SNSB
Winter Term 2010/2011
Ergodic Ramsey Theory
Laurenţiu Leuştean
02.11.2010

Seminar 2

(i) $\left(X, 1_{X}\right)$ is minimal if and only if $|X|=1$.
(ii) If (X, T) is minimal, then T is surjective.
(iii) A factor of a minimal TDS is also minimal.
(iv) If a product TDS is minimal, then so are each of its components.
(v) If $\left(X_{1}, T_{X_{1}}\right),\left(X_{2}, T_{X_{2}}\right)$ are two minimal subsystems of a $\operatorname{TDS}(X, T)$, then either $X_{1} \cap X_{2}=\varnothing$ or $X_{1}=X_{2}$.
(vi) A disjoint union of two TDSs is never a minimal TDS.

Proof. (i) Remark that for all $x \in X, \overline{\operatorname{orb}_{+}}(x)=\{x\}$.
(ii) By Corollary 1.3.3.5, there exists a nonempty closed set $B \subseteq X$ such that $T(B)=B$. Since (X, T) is minimal, we must have $B=X$.
(iii) Let (X, T) be minimal and $\varphi:(X, T) \rightarrow(Y, S)$ be a surjective homomorphism. Assume $\varnothing \neq A \subseteq Y$ is a nonempty closed S-invariant subset of Y. We have to prove that $A=Y$. Let $B:=\varphi^{-1}(A) \subseteq X$. Then B is closed and nonempty, since φ is continuous and surjective. Furthermore,

$$
\begin{aligned}
T(B)= & T\left(\varphi^{-1}(A)\right)=\{T x \mid \varphi(x) \in A\} \subseteq\{T x \mid(S \circ \varphi)(x) \in A\} \\
& \text { since }(S \circ \varphi)(x) \in S(A) \subseteq A \\
= & \{T x \mid(\varphi \circ T)(x) \in A\} \subseteq \varphi^{-1}(A)=B .
\end{aligned}
$$

Thus, B is a nonempty closed T-invariant subset of X, so we must have $B=X$. Using again the surjectivity of φ, it follows that

$$
Y=\varphi(X)=\varphi\left(\varphi^{-1}(A)\right)=A
$$

(iv) By (iii) and Proposition 1.3.4.1.(ii).
(v) We have that X_{1}, X_{2} are nonempty closed T-invariant subsets of X. Let $Y:=X_{1} \cap X_{2}$. Then Y is a closed $T_{X_{1}}$-invariant subset of X_{1} (resp. a closed $T_{X_{2}}$-invariant subset of X_{2}), hence from minimality we must have $Y=\varnothing$ or $Y=X_{1}=X_{2}$.
(vi) By Lemma 1.3.5.2.(i).
(S2.2) Let (X, T) be a TDS and assume that X is metrizable. For any $x \in X$, the following are equivalent:
(i) x is recurrent.
(ii) $\lim _{k \rightarrow \infty} T^{n_{k}} x=x$ for some sequence $\left(n_{k}\right)$ in \mathbb{Z}_{+}.
(iii) $\lim _{k \rightarrow \infty} T^{n_{k}} x=x$ for some sequence $\left(n_{k}\right)$ in \mathbb{Z}_{+}such that $\lim _{k \rightarrow \infty} n_{k}=\infty$.

Proof. (iii) \Rightarrow (ii) Obviously.
$\left(\right.$ ii) $\Rightarrow(i)$ Let U be an open neighborhood of x. Since $\lim _{k \rightarrow \infty} T^{n_{k}} x=x$, there exists $K \in Z_{+}$ such that $T^{n_{k}} x \in U$ for all $k \geq K$.
$(i) \Rightarrow(i i i)$ Use the fact that x is infinitely recurrent, by Proposition 1.6.0.16. Then $S_{k}:=$ $r t\left(x, B_{1 / k}(x)\right)$ is an infinite set for every $k \geq 1$. Define $n_{1}:=\min S_{1}, n_{k+1}:=\min S_{k+1} \backslash\left\{n_{k}\right\}$. Then $\left(n_{k}\right)$ is a strictly increasing sequence of positive integers, so $\lim _{k \rightarrow \infty} n_{k}=\infty$. Furthermore, $d\left(x, T^{n_{k}} x\right)<1 / k$ for all $k \geq 1$, hence $\lim _{k \rightarrow \infty} T^{n_{k}} x=x$.
(i) If $\varphi:(X, T) \rightarrow(Y, S)$ is a homomorphism of TDSs and $x \in X$ is recurrent (almost periodic) in (X, T), then $\varphi(x)$ is recurrent (almost periodic) in (Y, S).
(ii) If $\left(A, T_{A}\right)$ is a subsystem of (X, T) and $x \in A$, then x is recurrent (almost periodic) in (X, T) if and only if x is recurrent (almost periodic) in $\left(A, T_{A}\right)$.

