SNSB
Winter Term 2010/2011
Ergodic Ramsey Theory
Laurenţiu Leuştean

Seminar 1

(S1.1) Let (X, T) be a TDS and $x \in X$. Then
(i) x is a forward transitive point if and only if $x \in \bigcup_{n \geq 0} T^{-n}(U)$ for every nonempty open subset U of X.
(ii) Assume that (X, T) is invertible. Then x is a transitive point if and only if $x \in$ $\cup_{n \in \mathbb{Z}} T^{n}(U)$ for every nonempty open subset U of X.

Proof. See Lemma 1.4.0.6.
(S1.2) Let (X, T) be a TDS with X metrizable and $\left(U_{n}\right)_{n \geq 1}$ be a countable basis of X. Then
(i) $\left\{x \in X \mid \overline{\operatorname{orb}_{+}}(x)=X\right\}=\bigcap_{n \geq 1} \bigcup_{k \geq 0} T^{-k}\left(U_{n}\right)$.
(ii) If (X, T) is invertible, then $\{x \in X \mid \overline{\operatorname{orb}}(x)=X\}=\bigcap_{n \geq 1} \bigcup_{k \in \mathbb{Z}} T^{k}\left(U_{n}\right)$.

Proof. See Lemma 1.4.0.7.
(S1.3) Let (X, T) be an invertible TDS. The following are equivalent:
(i) If U is a nonempty open subset of X such that $T(U)=U$, then U is dense.
(ii) If $E \neq X$ is a proper closed subset of X such that $T(E)=E$, then E is nowhere dense.

Proof. Take $U:=X \backslash E$. Then U is nonempty iff E is proper, U is open iff E is closed, U is dense in X iff E is nowhere dense, by B.1.0.13.(iv). Furthermore, since T is bijective, $T(U)=T(X \backslash E)=X \backslash T(E)$, hence, $T(U)=U$ iff $T(E)=E$.
(S1.4) Define an equivalence relation on \mathbb{R} by

$$
\begin{equation*}
x \sim y \text { if and only if } x-y \in \mathbb{Z}, \tag{C.3}
\end{equation*}
$$

let \mathbb{R} / \mathbb{Z} be the set of equivalence classes $[x]$, and $\pi: \mathbb{R} \rightarrow \mathbb{R} / \mathbb{Z}$ be the natural projection. Endow \mathbb{R} / \mathbb{Z} with the quotient topology and for every $\alpha \in[0,1)$ define

$$
T_{\alpha}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}, \quad T_{\alpha}([x])=[x+\alpha] .
$$

Prove that $\left(\mathbb{R} / \mathbb{Z}, T_{\alpha}\right)$ is a TDS isomorphic with $\left(\mathbb{S}^{1}, R_{a}\right)$, where $\alpha \in[0,1)$ and $a=e^{2 \pi i \alpha}$.
Proof. It is easy to see that \sim is indeed an equivalence relation. For every $\alpha \in[0,1)$, let us define

$$
\pi_{\alpha}: \mathbb{R} \rightarrow \mathbb{R} / Z, \quad \pi_{\alpha}(x)=[x+\alpha] .
$$

Then π_{α} is a quotient map, and for every $x, y \in \mathbb{R}, \pi_{\alpha}(x)=\pi_{\alpha}(y)$ if and only if $\pi(x)=\pi(y)$. Thus, we can apply B.8.0.21 to conclude that T_{α} is the unique homeomorphism making the following diagram commutative:

Let us consider the map

$$
\varepsilon: \mathbb{R} \rightarrow \mathbb{S}^{1}, \quad \varepsilon(t)=e^{2 \pi i t}
$$

Then ε is a quotient map, by B.11.0.13. Furthermore, for every $x, y \in \mathbb{R}, \pi(x)=\pi(y)$ if and only if $x-y \in \mathbb{Z}$ if and only if $\varepsilon(x)=\varepsilon(y)$. Thus, we can apply again B.8.0.21 to conclude that there exists a unique homemorphism $\varphi: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{S}^{1}$ such that the following diagram is commutative:

Thus, $\varphi([x])=\varepsilon(x)=e^{2 \pi i x}$. Furthermore, since \mathbb{S}^{1} is compact Hausdorff, it follows that \mathbb{R} / \mathbb{Z} is also compact Hausdorff. Hence, $\left(\mathbb{R} / \mathbb{Z}, T_{\alpha}\right)$ is an invertible TDS.

