SNSB

Winter Term 2010/2011 Ergodic Ramsey Theory Laurențiu Leuştean

16.11.2010

Seminar 4

(S4.1) Let us consider the following statements

- (vdW1) Let $r \in \mathbb{Z}_+$ and $\mathbb{N} = \bigcup_{i=1}^r C_i$. For any $k \geq 1$ there exists $i \in [1, r]$ such that C_i contains an arithmetic progression of length k.
- (vdW2) Let $r \in \mathbb{Z}_+$ and $\mathbb{N} = \bigcup_{i=1}^r C_i$. There exists $i \in [1, r]$ such that C_i contains arithmetic progression of arbitrary finite length.
- (vdW3) Let $r \in \mathbb{Z}_+$ and $\mathbb{N} = \bigcup_{i=1}^r C_i$. For any finite set $F \subseteq \mathbb{N}$ there exists $i \in [1, r]$ such that C_i contains affine images of F.
- (vdW4) Let $r \in \mathbb{Z}_+$ and $\mathbb{N} = \bigcup_{i=1}^{r} C_i$. There exists $i \in [1, r]$ such that C_i contains affine images of every finite set $F \subseteq \mathbb{N}$.

Let $(\mathbf{vdWi}*)$, i = 1, 2, 3, 4 be the statements obtained from (\mathbf{vdWi}) , i = 1, 2, 3, 4 by changing \mathbb{N} to \mathbb{Z} in their formulations.

Prove that $(\mathbf{vdWi}), (\mathbf{vdWi}*), i = 1, 2, 3, 4$ are all equivalent.

(S4.2) Let us consider the following statement

- (*) Let (X,T) be a TDS and $(U_i)_{i\in I}$ be an open cover of X. Then there exists an open set U_{i_0} in this cover such that $U_{i_0} \cap T^{-n}(U_{i_0}) \neq \emptyset$ for infinitely many n.
- (i) Prove (*) in two ways:
 - (a) applying Birkhoff Recurrence Theorem.
 - (b) using the Infinite Pigeonhole Principle (IPP): Whenever N is coloured into finitely many colours, one of the colour classes is infinite.
- (ii) Deduce IPP from (*).
- (S4.3) Let (X, d) be a compact metric space and $T: X \to X$ be a continuous mapping. For all $l \ge 1$, there exists a multiply recurrent point for T, T^2, \ldots, T^l .