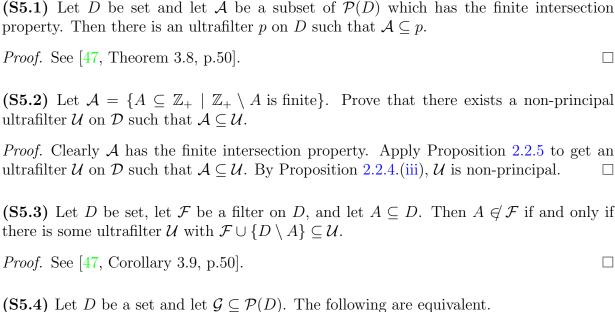
SNSB Winter Term 2010/2011 Ergodic Ramsey Theory Laurențiu Leuștean

23.11.2010

Seminar 5



(2011) Let D be a set and let $g \equiv f(D)$. The following are equivalent:

(i) Whenever $r \geq 1$ and $D = \bigcup_{i=1}^r C_i$, there exists $i \in [1, r]$ and $G \in \mathcal{G}$ such that $G \subseteq C_i$.

(ii) There is an ultrafilter \mathcal{U} on d such that for every member A of \mathcal{U} , there exists $G \in \mathcal{G}$ with $G \subseteq A$.

Proof. See [47, Theorem 5.7, p.92].

(S5.5) Verify that Hilbert theorem 1.6.13 is a special case of the Finite Sums theorem.

Proof. Let $r \in \mathbb{Z}_+$, $\mathbb{Z}_+ = \bigcup_{i=1}^r C_i$, and $l \geq 1$. Apple the Finite Sums theorem 2.2.20 to get $i \in [1, r]$ and a sequence $(x_n)_{n \geq 1}$ in \mathbb{Z}_+ such that $FS((x_n)_{n \geq 1}) \subseteq C_i$. Take n_1, n_2, \ldots, n_l to be x_1, \ldots, x_l in increasing order, and $B := \{x_{l+1} + \ldots x_{l+p} \mid p \in \mathbb{Z}_+\}$.

(S5.6) Let X be a Hausdorff topological space and $(x_n)_{n\geq 1}$ be a sequence in X.

- (i) For every $p \in \beta \mathbb{Z}_+$, the following are satisfied:
 - (a) The p-limit of (x_n) , if exists, is unique.
 - (b) If X is compact, then $p-\lim x_n$ exists.
 - (c) If $f: X \to Y$ is continuous and $p-\lim x_n = x$, then $p-\lim f(x_n) = f(x)$.
- (ii) $\lim_{n\to\infty} x_n = x$ implies $p \lim x_n = x$ for every non-principal ultrafilter p.

Proof. (i) Let $p \in \beta \mathbb{Z}_+$.

- (a) Assume that $x \neq y \in X$ are such that $p \lim x_n = x$ and $p \lim x_n = y$. Since X is Hausdorff, there are disjoint open neighboorhoods U of x and V of y. Then $A_U := \{n \in \mathbb{Z}_+ \mid x_n \in U\} \in p$ and $A_V := \{n \in \mathbb{Z}_+ \mid x_n \in V\} \in p$, hence $A_U \cap A_V \in p$. On the other hand, $A_U \cap A_V = \emptyset$. We have got a contradiction with the fact that p is a filter.
- (b) Assume by contradiction that there exist a sequence (x_n) and an ultrafilter p such that $p-\lim x_n$ does not exist. Then for each $x \in X$ there exists an open neighborhood U_x of x such that $A_x := \{n \in \mathbb{Z}_+ \mid x_n \in U_x\} \not\in p$. It follows that the family $(U_x)_{x \in X}$ is an open cover of X, so from compactness, we get a finite subset $F \subseteq X$ with $X = \bigcup_{x \in F} U_x$. We get that

$$\bigcup_{x \in F} A_x = \mathbb{Z}_+ \in p,$$

hence we must have $A_x \in p$ for some $x \in F$. We have got a contradiction.

