SNSB Winter Term 2010/2011 Ergodic Ramsey Theory Laurențiu Leuștean

21.12.2010

Seminar 6

(S6.1) Let (X, \mathcal{B}, μ, T) be a MDS. The following are equivalent

(i) T is ergodic.

(ii) Whenever f is measurable and $U_T f = f$ a.e., then f is constant a.e.

(S6.2) Let $f \in \mathcal{M}_{\mathbb{C}}(X, \mathcal{B})$ and $n \ge 1$.

(i) If f is T-invariant (a.e.), then $S_n f = f$ (a.e.).

(ii)
$$S_n f \in \mathcal{M}_{\mathbb{C}}(X, \mathcal{B})$$

(iii)
$$S_n f = \frac{1}{n} \sum_{k=0}^{n-1} U_{T^k} f.$$

(iv) For any $p \ge 1$, $f \in L^p(X, \mathcal{B}, \mu)$ (resp. $L^p_{\mathbb{R}}(X, \mathcal{B}, \mu)$) implies $S_n f \in L^p(X, \mathcal{B}, \mu)$ (resp. $L^p_{\mathbb{R}}(X, \mathcal{B}, \mu)$).

(v) For all
$$x \in X$$
, $\frac{n+1}{n}S_{n+1}(x) - S_nf(Tx) = \frac{1}{n}f(x)$.

(vi) If
$$f \in \mathcal{M}_{\mathbb{R}}(X, \mathcal{B})$$
, then $\underline{f} \circ T = \underline{f}$ and $\overline{f} \circ T = \overline{f}$.

(vii)
$$\int_X S_n f \, d\mu = \int_X f \, d\mu.$$

(viii) If $f \in L^1_{\mathbb{R}}(X, \mathcal{B}, \mu)$ is nonnegative, then $S_n f \in L^1_{\mathbb{R}}(X, \mathcal{B}, \mu)$ is nonnegative and $||S_n f||_1 = ||f||_1$.

(S6.3) Let $A, B \in \mathcal{B}$ and $n \ge 1$.

(i)
$$S_n \chi_A = \frac{1}{n} \sum_{k=0}^{n-1} \chi_{T^{-k}(A)}$$
 and $\chi_B \cdot S_n \chi_A = \frac{1}{n} \sum_{k=0}^{n-1} \chi_{T^{-k}(A) \cap B}$.

(ii)
$$\int_X S_n \chi_A = \mu(A).$$

(iii) $\int_X \chi_B \cdot S_n \chi_A \, d\mu = \frac{1}{n} \sum_{k=0}^{n-1} \mu(T^{-k}(A) \cap B).$

(S6.4)

(i) Let X be a nonempty set, $(E_n)_{n\geq 1}$ be a sequence of subsets of X and $f: X \to \mathbb{R}$. Prove that

$$\lim_{n \to \infty} \chi_{\bigcup_{i=1}^n E_i} f = \chi_{\bigcup_{i \ge 1} E_i} f.$$
(D.2)

(ii) Let (X, \mathcal{B}, μ) be a probability space, $f \in L^1_{\mathbb{R}}(X, \mathcal{B}, \mu)$, $(E_n)_{n \ge 1}$ be an increasing sequence of measurable sets, and $E = \bigcup_{n \ge 1} E_n$. Prove that

$$\int_{E} f \, d\mu = \lim_{n \to \infty} \int_{E_n} f \, d\mu. \tag{D.3}$$