that X is T -invariant and compact, hence closed, since W Z is Hausdorff.
(iii)⇒ (ii)We prove the contrapositive of (ii). Assume that x ∈W Z ∖X. Since W Z ∖X is
open, there exists k ≥ 0 such that B2−k+1(x) ⊆W Z ∖X. Let u ∶= x[−k,k]. If u ∈ B(X), then
u = y[i,i+2k] for some y ∈ X and i ∈ Z. Let l ∶= i + k. Since X is strongly T -invariant, we
have that T ly ∈ X. On the other hand, (T ly)[−k,k] = y[i,i+2k] = x[−k,k], so T ly ∈ B2−k+1(x),
hence T ly ∈/X. We have got a contradiction. Thus, x[−k,k] ∈/B(X).

(S1.8) Determine whether the following sets are shift spaces or not:

(i) X is the set of all binary sequences with no two 1’s next to each other.

(ii) X is the set of all binary sequences so that between any two 1’s there are an even
number of 0’s.

(iii) X is the set of points each of which contains exactly one symbol 1 and the rest 0’s.

Proof. (i) X is a shift space: X =XF with F = {11}.

(ii) Take F = {102n+11 ∣ n ≥ 0}. Then X =XF , hence X is a shift space.

(iii) X is not a shift space. We have that 0∞ ∈/X, while any block of 0’s occurs in X, so
(ii) from the above exercise is contradicted.
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