SNSB
Winter Term 2010/2011
Ergodic Ramsey Theory
Laurenţiu Leuştean
25.01.2011

Seminar 9

(S9.1) Prove that the Bernoulli shift is strong mixing.
Proof. Let $\left(W^{\mathbb{Z}}, \mathcal{B}, \mu, T\right)$ be the Bernoullis shift, and let \mathcal{C} be the set of all cylinders. By Proposition 3.2.1, the set $\mathcal{S}=\mathcal{C} \cup\{\emptyset\}$ is a semialgebra that generates \mathcal{B}. Applying Proposition 6.0.3.(ii), it is enough to prove that $\lim _{n \rightarrow \infty} \mu\left(T^{-n}(A) \cap B\right)=\mu(A) \mu(B)$ for $A, B \in \mathcal{C}$. Let $A=C_{1}^{w_{i_{1}}, \ldots, w_{i_{t}}}$ and $B=C_{m_{1}, \ldots, m_{l}}^{w_{j_{1}}, \ldots, w_{j_{l}}}$ be two cylinders. For all $n \geq 0$, we have that $T^{-n}(A)=C_{n+n_{1}, \ldots, n+n_{t}}^{w_{i_{1}}, \ldots, w_{i}}$. Let $N \in \mathbb{N}$ be such that

$$
\min \left\{N+n_{1}, \ldots, N+n_{t}\right\}>\max \left\{m_{1}, \ldots, m_{l}\right\}
$$

Then for all $n \geq N$, we have that

$$
T^{-n}(A) \cap B=C_{m_{1}, \ldots, m_{l}, n+n_{1}, \ldots, n+n_{t}}^{w_{j_{1}}, \ldots, w_{j}, w_{i_{1}}, \ldots, w_{i}},
$$

hence for all $n \geq N$,

$$
\mu\left(T^{-n}(A) \cap B\right)=p_{j_{1}} \cdot \ldots \cdot p_{j_{t}} \cdot p_{i_{1}} \cdot \ldots \cdot p_{i_{t}}=\mu(A) \mu(B)
$$

Obviously $\lim _{n \rightarrow \infty} \mu\left(T^{-n}(A) \cap B\right)=\mu(A) \mu(B)$.
(S9.2) Any syndetic set $A \subseteq \mathbb{Z}_{+}$has positive lower density.
Proof. Since A is syndetic, there exists $N \geq 1$ such that $[k, k+N] \bigcap A \neq \emptyset$ for any $k \in \mathbb{Z}_{+}$. Let $n \in \mathbb{Z}_{+}$be arbitrary and $q \in \mathbb{Z}_{+}, 0 \leq r<N+1$ be such that $n=q(N+1)+r$. Then for all $k=0, \ldots, q-1$, we have that $[k(N+1)+1,(k+1)(N+1)] \subseteq[1, N]$ and $|A \cap[k(N+1)+1,(k+1)(N+1)]| \geq 1$. It follows that for all $n \geq N+1$ we have that $q \geq 1$ and

$$
\frac{|A \cap[1, n]|}{n} \geq \frac{q}{n}=\frac{q}{q(N+1)+r} \geq \frac{1}{N+1} .
$$

As a consequence,

$$
\underline{d}(A)=\liminf _{n \rightarrow \infty} \frac{|A \cap[1, n]|}{n} \geq \frac{1}{N+1}>0 .
$$

Definition . Let (X, d) be a metric space, $A \subseteq X$ and $\varepsilon>0$. We say that $x, y \in A$ are ε-separated if $d(x, y) \geq \varepsilon$. A is said to be ε-separated if every two points of A are ε-separated.
(S9.3) Let (X, d) be a metric space and $A \subseteq X$ be totally bounded with $|A| \geq 2$. Define for all $\varepsilon>0$, the set

$$
\begin{equation*}
S_{\varepsilon}=\{m \geq 2 \mid \text { there exist } m \varepsilon-\text { separated points in } A\} \tag{E.5}
\end{equation*}
$$

Prove that if S_{ε} is nonempty, then it is bounded from above.
Proof. Firstly, let us remark that since there are distinct points $x, y \in A$, by taking $\varepsilon \leq$ $d(x, y)$ we have that $2 \in A_{\varepsilon}$. Let $\varepsilon>0$ be such that $S_{\varepsilon} \neq \emptyset$. Consider the following set

$$
T=\{n \geq 1 \mid \text { there exists a cover of } A \text { by } m \varepsilon / 2-\text { balls }\} .
$$

Since A is totally bounded, we have that $T \neq \emptyset$. Hence, T has a minimum α. Thus, there are $x_{1}, \ldots, x_{\alpha} \in A$ such that $A=\left(B_{\varepsilon / 2}\left(x_{1}\right) \cap A\right) \cup \ldots \cup\left(B_{\varepsilon / 2}\left(x_{\alpha}\right) \cap A\right)$. We shall prove that α is an upper bound for S_{ε}. For $m \in S_{\varepsilon}$, then there are $y_{1}, \ldots, y_{m} \in A$ such that $d\left(y_{i}, y_{j}\right) \geq \varepsilon$ for all $1 \leq i \neq j \leq m$. If $m>\alpha$, then two y_{i}, y_{j} must be in the same $\varepsilon / 2$-ball, so $d\left(y_{i}, y_{j}\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon$, which is a contradiction.

Thus, we must have $m \leq \alpha$ for all $m \in S_{\varepsilon}$.
(S9.4) Let $f \in A P(X)$. Prove that for any $\varepsilon>0$ the set

$$
\begin{equation*}
A_{\varepsilon}:=\left\{n \geq 1 \mid\left\|U_{T}^{n} f-f\right\|_{2}<\varepsilon\right\} \tag{E.6}
\end{equation*}
$$

is syndetic.
Proof. Let $\varepsilon>0$. Since $\left\{U_{T}^{n} f \mid n \geq 0\right\}$ is totally bounded, we can find a finite subset $\left\{U_{T}^{n_{1}} f, U_{T}^{n_{2}} f, \ldots, U_{T}^{n_{r}} f\right\}$ which is ε-separated and which has the maximum cardinality r of such a subset (see $S 9.3$). Let $N:=\max \left\{n_{1}, \ldots, n_{r}\right\}$. We shall prove that $[n, n+N] \cap A_{\varepsilon} \neq \emptyset$ for all $n \geq 1$. We have that for all $i, j=1, \ldots, r$

$$
\left\|U_{T}^{n+n_{i}} f-U_{T}^{n+n_{j}} f\right\|=\left\|U_{T}^{n}\left(U_{T}^{n_{i}} f-U_{T}^{n_{j}} f\right)\right\|=\left\|U_{T}^{n_{i}} f-U_{T}^{n_{j}} f\right\| \geq \varepsilon
$$

Since the set $\left\{f, U_{T}^{n+n_{1}} f, U_{T}^{n+n_{2}} f, \ldots, U_{T}^{n+n_{r}} f\right\}$ has $r+1$ elements, it cannot be ε-separated. Thus, we must have $\left\|U_{T}^{n+n_{i}} f-f\right\|<\varepsilon$ for some $i=1, \ldots, r$. Hence, $n+n_{i} \in A_{\varepsilon} \cap[n, n+$ $N]$.

