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(S5.1) Let us consider the following statements

(vdW1) LetreZ; and N= U C;. For any k > 1 there exists ¢ € [1, 7] such that
i=1
C; contains an arithmetic progression of length k.

(vdW2) Letr € Z, and N = U C;. There exists i € [1,7] such that C; contains
i=1
arithmetic progression of arbitrary finite length.

(vdW3) Letr€Z, and N= U C;. For any finite set F' C N there exists i € [1, 7]
i=1
such that C; contains affine images of F.

(vdW4) Letr € Z, and N= U C;. There exists ¢ € [1,r] such that C; contains

=1
affine images of every finite set F* C N.
Let (vdWix),i = 1,2, 3,4 be the statements obtained from (vdWi),i = 1,2, 3,4 by chang-
ing N to Z in their formulations.
Prove that (vdWi), (vdWix),i = 1,2, 3,4 are all equivalent.

Proof. (vdW2) = (vdW1), (vdW4) = (vdW3) are obvious.
(vdW1) = (vdW2) By (vdW1) we know that for every k € N there exists ¢ € [1, 7] such
that C; contains an arithmetic progression of length k. Since [1,r] is finite, it follows that
one of C;’s will occur for infinitely many k. That is, there exists ¢ € [1,7] such that C;
contains arithmetic progressions of length k for every k € K C N, where K is infinite.

It follows easily that this C; is the desired one. For [ > 1, there exists £ € K such
that [ < k, since K is infinite. We get that C; contains an arithmetic progression {a,a +
d,...a+ (k—1)d} of length k. Since | < k,

{a,a+d,...a+ (I—1)d} C{a,a+d,...a+ (k—1)d} C C;,

hence C; contains an arithmetic progression of length [.
(vdW2) = (vdW4) Let i be as in (vdW2). If F C N is a finite set, then F* C {0,...,k—



1} for some k > 1. By (vdW2), C; contains an arithmetic progression of length k. so

there are a,d € N such that {a,a+d,...a+ (k — 1)d} C C;. It follows that C; contains

the affine image a + dF' of F.

(vdW3) = (vdW1) is immediate since any arithmetic progression {a, a+d, . ..a+(k—1)d}

of length k is an affine image of the set ' = {0,...,k — 1}.

(vdW1) = (vdW1x) Let r k € Z, and Z = U C;. Then N = U(Cl NN), and by taking
i=1 i=1

the nonempty C; N N’s; we get a finite partition of N. Apply (vdW1) to get ¢ such that

C; NN, hence C}, contains an arithmetic progression of length k.

(vdW1x) = (vdW1) Let r € Z; and N = UC"‘ By taking D, := C; U (—C;), we get
i=1

a partition Z = UD,-. By (vdW1%*), there exists ¢ € [1,r] with the property that D;
i=1

contains an arithmetic progression of length 2k — 1. Hence, either C; or —C; contains an

arithmetic progression of length k. Remark now that {a,a+d, ..., a+ (k—1)d} C —C; iff

{-a,—a—-d,...,—a+ (k—1)(=d)} CC,.

The remaining implications follow similarly. ]

(S5.2) Let us consider the following statement

(*) Let (X,T) be a TDS and (U;);esr be an open cover of X. Then there exists
an open set Uy, in this cover such that U;y N T~"(U,,) # 0 for infinitely many n.

(i) Prove (*) in two ways:

(a) applying Birkhoff Recurrence Theorem.

(b) using the Infinite Pigeonhole Principle (IPP): Whenever N is coloured into
finitely many colours, one of the colour classes is infinite.

(ii) Deduce IPP from (*).
Proof. (i) Forevery i€ I, let C; ={n>1|U;NT"(U;) # 0}.

(a) Apply Birkhoff Recurrence Theorem 1.6.10 to get an almost periodic point x €
X. Since X = UU“ we have that € Uy, for some ig € I. If n € rt(z,U;,),

i€l
then x € U;, N T~"(U,,), hence n € C;,. Thus, rt(x,Uy) C Cy,. Since rt(z,Us,)
is syndetic, hence infinite, we conclude that Cj, is infinite too.

(b) As X is compact, there is a finite subcover X = U U, of X. Let v € X be
k=1
arbitrary and define Dy := {n > 0 | T"z € U,;,} for all k = 1,...,r. Then

N = U Dy, so we can apply (IPP) to get the existence of K such that D is
k=1



infinite. Let N := min Dy and y := TVz. We get that y € U;,, and for all
n € Dg \ {N}, we have that n — N > 1, and T" Ny = T"z € U;,.. Hence,
n € Dk \ {N} implies n — N € C;,, so C;,. is infinite.

(ii)) Let » > 1 and let N = UD,' be a finite partition of N. Set W = {1,2,...,r} and

i=1
consider the full shift (W% T). Let v € WZ be defined by:

K if n>0and n € D;
= arbitrarily  if n < 0.

Let X := {T™y | n > 0} be the orbit closure of y and consider the subsystem (X, T’y ).
Consider the elementary cylinders C, i € W. Then W% = U C?, so we get an open
iew
cover X = U (CiN X) of X. Apply now (*) to get ig € W such that
iew
A={n>1|CNXNT(CPNX)+#0D}

is infinite.

For every n € A, there exists x € X such that xy = iy and =, = (T"x)y = . Let
k =n+ 1. Since x € X, there exists M,, € N such that

d(x, T""~) < 27% hence, X|_nn = (TY"Y)[nm)-

As a consequence, vy, = (TMmy)g = z9 = ig, and Va0 = (TM), = z, = io.
Thus,

B:={M,|necAlU{M,+n|ne A} CD,.

If {M,, | n € A} is infinite, then B is infinite. If {M,, | n € A} is finite, then there
exists N € A such that for all p € A,p > N, we have that M, = My. It follows that
theset {M,+p|pe A p>N}=My+{peA|lp>N}=Mx+(A\[0,N —1])
is infinite. We get again that B is infinite.

It follows that D;, is infinite too.