Finally, for $a=e^{2 \pi i \alpha}$,

$$
\begin{aligned}
\left(\varphi \circ T_{\alpha}\right)([x]) & =\varphi([x+\alpha])=e^{2 \pi i(x+\alpha)}=e^{2 \pi i \alpha} \cdot e^{2 \pi i x}=a \cdot \varphi([x]) \\
& =\left(R_{a} \circ \varphi\right)([x]) .
\end{aligned}
$$

Hence, $\varphi:\left(\mathbb{R} / \mathbb{Z}, T_{\alpha}\right) \rightarrow\left(\mathbb{S}^{1}, R_{a}\right)$ is an isomorphism of TDSs.
(S1.5) Let $\left(G, L_{a}\right)(a \in G)$ be the left translation on a compact group (see Example 1.1.3 in the lecture). Prove that if (G, L_{a}) is (forward) transitive, then actually all points are (forward) transitive.

Proof. For every $g \in G$, let $R_{g}: G \rightarrow G, R_{g}(h)=h \cdot g$ be the right translation by g. Then R_{g} is a homeomorphism, and $\operatorname{orb}_{+}(g)=R_{g}\left(\operatorname{orb}_{+}(1)\right)$, orb $(g)=R_{g}(\operatorname{orb}(1))$. Apply B.4.1.3.(iv) to get that g is a (forward) transitive point if and only if 1 is a (forward) transitive point.

Let \mathcal{F} be a collection of blocks over W, which we will think of as being the forbidden blocks. For any such \mathcal{F}, define $X_{\mathcal{F}}$ to be the set of sequences which do not contain any block in \mathcal{F}.

Definition . A shift space (or simply shift) is a subset X of a full shift $W^{\mathbb{Z}}$ such that $X=X_{\mathcal{F}}$ for some collection \mathcal{F} of forbidden blocks over W.

Note that the empty space is a shift space, since putting $\mathcal{F}=W^{\mathbb{Z}}$ rules out every point. Furthermore, the full shift $W^{\mathbb{Z}}$ is a shift space; we can simply take $\mathcal{F}=\varnothing$, reflecting the fact that there are no constraints, so that $W^{\mathbb{Z}}=X_{\mathcal{F}}$.

The collection \mathcal{F} may be finite or infinite. In any case it is at most countable since its elements can be arranged in a list (just write down its blocks of length 1 first, then those of length 2 , and so on).

Definition . Let X be a subset of the full shift $W^{\mathbb{Z}}$, and let $\mathcal{B}_{n}(X)$ denote the set of all n-blocks that occur in points of X. The language of X is the collection

$$
\begin{equation*}
\mathcal{B}(X)=\bigcup_{n \geq 0} \mathcal{B}_{n}(X) . \tag{C.4}
\end{equation*}
$$

For a block $u \in \mathcal{B}(X)$, we say also that u occurs in X or x appears in X or x is allowed in X.
(S1.6) Let $X \subseteq W^{\mathbb{Z}}$ be a nonempty subset of $W^{\mathbb{Z}}$.
(i) $X \subseteq X_{\mathcal{B}(X)^{c}}$.
(ii) If X is a shift space, then $X=X_{\mathcal{B}(X)^{c}}$. Thus, the language of a shift space determines the shift space.

