SNSB Winter Term 2010/2011 Ergodic Ramsey Theory Laurențiu Leuștean

09.11.2010

Seminar 3

(S3.1) Let $x \in X$ and $\mathbf{x} = (x, \dots, x) \in X^{l}_{\Delta}$ (see the notations from Section 1.7). The following are equivalent:

- (i) x is multiply recurrent for T_1, \ldots, T_l .
- (ii) **x** is a recurrent point in (X^l, \tilde{T}) .
- (iii) For all $\varepsilon > 0$ there exists $N \ge 1$ such that $d_l(\mathbf{x}, \tilde{T}^N \mathbf{x}) < \varepsilon$.
- (iv) For all $\varepsilon > 0$ there exists $N \ge 1$ such that $d(x, T_i^N x) < \varepsilon$ for all $i = 1, \ldots, l$.

Proof. (i) \Leftrightarrow (ii) Apply Lemma 1.6.0.17 and the fact that, by the definition of the metric d_l , we have that $\lim_{k\to\infty} \tilde{T}^{n_k} \mathbf{x} = \mathbf{x}$ if and only if for all $i = 1, \ldots, k$, $\lim_{k\to\infty} T_i^{n_k} x = x$. (ii) \Leftrightarrow (iii) By definition, \mathbf{x} is recurrent if and only for every open neighborhood U of \mathbf{x} there exists $N \ge 1$ such that $\tilde{T}^N \mathbf{x} \in U$ if and only for every $\varepsilon > 0$ there exists $N \ge 1$ such that $\tilde{T}^N \mathbf{x} \in B(\mathbf{x}, \varepsilon)$. (iii) \Leftrightarrow (iv) Obviously.

(S3.2) Let X be a compact Hausdorff topological space, $l \ge 1$, and $T_1, \ldots, T_l : X \to X$ be commuting homeomorphisms. Then

- (i) X contains a subset X_0 which is minimal with the property that it is nonempty closed and strongly T_i -invariant for all i = 1, ..., l.
- (ii) For every nonempty open subset U of X_0 , there are $M \ge 1$ and $n_{ij} \in \mathbb{Z}, i = 1, ..., l, j = 1, ..., M$ such that $X_0 = \bigcup_{i=1}^{M} (T_1^{n_{1j}} \circ \ldots \circ T_l^{n_{lj}})(U).$
- (iii) $(X_0)^l_{\Delta}$ is strongly \tilde{T}_i -invariant for all i = 1, ..., l.

Proof. (i) Let \mathcal{M} be the family of all nonempty closed subsets of X that are strongly T_i -invariant for all i = 1, ..., l, with the partial ordering by inclusion. Then, of course, $X \in \mathcal{M}$, so \mathcal{M} is nonempty. Let $(A_i)_{i \in I}$ be a chain in \mathcal{M} and take $A \coloneqq \bigcap_{i \in I} A_i$. Then

 $A \in \mathcal{M}$, since A is nonempty (by B.9.0.27), A is closed, and A is strongly T_i -invariant for all $i = 1, \ldots, l$ (by Proposition 1.3.2.2.(v)). Thus, by Zorn's Lemma A.0.1.4 there exists a minimal element $X_0 \in \mathcal{M}$.

- (ii) Let $A := \bigcup_{n_1 \in \mathbb{Z}} \dots \bigcup_{n_l \in \mathbb{Z}} (T_1^{n_1} \circ \dots \circ T_l^{n_l})(U)$. Then A is nonempty, open and strongly T_i -invariant for all $i = 1, \dots, l$. Thus, $X_0 \setminus A$ is a proper subset of X_0 which is closed and strongly T_i -invariant for all $i = 1, \dots, l$. From the minimality of X_0 , we must have $X_0 = A$. Since X_0 is compact, as a closed subset of the compact space X, we can choose a finite subcover.
- (iii) We have that $\tilde{T}_i((X_0)^l_{\Delta}) = (T_i(X_0))^l_{\Delta} = (X_0)^l_{\Delta}$.