
Appendix A

General notions

N,Z,Q, and R denote the sets of natural, integer, rational numbers, and real numbers,
respectively. The subscript + restricts the sets to the nonnegative numbers:

Z+ = {x 2 Z | x � 0} = N, Q+ = {x 2 Q | x � 0}, R+ = {x 2 R | x � 0}.

Furthermore, N⇤ denotes the set of positive natural numbers, that is N⇤ = N \ {0}.
If m,n 2 Z+, we use sometimes the notations [m,n] := {m,m+ 1, . . . , n}, [n] := {1, . . . , n}.
We also write i = 1, . . . , n instead of i 2 [n].

If X is a set, we denote by P(X) the collection of its subsets and by [X]2 the collection of
2-element subsets of X, i.e. [X]2 = {{x, y} | x, y 2 X}.
If X is a finite set, the size of X or the cardinality of X, denoted by |X| is the number
of elements of X.

Let m,n 2 N⇤. We denote by Rm⇥n the set of m ⇥ n-matrices with entries from R. Let
A = (a

ij

) 2 Rm⇥n be a matrix. The transpose of A is denoted by AT . If i = 1, . . . ,m, we
denote by a

i

the ith row of A: a
i

= (a
i,1, ai,2, . . . , ai,n). If I ✓ {1, . . . ,m}, we write A

I

for
the submatrix of A consisting of the rows in I only. Thus, a

i

= A{i}. We denote by 0
m,n

the zero matrix in Rm⇥n, by 0
n

the zero matrix in Rn⇥n and by I
n

the identity matrix in Rn⇥n.

Let n 2 N⇤. All vectors in Rn are column vectors. Let

x =

0

BBB@

x1

x2
...
x
n

1

CCCA
= (x1, x2, . . . , xn

)T 2 Rn.

Then x is a matrix in Rn⇥1 and its transpose xT is a row vector, hence a matrix in R1⇥n.
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2 APPENDIX A. GENERAL NOTIONS

Furthermore, for I ✓ {1, . . . ,m}, x
I

is the subvector of x consisting of the components with
indices in I. If a 2 R, we denote by a the vector in Rn whose components are all equal to a.



Appendix B

Euclidean space Rn

The Euclidean space Rn is the n-dimensional real vector space with inner product

xTy =
nX

i=1

x
i

y
i

.

We let

kxk = (xTx)1/2 =

vuut
nX

i=1

x2
i

denote the Euclidean norm of a vector x 2 Rn.
For every i = 1, . . . , n, we denote by e

i

the ith unit vector in Rn. Thus, e1 = (1, 0, . . . , 0, 0), e2 =
(0, 1, 0, . . . , 0), . . . , e

n

= (0, 0, . . . , 0, 1).
For vectors x, y 2 Rn we write x  y whenever x

i

 y
i

for i = 1, . . . , n. Similarly, x < y
whenever x

i

< y
i

for i = 1, . . . , n.
Let x, y 2 Rn. We say that x, y are parallel if one of them is a scalar multiple of the other.

Proposition B.0.1 (Cauchy-Schwarz inequality). For all x, y 2 Rn

,

|xTy|  kxkkyk,

with equality if and only if x and y are parallel.

The (closed) line segment joining x and y is defined as

[x, y] = {�x+ (1� �)y | � 2 [0, 1]}.

The open line segment joining x and y is defined as

(x, y) = {�x+ (1� �)y | � 2 (0, 1)}.
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4 APPENDIX B. EUCLIDEAN SPACE RN

Definition B.0.2. A subset L ✓ Rn

is a line if there are x, r 2 Rn

with r 6= 0 such that

L = {x+ �r | � 2 R}.

We also say that L is a line through point x with direction vector r 6= 0 and denote it by
L
x,r

.

Proposition B.0.3. A subset L ✓ Rn

is a line if and only if there are x, y 2 Rn

such that

L = {(1� �)x+ �y | � 2 R}.

We also say that L is the line through two points x, y and denote it by xy.

Given r > 0 and x 2 Rn, B
r

(x) = {y 2 Rn | kx � yk < r} is the open ball with center
x and radius r and B

r

(x) = {y 2 Rn | kx � yk  r} is the closed ball with center x and
radius r.