Proof. (i) Let V be an open neighborhood of $\varphi(x)$. Since φ is continuous, there exists an open neighborhood U of x such that $\varphi(U) \subseteq V$.
(a) As x is recurrent in (X, T), we have that $T^{n} x \in U$ for some $n \geq 1$. We get that

$$
S^{n}(\varphi(x))=\varphi\left(T^{n} x\right) \in \varphi(U) \subseteq V .
$$

It follows that $\varphi(x)$ is recurrent in (X, T).
(b) As x is almost periodic in (X, T), we have that there exists $N \geq 1$ such that for all $m \geq 1$ there exists $k \in[m, m+N]$ such that $T^{k} x \in U$. We get that

$$
S^{k}(\varphi(x))=\varphi\left(T^{k} x\right) \in \varphi(U) \subseteq V .
$$

It follows that $\varphi(x)$ is almost periodic in (X, T).
(ii) \Leftarrow Use (i) and the fact the inclusion $j_{A}:\left(A, T_{A}\right) \rightarrow(X, T)$ is a homomorphism.
\Rightarrow If U is an open neighborhood of x in A, then $U=A \cap V$, where V is an open neighborhood of x in X.
(a) If x is recurrent in (X, T), we have that $T^{n} x \in V$ for some $n \geq 1$. It follows that $T_{A}^{n} x=T^{n} x \in A \cap V=U$. Thus, x is recurrent in $\left(A, T_{A}\right)$.
(b) If x is almost periodic in (X, T), we have that there exists $N \geq 1$ such that for all $m \geq 1$ there exists $k \in[m, m+N]$ such that $T^{k} x \in V$. Conclude as above that $T_{A}^{k} x=T^{k} x \in U$. Thus, x is almost periodic in $\left(A, T_{A}\right)$.
(S2.4) Let (X, T) be a TDS and $x \in X$. The following are equivalent:
(i) x is almost periodic.
(ii) For any open neighborhood U of x, there exists $N \geq 1$ such that

$$
\operatorname{orb}_{+}(x) \subseteq \bigcup_{k=0}^{N} T^{-k}(U)
$$

(iii) $\left(\overline{\operatorname{orb}_{+}}(x), T_{\overline{\operatorname{orb}_{+}(x)}}\right)$ is a minimal subsystem.

Proof. $(i) \Rightarrow(i i)$ We have obviously that $x \in U=T^{0}(U)$, so let $T^{m} x$ with $m \geq 1$. Since $r t(x, U)$ is syndetic, it follows that there exists $N \geq 1$ such that $r t(x, U) \cap[m, m+M] \neq \varnothing$ for all $m \geq 1$. Thus, there exists $p \in[m, m+N]$ such that $T^{p} x \in U$. Letting $k:=p-m \in[0, N]$, we get that $T^{k}\left(T^{m} x\right)=T^{p} x \in U$, hence $T^{m} x \in T^{-k}(U)$.
$\left(\right.$ ii) \Rightarrow (iii) We shall prove that $\operatorname{orb}_{+}(y)$ is dense in $\overline{\operatorname{orb}_{+}}(x)$ for every $y \in \overline{\operatorname{orb}_{+}}(x)$, and then apply Proposition 1.5.0.11 to conclude minimality. It suffices to show that $x \in \overline{\operatorname{orb}_{+}}(y)$. Let U be an open neighborhood of x. Then, by B.9.0.29.(i), there exists an open neighborhood V of x such that $\bar{V} \subseteq U$. By (ii), we have an $N \geq 1$ such that

$$
\operatorname{orb}_{+}(x) \subseteq \bigcup_{k=0}^{N} T^{-k}(V) \subseteq \bigcup_{k=0}^{N} T^{-k}(\bar{V})
$$