- (c) Let $x = p \lim x_n$ and let V be an open neighborhood of f(x). Since f is continuous, we have that $f(U) \subseteq V$ for some open neighborhood U of x. Let $A := \{n \in \mathbb{Z}_+ \mid x_n \in U\}$ and $B := \{n \in \mathbb{Z}_+ \mid f(x_n) \in V\}$. Then $A \in p$ and $A \subseteq B$, hence $B \in p$.
- (ii) Assume that $\lim_{n\to\infty} x_n = x$ and let p be a nonprincipal ultrafilter on \mathbb{Z}_+ . If U is an open neighborhood of x, then we get $N \geq 1$ such that $x_n \in U$ for all n > N. Let $n = 1, \ldots N$. Since $p \neq e(n)$, there exists $A_n \in p$ such that $n \not\in A_n$. It follows that $A_1 \cap \ldots A_N \subseteq \mathbb{Z}_+ \setminus [1, N] = \{n \in \mathbb{Z}_+ \mid n > N\} \subseteq \{n \in \mathbb{Z}_+ \mid x_n \in U\}$. Since $A_1 \cap \ldots A_N \in p$ and p is a filter, we conclude that $\{n \in \mathbb{Z}_+ \mid x_n \in U\} \in p$. Thus, $p-\lim x_n = x$.

(S5.7) Let $(x_n)_{n\geq 1}$, $(y_n)_{n\geq 1}$ be bounded sequences in \mathbb{R} , and p be a non-principal ultrafilter on \mathbb{Z}_+ .

- (i) (x_n) has a unique p-limit. If $a \le x_n \le b$, then $a \le p \lim x_n \le b$.
- (ii) For any $c \in \mathbb{R}$, $p-\lim cx_n = c \cdot p-\lim x_n$.
- (iii) $p-\lim(x_n+y_n)=p-\lim x_n+p-\lim y_n$.

Proof. (i) Apply Proposition 2.2.26.(ib) for the compact space X = [a, b].

- (ii) Apply Proposition 2.2.26.(ic) for the continuous mapping $f: \mathbb{R} \to \mathbb{R}$, f(x) = cx.
- (iii) Let $x = p \lim x_n$ and $y = p \lim y_n$. For any $\varepsilon > 0$, $A_{\varepsilon} := \{n \in \mathbb{Z}_+ \mid x_n \in (x \varepsilon/2, x + \varepsilon/2)\} \in p$ and $B_{\varepsilon} := \{n \in \mathbb{Z}_+ \mid y_n \in (y \varepsilon/2, y + \varepsilon/2)\} \in p$, hence $A_{\varepsilon} \cap B_{\varepsilon} \in p$. On the other hand

$$A_{\varepsilon} \cap B_{\varepsilon} \subseteq C_{\varepsilon} := \{ n \in \mathbb{Z}_{+} \mid x_{n} + y_{n} \in (x + y - \varepsilon, x + y + \varepsilon) \},$$

so $C_{\varepsilon} \in p$. Hence, $p - \lim(x_n + y_n) = x + y$.

(S5.8) Let $\mathcal{U} \subseteq \mathcal{P}(D)$. The following are equivalent:

- (i) \mathcal{U} is an ultrafilter on D.
- (ii) \mathcal{U} has the finite intersection property and for each $A \in \mathcal{P}(D) \setminus \mathcal{U}$ there is some $B \in \mathcal{U}$ such that $A \cap B = \emptyset$.
- (iii) \mathcal{U} is maximal with respect to the finite intersection property. (That is, \mathcal{U} is a maximal member of $\{\mathcal{V}\subseteq\mathcal{P}(D)\mid\mathcal{V}\text{ has the finite intersection property}\}$.)
- (iv) \mathcal{U} is a filter on D and for any collection C_1, \ldots, C_n of subsets of D, if $\bigcup_{i=1}^n C_i \in \mathcal{U}$, then $C_j \in \mathcal{U}$ for some $j = 1, \ldots n$.
- (v) \mathcal{U} is a filter on D and for all $A \subseteq D$ either $A \in \mathcal{U}$ or $D \setminus A \in \mathcal{U}$.

Proof. See [47, Theorem 3.6, p.49].