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(S2.1)

(i) (X,1X) is minimal if and only if ∣X ∣ = 1.

(ii) If (X,T ) is minimal, then T is surjective.

(iii) A factor of a minimal TDS is also minimal.

(iv) If a product TDS is minimal, then so are each of its components.

(v) If (X1, TX1
), (X2, TX2

) are two minimal subsystems of a TDS (X,T ), then either
X1 ∩X2 = ∅ or X1 =X2.

(vi) A disjoint union of two TDSs is never a minimal TDS.

(S2.2) Let (X,T ) be a TDS and assume that X is metrizable. For any x ∈X, the following
are equivalent:

(i) x is recurrent.

(ii) lim
k→∞

T nkx = x for some sequence (nk) in Z+.

(iii) lim
k→∞

T nkx = x for some sequence (nk) in Z+ such that lim
k→∞

nk = ∞.

(S2.3)

(i) If ϕ ∶ (X,T ) → (Y,S) is a homomorphism of TDSs and x ∈ X is recurrent (almost
periodic) in (X,T ), then ϕ(x) is recurrent (almost periodic) in (Y,S).

(ii) If (A,TA) is a subsystem of (X,T ) and x ∈ A, then x is recurrent (almost periodic)
in (X,T ) if and only if x is recurrent (almost periodic) in (A,TA).

(S2.4) Let (X,T ) be a TDS and x ∈X. The following are equivalent:



(i) x is almost periodic.

(ii) For any open neighborhood U of x, there exists N ≥ 1 such that

orb+(x) ⊆
N

⋃
k=0

T −k(U).

(iii) (orb+(x), Torb+(x)
) is a minimal subsystem.

Definition . A TDS (X,T ) is said to be isometric if there exists a metric d on X inducing

the topology of X such that T is an isometry with respect to d.

(S2.5) Give examples of isometric TDSs.

(S2.6) Let (X,T ) be an isometric TDS. Then

(i) (X,T ) is minimal if and only if it is forward transitive.

(ii) For every x ∈ X, (orb+(x), Torb+(x)
) is a minimal subsystem. Conclude that every

point x ∈X is contained in a unique minimal subsystem and that (X,T ) is a disjoint
union of minimal subsystems.

(iii) Every point x ∈X is almost periodic.
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