SNSB Winter Term 2010/2011 Ergodic Ramsey Theory Laurențiu Leuștean

02.11.2010

Seminar 2

(S2.1)

- (i) $(X, 1_X)$ is minimal if and only if |X| = 1.
- (ii) If (X,T) is minimal, then T is surjective.
- (iii) A factor of a minimal TDS is also minimal.
- (iv) If a product TDS is minimal, then so are each of its components.
- (v) If (X_1, T_{X_1}) , (X_2, T_{X_2}) are two minimal subsystems of a TDS (X, T), then either $X_1 \cap X_2 = \emptyset$ or $X_1 = X_2$.
- (vi) A disjoint union of two TDSs is never a minimal TDS.

Proof. (i) Remark that for all $x \in X$, $\operatorname{orb}_+(x) = \{x\}$.

- (ii) By Corollary 1.3.3.5, there exists a nonempty closed set $B \subseteq X$ such that T(B) = B. Since (X, T) is minimal, we must have B = X.
- (iii) Let (X,T) be minimal and $\varphi : (X,T) \to (Y,S)$ be a surjective homomorphism. Assume $\emptyset \neq A \subseteq Y$ is a nonempty closed S-invariant subset of Y. We have to prove that A = Y. Let $B := \varphi^{-1}(A) \subseteq X$. Then B is closed and nonempty, since φ is continuous and surjective. Furthermore,

$$T(B) = T(\varphi^{-1}(A)) = \{Tx \mid \varphi(x) \in A\} \subseteq \{Tx \mid (S \circ \varphi)(x) \in A\}$$

since $(S \circ \varphi)(x) \in S(A) \subseteq A$
$$= \{Tx \mid (\varphi \circ T)(x) \in A\} \subseteq \varphi^{-1}(A) = B.$$

Thus, B is a nonempty closed T-invariant subset of X, so we must have B = X. Using again the surjectivity of φ , it follows that

$$Y = \varphi(X) = \varphi(\varphi^{-1}(A)) = A.$$

- (iv) By (iii) and Proposition 1.3.4.1.(ii).
- (v) We have that X_1, X_2 are nonempty closed *T*-invariant subsets of *X*. Let $Y := X_1 \cap X_2$. Then *Y* is a closed T_{X_1} -invariant subset of X_1 (resp. a closed T_{X_2} -invariant subset of X_2), hence from minimality we must have $Y = \emptyset$ or $Y = X_1 = X_2$.
- (vi) By Lemma 1.3.5.2.(i).

(S2.2) Let (X,T) be a TDS and assume that X is metrizable. For any $x \in X$, the following are equivalent:

- (i) x is recurrent.
- (ii) $\lim_{k \to \infty} T^{n_k} x = x$ for some sequence (n_k) in \mathbb{Z}_+ .
- (iii) $\lim_{k \to \infty} T^{n_k} x = x$ for some sequence (n_k) in \mathbb{Z}_+ such that $\lim_{k \to \infty} n_k = \infty$.

Proof. $(iii) \Rightarrow (ii)$ Obviously.

 $(ii) \Rightarrow (i)$ Let U be an open neighborhood of x. Since $\lim_{k \to \infty} T^{n_k} x = x$, there exists $K \in \mathbb{Z}_+$ such that $T^{n_k} x \in U$ for all $k \ge K$.

 $(i) \Rightarrow (iii)$ Use the fact that x is infinitely recurrent, by Proposition 1.6.0.16. Then $S_k := rt(x, B_{1/k}(x))$ is an infinite set for every $k \ge 1$. Define $n_1 := \min S_1, n_{k+1} := \min S_{k+1} \setminus \{n_k\}$. Then (n_k) is a strictly increasing sequence of positive integers, so $\lim_{k \to \infty} n_k = \infty$. Furthermore, $d(x, T^{n_k}x) < 1/k$ for all $k \ge 1$, hence $\lim_{k \to \infty} T^{n_k}x = x$.

(S2.3)

- (i) If $\varphi : (X,T) \to (Y,S)$ is a homomorphism of TDSs and $x \in X$ is recurrent (almost periodic) in (X,T), then $\varphi(x)$ is recurrent (almost periodic) in (Y,S).
- (ii) If (A, T_A) is a subsystem of (X, T) and $x \in A$, then x is recurrent (almost periodic) in (X, T) if and only if x is recurrent (almost periodic) in (A, T_A) .
- *Proof.* (i) Let V be an open neighborhood of $\varphi(x)$. Since φ is continuous, there exists an open neighborhood U of x such that $\varphi(U) \subseteq V$.
 - (a) As x is recurrent in (X,T), we have that $T^n x \in U$ for some $n \ge 1$. We get that

$$S^n(\varphi(x)) = \varphi(T^n x) \in \varphi(U) \subseteq V.$$

It follows that $\varphi(x)$ is recurrent in (X,T).

(b) As x is almost periodic in (X, T), we have that there exists $N \ge 1$ such that for all $m \ge 1$ there exists $k \in [m, m + N]$ such that $T^k x \in U$. We get that

$$S^k(\varphi(x)) = \varphi(T^k x) \in \varphi(U) \subseteq V.$$

It follows that $\varphi(x)$ is almost periodic in (X,T).

- (ii) \leftarrow Use (i) and the fact the inclusion $j_A : (A, T_A) \to (X, T)$ is a homomorphism. \Rightarrow If U is an open neighborhood of x in A, then $U = A \cap V$, where V is an open neighborhood of x in X.
 - (a) If x is recurrent in (X, T), we have that $T^n x \in V$ for some $n \ge 1$. It follows that $T^n_A x = T^n x \in A \cap V = U$. Thus, x is recurrent in (A, T_A) .
 - (b) If x is almost periodic in (X,T), we have that there exists $N \ge 1$ such that for all $m \ge 1$ there exists $k \in [m, m+N]$ such that $T^k x \in V$. Conclude as above that $T_A^k x = T^k x \in U$. Thus, x is almost periodic in (A, T_A) .

