SNSB

Winter Term 2010/2011 Ergodic Ramsey Theory Laurențiu Leuştean

11.01.2011

Seminar 7

(S7.1) Let $(x_n)_{n\geq 1}$ be a sequence in a metric space (X,d). Prove that the following are equivalent:

- (i) (x_n) is Cauchy.
- (ii) $\forall \varepsilon > 0 \ \exists N \ge 1 \ \forall p \in \mathbb{N} \ d(x_{N+p}, x_N) < \varepsilon$.
- (iii) $\forall \varepsilon > 0 \ \exists N \ge 1 \ \forall p \in \mathbb{N} \ \forall i, j \in [N, N+p] \ d(x_i, x_j) < \varepsilon$.
- (iv) $\forall \varepsilon > 0 \ \forall g : \mathbb{Z}_+ \to \mathbb{Z}_+ \ \exists N \ge 1 \ \forall i, j \in [N, N + g(N)] \ d(x_i, x_j) < \varepsilon$.
- (S7.2) Let $(a_n)_{n\geq 1}$ be a sequence of nonnegative real numbers.
 - (i) Prove that for all $\varepsilon > 0$ there exists $N \ge 1$ such that $a_N \le a_m + \varepsilon$ for all $m \ge 1$.
 - (ii) Prove the following for all $\varepsilon > 0$, all $g : \mathbb{Z}_+ \to \mathbb{Z}_+$, and all $b \geq a_1$:
 - (a) There exists $N \leq \Theta(b, \varepsilon, g)$ such that $a_N \leq a_{g(N)} + \varepsilon$, where

$$\Theta(b, \varepsilon, g) := \max_{i \le K} g^i(1), \quad K := \left\lceil \frac{b}{\varepsilon} \right\rceil.$$

Moreover, $N = g^i(1)$ for some i < K.

(b) There exists $N \leq h^K(1)$ such that $a_N \leq a_m + \varepsilon$ for all $m \leq g(N)$, where

$$h(n) := \max_{i \le n} g(i)$$
, K is as above.

(S7.3) Let $f: \mathbb{N} \to \mathbb{N}$ be a function. Show that there exists $N \in \mathbb{N}$ such that

$$f(N) \leq f(m)$$

for all $m \in \mathbb{N}$.

(S7.4) Let $f: \mathbb{N} \to \mathbb{N}$ be an arbitrary function. Prove that there exists $n \in \mathbb{N}$ such that

$$f(f(n)+1) \neq n.$$