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(S5.1) Let us consider the following statements

(vdW1) Let r ∈ Z+ and N =
r

⋃

i=1

Ci. For any k ≥ 1 there exists i ∈ [1, r] such that

Ci contains an arithmetic progression of length k.

(vdW2) Let r ∈ Z+ and N =
r

⋃

i=1

Ci. There exists i ∈ [1, r] such that Ci contains

arithmetic progression of arbitrary finite length.

(vdW3) Let r ∈ Z+ and N =
r

⋃

i=1

Ci. For any finite set F ⊆ N there exists i ∈ [1, r]

such that Ci contains affine images of F .

(vdW4) Let r ∈ Z+ and N =
r

⋃

i=1

Ci. There exists i ∈ [1, r] such that Ci contains

affine images of every finite set F ⊆ N.
Let (vdWi∗), i = 1, 2, 3, 4 be the statements obtained from (vdWi), i = 1, 2, 3, 4 by chang-
ing N to Z in their formulations.

Prove that (vdWi), (vdWi∗), i = 1, 2, 3, 4 are all equivalent.

Proof. (vdW2) ⇒ (vdW1), (vdW4) ⇒ (vdW3) are obvious.
(vdW1) ⇒ (vdW2) By (vdW1) we know that for every k ∈ N there exists i ∈ [1, r] such
that Ci contains an arithmetic progression of length k. Since [1, r] is finite, it follows that
one of Ci’s will occur for infinitely many k. That is, there exists i ∈ [1, r] such that Ci

contains arithmetic progressions of length k for every k ∈ K ⊆ N, where K is infinite.
It follows easily that this Ci is the desired one. For l ≥ 1, there exists k ∈ K such

that l ≤ k, since K is infinite. We get that Ci contains an arithmetic progression {a, a +
d, . . . a + (k − 1)d} of length k. Since l ≤ k,

{a, a + d, . . . a + (l − 1)d} ⊆ {a, a + d, . . . a + (k − 1)d} ⊆ Ci,

hence Ci contains an arithmetic progression of length l.
(vdW2) ⇒ (vdW4) Let i be as in (vdW2). If F ⊆ N is a finite set, then F ⊆ {0, . . . , k−



1} for some k ≥ 1. By (vdW2), Ci contains an arithmetic progression of length k. so
there are a, d ∈ N such that {a, a + d, . . . a + (k − 1)d} ⊆ Ci. It follows that Ci contains
the affine image a + dF of F .
(vdW3) ⇒ (vdW1) is immediate since any arithmetic progression {a, a+d, . . . a+(k−1)d}
of length k is an affine image of the set F = {0, . . . , k − 1}.

(vdW1) ⇒ (vdW1∗) Let r, k ∈ Z+ and Z =
r

⋃

i=1

Ci. Then N =
r

⋃

i=1

(Ci ∩ N), and by taking

the nonempty Ci ∩ N’s, we get a finite partition of N. Apply (vdW1) to get i such that
Ci ∩ N, hence Ci, contains an arithmetic progression of length k.

(vdW1∗) ⇒ (vdW1) Let r ∈ Z+ and N =
r

⋃

i=1

Ci. By taking Di := Ci ∪ (−Ci), we get

a partition Z =
r

⋃

i=1

Di. By (vdW1*), there exists i ∈ [1, r] with the property that Di

contains an arithmetic progression of length 2k − 1. Hence, either Ci or −Ci contains an
arithmetic progression of length k. Remark now that {a, a + d, . . . , a + (k− 1)d} ⊆ −Ci iff
{−a,−a − d, . . . ,−a + (k − 1)(−d)} ⊆ Ci.
The remaining implications follow similarly.

(S5.2) Let us consider the following statement

(*) Let (X, T ) be a TDS and (Ui)i∈I be an open cover of X. Then there exists
an open set Ui0 in this cover such that Ui0 ∩ T−n(Ui0) 6= ∅ for infinitely many n.

(i) Prove (*) in two ways:

(a) applying Birkhoff Recurrence Theorem.

(b) using the Infinite Pigeonhole Principle (IPP): Whenever N is coloured into
finitely many colours, one of the colour classes is infinite.

(ii) Deduce IPP from (*).

Proof. (i) For every i ∈ I, let Ci = {n ≥ 1 | Ui ∩ T−n(Ui) 6= ∅}.

(a) Apply Birkhoff Recurrence Theorem 1.6.10 to get an almost periodic point x ∈

X. Since X =
⋃

i∈I

Ui, we have that x ∈ Ui0 for some i0 ∈ I. If n ∈ rt(x, Ui0),

then x ∈ Ui0 ∩ T−n(Ui0), hence n ∈ Ci0 . Thus, rt(x, U0) ⊆ Ci0 . Since rt(x, Ui0)
is syndetic, hence infinite, we conclude that Ci0 is infinite too.

(b) As X is compact, there is a finite subcover X =
r

⋃

k=1

Uik of X. Let x ∈ X be

arbitrary and define Dk := {n ≥ 0 | T nx ∈ Uik} for all k = 1, . . . , r. Then

N =
r

⋃

k=1

Dk, so we can apply (IPP) to get the existence of K such that DK is



infinite. Let N := min DK and y := TNx. We get that y ∈ UiK and for all
n ∈ DK \ {N}, we have that n − N ≥ 1, and T n−Ny = T nx ∈ UiK . Hence,
n ∈ DK \ {N} implies n − N ∈ CiK , so CiK is infinite.

(ii) Let r ≥ 1 and let N =
r

⋃

i=1

Di be a finite partition of N. Set W = {1, 2, . . . , r} and

consider the full shift (W Z, T ). Let γ ∈ WZ be defined by:

γn =

{

i if n ≥ 0 and n ∈ Di

arbitrarily if n < 0.

Let X := {T nγ | n ≥ 0} be the orbit closure of γ and consider the subsystem (X, TX).

Consider the elementary cylinders Ci
0, i ∈ W . Then W Z =

⋃

i∈W

Ci
0, so we get an open

cover X =
⋃

i∈W

(Ci
0 ∩ X) of X. Apply now (*) to get i0 ∈ W such that

A = {n ≥ 1 | Ci0
0 ∩ X ∩ T−n(Ci0

0 ∩ X) 6= ∅}

is infinite.

For every n ∈ A, there exists x ∈ X such that x0 = i0 and xn = (T nx)0 = i0. Let
k = n + 1. Since x ∈ X, there exists Mn ∈ N such that

d(x, TMnγ) < 2−k, hence, x[−n,n] = (TMnγ)[−n,n].

As a consequence, γMn
= (TMnγ)0 = x0 = i0, and γMn+n = (TMnγ)n = xn = i0.

Thus,

B := {Mn | n ∈ A} ∪ {Mn + n | n ∈ A} ⊆ Di0 .

If {Mn | n ∈ A} is infinite, then B is infinite. If {Mn | n ∈ A} is finite, then there
exists N ∈ A such that for all p ∈ A, p ≥ N , we have that Mp = MN . It follows that
the set {Mp + p | p ∈ A, p ≥ N} = MN + {p ∈ A | p ≥ N} = MN + (A \ [0, N − 1])
is infinite. We get again that B is infinite.

It follows that Di0 is infinite too.