(S2.4) Let (X,T) be a TDS and $x \in X$. The following are equivalent:

- (i) x is almost periodic.
- (ii) For any open neighborhood U of x, there exists $N \ge 1$ such that

$$\operatorname{orb}_+(x) \subseteq \bigcup_{k=0}^N T^{-k}(U).$$

(iii) $(\overline{\text{orb}_+}(x), T_{\overline{\text{orb}_+}(x)})$ is a minimal subsystem.

Proof. (i) \Rightarrow (ii) We have obviously that $x \in U = T^0(U)$, so let $T^m x$ with $m \ge 1$. Since rt(x, U) is syndetic, it follows that there exists $N \ge 1$ such that $rt(x, U) \cap [m, m+M] \neq \emptyset$ for all $m \ge 1$. Thus, there exists $p \in [m, m+N]$ such that $T^p x \in U$. Letting $k := p - m \in [0, N]$, we get that $T^k(T^m x) = T^p x \in U$, hence $T^m x \in T^{-k}(U)$.

 $(ii) \Rightarrow (iii)$ We shall prove that $\operatorname{orb}_+(y)$ is dense in $\operatorname{orb}_+(x)$ for every $y \in \operatorname{orb}_+(x)$, and then apply Proposition 1.5.0.11 to conclude minimality. It suffices to show that $x \in \operatorname{orb}_+(y)$. Let U be an open neighborhood of x. Then, by B.9.0.29.(i), there exists an open neighborhood V of x such that $\overline{V} \subseteq U$. By (ii), we have an $N \ge 1$ such that

$$\operatorname{orb}_+(x) \subseteq \bigcup_{k=0}^N T^{-k}(V) \subseteq \bigcup_{k=0}^N T^{-k}(\overline{V}).$$

It follows that

$$y \in \overline{\operatorname{orb}}_+(x) \subseteq \bigcup_{k=0}^N T^{-k}(\overline{V}) \subseteq \bigcup_{k=0}^N T^{-k}(U).$$

This implies $T^k y \in U$ for some k = 0, ..., N. Thus, $\operatorname{orb}_+(y) \cap U \neq \emptyset$ for any open neighborhood U of x, that is $x \in \operatorname{orb}_+(y)$.

 $(iii) \Rightarrow (i)$ Apply Proposition 1.6.0.22.

Definition . A TDS(X,T) is said to be **isometric** if there exists a metric d on X inducing the topology of X such that T is an isometry with respect to d.

- (S2.5) Give examples of isometric TDSs.
- *Proof.* (i) The rotation on the unit circle (\mathbb{S}^1, R_a) (see Example 1.1.4 in the lecture).
 - (ii) Any finite invertible TDS (X, T), where X is a finite metric space with the discrete metric and T is a bijective mapping.

- (S2.6) Let (X,T) be an isometric TDS. Then
 - (i) (X,T) is minimal if and only if it is forward transitive.
 - (ii) For every $x \in X$, $(\overline{\text{orb}_+}(x), T_{\overline{\text{orb}_+}(x)})$ is a minimal subsystem. Conclude that every point $x \in X$ is contained in a unique minimal subsystem and that (X, T) is a disjoint union of minimal subsystems.
- (iii) Every point $x \in X$ is almost periodic.
- *Proof.* (i) Assume that (X,T) is forward transitive, and let x_0 be a forward transitive point. We shall prove that every point $y \in X$ is forward transitive. It suffices to show that $x_0 \in \overline{\operatorname{orb}}_+(y)$.

For every $\varepsilon > 0$, $\operatorname{orb}_+(x_0) \cap B_{\varepsilon}(y) \neq \emptyset$, hence there exists $m \ge 0$ such that $d(T^m x_0, y) < \varepsilon/2$. Since X is compact, the sequence $(T^{mn} x_0)_{n\ge 1}$ has a convergent subsequence $(T^{mn_k} x_0)_{k\ge 1}$. As T^p is an isometry for all $p \ge 0$, we get that

$$d(x_0, T^{m(n_{k+1}-n_k)}x_0) = d(T^{mn_k}x_0, T^{mn_{k+1}}x_0) \to 0 \text{ for } k \to \infty$$

Hence, there exists $K \ge 1$ such that $d(x_0, T^{m(n_{K+1}-n_K)}x_0) < \varepsilon/2$. Let $p := m(n_{K+1} - n_K) \ge m$. It follows that

$$d(T^{p-m}y, x_0) \leq d(T^{p-m}y, T^px_0) + d(T^px_0, x_0) = d(y, T^mx_0) + d(T^px_0, x_0)$$

$$< \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Thus, $\operatorname{orb}_+(y) \cap B_{\varepsilon}(x_0) \neq \emptyset$ for all $\varepsilon > 0$. That is, $x_0 \in \overline{\operatorname{orb}_+}(y)$.

- (ii) For every $x \in X$, $(\overline{\text{orb}_+}(x), T_{\overline{\text{orb}_+}(x)})$ is an isometric subsystem of (X, T) which is also forward transitive, by Lemma 1.4.0.5. Apply (i) to conclude that it is a minimal subsystem containing x. Uniqueness of the de compositon follows from Proposition 1.5.0.10.(v).
- (iii) By (ii) and Proposition 1.6.0.22.