SNSB

Winter Term 2010/2011 Ergodic Ramsey Theory Laurențiu Leuştean

21.12.2010

Seminar 6

(S6.1) Let (X, \mathcal{B}, μ, T) be a MDS. The following are equivalent

- (i) T is ergodic.
- (ii) Whenever f is measurable and $U_T f = f$ a.e., then f is constant a.e.

Proof. (ii) \Rightarrow (i) Let $A \in \mathcal{B}$ be such that $T^{-1}(A) = A$. Then χ_A is measurable and $\chi_A \circ T = \chi_{T^{-1}(A)} = \chi_A$, so we can apply (ii) to conclude that χ_A is constant a.e. Thus, either $\chi_A = 1$ a.e., in which case $\mu(X \setminus A) = 0$ or $\chi_A = 0$ a.e., in which case $\mu(A) = 0$.

(i) \Rightarrow (ii) By considering real and imaginary parts it suffices to consider $f \in \mathcal{M}_{\mathbb{R}}(X,\mathcal{B})$. Define for each $m \geq 0$ and $k \in \mathbb{Z}$,

$$A_{m,k} = \left\{ x \in X \mid \frac{k}{2^m} \le f(x) < \frac{k+1}{2^m} \right\}.,\tag{D.4}$$

It is easy to see that the T-invariance of f implies that $T^{-1}(A_{m,k}) = A_{m,k}$ for all m, k. Furthermore, for fixed $m \geq 0$, $(A_{m,k})_{k \in \mathbb{Z}}$ is a countable family of pairwise disjoint sets satisfying $X = \bigcup_{k \in \mathbb{Z}} A_{m,k}$. The ergodicity of T implies that for every $m \geq 0$ there exists

 $k_m \in \mathbb{Z}$ such that $\mu(A_{m,k_m}) = 1$ and $\mu(A_{m,k}) = 0$ for all $k \neq k_m$. Let

$$A:=\bigcap_{m\geq 0}A_{m,k_m}.$$

Since

$$X = \bigcap_{m>0} \bigcup_{k\in\mathbb{Z}} A_{m,k} = \bigcup (A_{1,p_1} \cap A_{2,p_2} \cap \dots A_{m,p_m} \cap \dots)$$

If at least one of p_m 's is different from k_m , then the measure of the intersection is 0. Thus, we must have $\mu(Y) = 1$.

Let us prove that f is constant on A. Assume by contradiction that there are $x, y \in A$ with f(x) - f(y) > 0 and take $M \ge 0$ such that $2^M(f(x) - f(y)) > 1$. On the other hand $k_M \le 2^M f(x), 2^M f(y) < k_M + 1$, hence $2^M(f(x) - f(y)) < 1$. We have got a contradiction.

(S6.2) Let $f \in \mathcal{M}_{\mathbb{C}}(X, \mathcal{B})$ and $n \geq 1$.

(i) If f is T-invariant (a.e.), then $S_n f = f$ (a.e.).

(ii) $S_n f \in \mathcal{M}_{\mathbb{C}}(X, \mathcal{B})$.

(iii)
$$S_n f = \frac{1}{n} \sum_{k=0}^{n-1} U_{T^k} f$$
.

(iv) For any $p \geq 1$, $f \in L^p(X, \mathcal{B}, \mu)$ (resp. $L^p_{\mathbb{R}}(X, \mathcal{B}, \mu)$) implies $S_n f \in L^p(X, \mathcal{B}, \mu)$ (resp. $L^p_{\mathbb{R}}(X, \mathcal{B}, \mu)$).

(v) For all
$$x \in X$$
, $\frac{n+1}{n}S_{n+1}(x) - S_n f(Tx) = \frac{1}{n}f(x)$.

(vi) If $f \in \mathcal{M}_{\mathbb{R}}(X, \mathcal{B})$, then $\underline{f} \circ T = \underline{f}$ and $\overline{f} \circ T = \overline{f}$.

(vii)
$$\int_X S_n f \, d\mu = \int_X f \, d\mu.$$

(viii) If $f \in L^1_{\mathbb{R}}(X, \mathcal{B}, \mu)$ is nonnegative, then $S_n f \in L^1_{\mathbb{R}}(X, \mathcal{B}, \mu)$ is nonnegative and $||S_n f||_1 = ||f||_1$.

Proof. (i) Obviously, since $f \circ T = f$ (a.e.) implies $f \circ T^k = f$ (a.e.) for all $k \ge 0$.

- (ii) For all $k \geq 0$, we have that $f \circ T^k$ is measurable, as a composition of measurable functions. Hence, $S_n f$ is measurable as a finite sum of measurable functions.
- (iii) For every $x \in X$,

$$S_n f(x) = \frac{1}{n} \sum_{k=0}^{n-1} U_{T^k} f(x) = \left(\frac{1}{n} \sum_{k=0}^{n-1} U_{T^k} f\right) (x).$$

(iv) Apply (iii) and Theorem 3.1.11.

(v)

$$S_n(Tx) = \frac{1}{n} \sum_{k=0}^{n-1} f(T^{k+1}x) = \frac{1}{n} \sum_{k=0}^{n} f(T^kx) - \frac{1}{n} f(x)$$
$$= \frac{n+1}{n} \cdot \frac{1}{n+1} \sum_{k=0}^{n} f(T^kx) - \frac{1}{n} f(x) = \frac{n+1}{n} S_{n+1}(x) - \frac{1}{n} f(x).$$

Hence, $\frac{n+1}{n}S_{n+1}(x) - S_n f(Tx) = \frac{1}{n}f(x)$.