It follows that

$$
y \in \overline{\operatorname{orb}_{+}}(x) \subseteq \bigcup_{k=0}^{N} T^{-k}(\bar{V}) \subseteq \bigcup_{k=0}^{N} T^{-k}(U)
$$

This implies $T^{k} y \in U$ for some $k=0, \ldots, N$. Thus, $\operatorname{orb}_{+}(y) \cap U \neq \varnothing$ for any open neighborhood U of x, that is $x \in \overline{\operatorname{orb}_{+}}(y)$.
$(i i i) \Rightarrow(i)$ Apply Proposition 1.6.0.22.

Definition . A TDS (X, T) is said to be isometric if there exists a metric d on X inducing the topology of X such that T is an isometry with respect to d.
(S2.5) Give examples of isometric TDSs.
Proof. (i) The rotation on the unit circle $\left(\mathbb{S}^{1}, R_{a}\right)$ (see Example 1.1.4 in the lecture).
(ii) Any finite invertible TDS (X, T), where X is a finite metric space with the discrete metric and T is a bijective mapping.
(S2.6) Let (X, T) be an isometric TDS. Then
(i) (X, T) is minimal if and only if it is forward transitive.
(ii) For every $x \in X,\left(\overline{\operatorname{orb}_{+}}(x), T_{\overline{\operatorname{orb}_{+}(x)}}\right)$ is a minimal subsystem. Conclude that every point $x \in X$ is contained in a unique minimal subsystem and that (X, T) is a disjoint union of minimal subsystems.
(iii) Every point $x \in X$ is almost periodic.

Proof. (i) Assume that (X, T) is forward transitive, and let x_{0} be a forward transitive point. We shall prove that every point $y \in X$ is forward transitive. It suffices to show that $x_{0} \in \overline{\text { orb }_{+}}(y)$.
For every $\varepsilon>0, \operatorname{orb}_{+}\left(x_{0}\right) \cap B_{\varepsilon}(y) \neq \varnothing$, hence there exists $m \geq 0$ such that $d\left(T^{m} x_{0}, y\right)<$ $\varepsilon / 2$. Since X is compact, the sequence $\left(T^{m n} x_{0}\right)_{n \geq 1}$ has a convergent subsequence $\left(T^{m n_{k}} x_{0}\right)_{k \geq 1}$. As T^{p} is an isometry for all $p \geq 0$, we get that

$$
d\left(x_{0}, T^{m\left(n_{k+1}-n_{k}\right)} x_{0}\right)=d\left(T^{m n_{k}} x_{0}, T^{m n_{k+1}} x_{0}\right) \rightarrow 0 \text { for } k \rightarrow \infty .
$$

Hence, there exists $K \geq 1$ such that $d\left(x_{0}, T^{m\left(n_{K+1}-n_{K}\right)} x_{0}\right)<\varepsilon / 2$. Let $p:=m\left(n_{K+1}-\right.$ $\left.n_{K}\right) \geq m$. It follows that

$$
\begin{aligned}
d\left(T^{p-m} y, x_{0}\right) & \leq d\left(T^{p-m} y, T^{p} x_{0}\right)+d\left(T^{p} x_{0}, x_{0}\right)=d\left(y, T^{m} x_{0}\right)+d\left(T^{p} x_{0}, x_{0}\right) \\
& <\varepsilon / 2+\varepsilon / 2=\varepsilon .
\end{aligned}
$$

Thus, $\operatorname{orb}_{+}(y) \cap B_{\varepsilon}\left(x_{0}\right) \neq \varnothing$ for all $\varepsilon>0$. That is, $x_{0} \in \overline{\operatorname{orb}_{+}}(y)$.
(ii) For every $x \in X,\left(\overline{\operatorname{orb}_{+}}(x), T_{\overline{\operatorname{orb}_{+}(x)}}\right)$ is an isometric subsystem of (X, T) which is also forward transitive, by Lemma 1.4.0.5. Apply (i) to conclude that it is a minimal subsystem containing x. Uniqueness of the de compositon follows from Proposition 1.5.0.10.(v).
(iii) By (ii) and Proposition 1.6.0.22.