Proof. (i) Let $\mathbf{x} \in X$. If u is a block in $\mathcal{B}(X)^{c}$, then u does not occur in X; in particular, u does not occur in \mathbf{x}.
(ii) We have that $X=X_{\mathcal{F}}$ for some collection \mathcal{F} of forbidden blocks. Let $\mathbf{x} \in X_{\mathcal{B}(X)^{c}}$. If u is a block in \mathcal{F}, then u does not occur in X, hence $u \in \mathcal{B}(X)^{c}$, so u does not occur in \mathbf{x}.
(S1.7) Let $X \subseteq W^{\mathbb{Z}}$ be a nonempty subset of $W^{\mathbb{Z}}$. The following are equivalent
(i) X is a shift space.
(ii) For every $\mathbf{x} \in W^{\mathbb{Z}}$, if $\mathbf{x}_{[i, j]} \in \mathcal{B}(X)$ for all $i \geq j \in \mathbb{Z}$, then $\mathbf{x} \in X$.
(iii) X is a closed strongly T-invariant subset of $W^{\mathbb{Z}}$.

Proof. $(i)(\Leftrightarrow)(i i)$ It is easy to see that (ii) is equivalent with $X_{\mathcal{B}(X)^{c}} \subseteq X$. Apply now S1.6.(ii).
$(i i)(\Rightarrow)(i i i)$ Let $\mathbf{x} \in X$ and $\mathbf{y}:=T^{-1}(\mathbf{x})$. For all $i \geq j \in \mathbb{Z}$,

$$
(T \mathbf{x})_{[i, j]}=\mathbf{x}_{[i+1, j+1]} \in \mathcal{B}(X), \quad \mathbf{y}_{[i, j]}=\mathbf{x}_{[i-1, j-1]} \in \mathcal{B}(X) .
$$

Apply (ii) to conclude that $\mathbf{x}, \mathbf{y} \in X$. Thus, $T(X)=X$, so X is strongly T-invariant. An inspection of the proof the sequential compactness of the full shift $W^{\mathbb{Z}}$ (see Theorem 1.2.0.5), shows that in fact it holds for any subset X satisfying (ii).

We get that X is T-invariant and compact, hence closed, since $W^{\mathbb{Z}}$ is Hausdorff. (iii) \Rightarrow (ii) We prove the contrapositive of (ii). Assume that $\mathbf{x} \in W^{\mathbb{Z}} \backslash X$. Since $W^{\mathbb{Z}} \backslash X$ is open, there exists $k \geq 0$ such that $B_{2^{-k+1}}(\mathbf{x}) \subseteq W^{\mathbb{Z}} \backslash X$. Let $u:=\mathbf{x}_{[-k, k]}$. If $u \in \mathcal{B}(X)$, then $u=\mathbf{y}_{[i, i+2 k]}$ for some $\mathbf{y} \in X$ and $i \in \mathbb{Z}$. Let $l:=i+k$. Since X is strongly T-invariant, we have that $T^{l} \mathbf{y} \in X$. On the other hand, $\left(T^{l} \mathbf{y}\right)_{[-k, k]}=\mathbf{y}_{[i, i+2 k]}=\mathbf{x}_{[-k, k]}$, so $T^{l} \mathbf{y} \in B_{2^{-k+1}}(\mathbf{x})$, hence $T^{l} \mathbf{y} \notin X$. We have got a contradiction. Thus, $\mathbf{x}_{[-k, k]} \notin \mathcal{B}(X)$.
(S1.8) Determine whether the following sets are shift spaces or not:
(i) X is the set of all binary sequences with no two 1's next to each other.
(ii) X is the set of all binary sequences so that between any two 1 's there are an even number of 0 's.
(iii) X is the set of points each of which contains exactly one symbol 1 and the rest 0 's.

Proof. (i) X is a shift space: $X=X_{\mathcal{F}}$ with $\mathcal{F}=\{11\}$.
(ii) Take $\mathcal{F}=\left\{10^{2 n+1} 1 \mid n \geq 0\right\}$. Then $X=X_{\mathcal{F}}$, hence X is a shift space.
(iii) X is not a shift space. We have that $0^{\infty} \notin X$, while any block of 0 's occurs in X, so (ii) from the above exercise is contradicted.