(vi) Let $x \in X$. Then

$$(\underline{f} \circ T)(x) = \underline{f}(Tx) = \liminf_{n} S_{n}f(Tx) = \liminf_{n} \left(\frac{n+1}{n}S_{n+1}(x) - \frac{1}{n}f(x)\right)$$

$$= \liminf_{n} \left(\frac{n+1}{n}S_{n+1}f(x)\right), \text{ since } \lim_{n \to \infty} -\frac{1}{n}f(x) = 0$$

$$= \liminf_{n} S_{n+1}f(x), \text{ since } \lim_{n \to \infty} \frac{n+1}{n} = 1$$

$$= f(x).$$

We prove similarly that $(\overline{f} \circ T)(x) = \overline{f}(x)$.

(vii) We have that

$$\int_X S_n f \, d\mu = \frac{1}{n} \sum_{k=0}^{n-1} \int_X U_{T^k} f \, d\mu = \frac{1}{n} \sum_{k=0}^{n-1} \int_X f \, d\mu,$$

by Proposition 3.1.10.

(viii) Since U_{T^k} is positive for all k, we get that $S_n f \in L^1_{\mathbb{R}}(X, \mathcal{B}, \mu)$ is nonnegative. Apply (vii) to get that

$$||S_n f||_1 = \int_X S_n f \, d\mu = \int_X f \, d\mu = ||f||_1.$$

(S6.3)

(i) Let X be a nonempty set, $(E_n)_{n\geq 1}$ be a sequence of subsets of X and $f: X \to \mathbb{R}$. Prove that

$$\lim_{n \to \infty} \chi_{\cup_{i=1}^n E_i} f = \chi_{\cup_{i \ge 1} E_i} f. \tag{D.5}$$

(ii) Let (X, \mathcal{B}, μ) be a probability space, $f \in L^1_{\mathbb{R}}(X, \mathcal{B}, \mu)$, $(E_n)_{n\geq 1}$ be an increasing sequence of measurable sets, and $E = \bigcup_{n\geq 1} E_n$. Prove that

$$\int_{E} f \, d\mu = \lim_{n \to \infty} \int_{E_n} f \, d\mu. \tag{D.6}$$

Proof. (i) Let

$$B_n := \bigcup_{i=1}^n E_i, \quad B := \bigcup_{i=1}^\infty E_i, \quad g_n := \chi_{B_n} f, \quad g := \chi_B f.$$

For every $x \in X$, we have two cases:

- (a) $x \in B$. Then g(x) = f(x) and there exists $N \ge 1$ such that $x \in E_N$. It follows that $x \in B_n$ for all $n \ge N$, hence $g_n(x) = f(x)$ for all $n \ge N$. In particular, $\lim_{n \to \infty} g_n(x) = f(x) = g(x)$.
- (b) $x \notin B$. Then g(x) = 0 and $x \notin E_n$ for any $n \ge 1$. It follows that $x \notin B_n$ for any $n \ge 1$, hence $g_n(x) = 0$ for all $n \ge 1$. In particular, $\lim_{n \to \infty} g_n(x) = 0 = g(x)$.
- (ii) Let $g_n := \chi_{E_n} f$ and $g := \chi_E f$. We have that
 - (a) $\lim_{n\to\infty} g_n = \lim_{n\to\infty} \chi_{E_n} f = \lim_{n\to\infty} \chi_{\cup_{i=1}^n E_i} f$, since (E_n) is increasing. Apply now A.1.8 to conclude that $\lim_{n\to\infty} g_n = \chi_E f = g$.
 - (b) $|g_n| \leq |f|$ for all $n \geq 1$ and $|f| \in L^1_{\mathbb{R}}(X, \mathcal{B}, \mu)$.

We can apply Lebesgue Dominated Convergence Theorem to conclude that

$$\lim_{n \to \infty} \int_X g_n \, d\mu = \int_X g \, d\mu.$$

It follows that

$$\int_{E} f \, d\mu = \int_{X} \chi_{E} f \, d\mu = \int_{X} g \, d\mu = \lim_{n \to \infty} \int_{X} g_{n} \, d\mu = \lim_{n \to \infty} \int_{X} \chi_{E_{n}} f \, d\mu$$
$$= \lim_{n \to \infty} \int_{E_{n}} f \, d\mu.$$

(S6.4) Let $A, B \in \mathcal{B}$ and $n \ge 1$.

(i)
$$S_n \chi_A = \frac{1}{n} \sum_{k=0}^{n-1} \chi_{T^{-k}(A)}$$
 and $\chi_B \cdot S_n \chi_A = \frac{1}{n} \sum_{k=0}^{n-1} \chi_{T^{-k}(A) \cap B}$.

(ii)
$$\int_X S_n \chi_A = \mu(A).$$

(iii)
$$\int_X \chi_B \cdot S_n \chi_A d\mu = \frac{1}{n} \sum_{k=0}^{n-1} \mu(T^{-k}(A) \cap B).$$

Proof. Firstly, let us remark that since $\mu(X) < \infty$, $\int_X \chi_A d\mu = \mu(A) \le \mu(X) < \infty$, hence $\chi_A \in L^p_{\mathbb{R}}(X, \mathcal{B}, \mu)$ for all $1 \le p < \infty$ and $A \in \mathcal{B}$. Furthermore, χ_A is nonegative.

- (i) It is an easy exercise.
- (ii) Apply Proposition 3.4.1.(vii) with $f := \chi_A$.

(iii)

$$\int_{X} \chi_{B} \cdot S_{n} \chi_{A} = \int_{X} \frac{1}{n} \sum_{i=0}^{n-1} \chi_{T^{-i}(A) \cap B} d\mu = \frac{1}{n} \sum_{i=0}^{n-1} \int_{X} \chi_{T^{-i}(A) \cap B} d\mu$$
$$= \frac{1}{n} \sum_{i=0}^{n-1} \mu(T^{-i}(A) \cap B).$$