Definition B.0.4. A subset X ✓ Rn

is bounded if there exists M > 0 such that kxk  M
for all x 2 X.



Appendix C

Linear algebra

Definition C.0.1. A nonempty set S ✓ Rn

is a (linear) subspace if �1x1 + �2x2 2 S
whenever x1, x2 2 S and �1,�2 2 R.

Let x1, . . . , xm

be points in Rn. Any point x 2 Rn of the form x =
mX

i=1

�
i

x
i

, with �
i

2 R for

each i = 1, . . . ,m, is a linear combination of x1, . . . , xm

.

Definition C.0.2. The linear span of a subset X ✓ Rn

(denoted by span(X)) is the

intersection of all subspaces containing X.

If span(X) = Rn we say that X is a spanning set of Rn or that X spans Rn.

Proposition C.0.3. (i) span(;) = {0}.

(ii) For every X ✓ Rn

, span(X) consists of all linear combinations of points in X.

(iii) S ✓ Rn

is a subspace if and only if S is closed under linear combinations if and only

S = span(S).

Definition C.0.4. A set of vectors X = {x1, . . . , xm

} is linearly independent if

mX

i=1

�
i

x
i

= 0 implies �
i

= 0 for each i = 1, . . . ,m.

Is X is not linearly independent, we say that X is linearly dependent. We also say that
x1, . . . , xm

are linearly (in)dependent.

Proposition C.0.5. Let X = {x1, . . . , xm

} be a set of vectors in Rn

. Then X is linearly

dependent if and only if at least one of the vectors x
i

can be written as a linear combination

of the other vectors in X.
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6 APPENDIX C. LINEAR ALGEBRA

Definition C.0.6. Let S be a subspace of Rn

. A subset B = {x1, . . . , xm

} ✓ S is a basis

of S if B spans S and B is linearly independent.

Proposition C.0.7. Let S be a subspace of Rn

and B be a basis of S with |B| = m.

(i) Every vector in S can be written in a unique way as a linear combination of vectors in

B.

(ii) Every subset of S containing more than m vectors is linearly dependent.

(iii) Every other basis of S has m vectors.

Definition C.0.8. The dimension dim(S) of a subspace S of Rn

is the number of vectors

in a basis of S.

Proposition C.0.9. Let S be a subspace of Rn

.

(i) If S = {0}, then dim(S) = 0, since its basis is empty.

(ii) dim(S) � 1 if and only if S 6= {0}.

(iii) If X = {x1, . . . , xm

} ✓ S is a linearly independent set, then m  dim(S).

(iv) If X = {x1, . . . , xm

} ✓ S is a spanning set for S, then m � dim(S).

Proposition C.0.10. Let S be a subspace of dimension m and X = {x1, . . . , xm

} ✓ S.
Then X is a basis of S if and only if X spans S if and only if X is linearly independent.

Proposition C.0.11. Suppose that U and V are subspaces of Rn

such that U ✓ V . Then

(i) dim(U)  dim(V ).

(ii) dim(U) = dim(V ) if and only if U = V .

C.1 Matrices

Let A = (a
ij

) 2 Rm⇥n.

Definition C.1.1. The column space of A is the linear span of the set of its columns. The

column rank of A is the dimension of the column space, the number of linearly independent

columns.

Definition C.1.2. The row space of A is the linear span of the set of its rows. The row

rank of A is the dimension of the row space, the number of linearly independent rows.
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Proposition C.1.3. The row rank and column rank of A are equal.

Proof. See [3, Theorem 3.11, p. 131].

Definition C.1.4. The rank of a matrix A, denoted by rank(A), is its row rank or column

rank.

The m⇥ n matrix A has full row rank if its rank is m and it has full column rank if its
column rank is n.

Theorem C.1.5. Let us consider the homogeneous system Ax = 0 (with n unknowns and

m equations) and let S := {x 2 Rn | Ax = 0} be its solution set. Then

(i) S is a linear subspace of Rn

.

(ii) dim(S) = n� rank(A).

Proof. See [3, Theorem 3.13, p. 131].

Thus, the homogeneous system Ax = 0 has a unique solution (namely x = 0) if and only if
rank(A) = n.

Let b 2 Rm and A | b be the matrix A augmented by b. Thus,

A | b =

0

BBBBB@

a11 a12 . . . a1n b1
...
a
i1 a

i2 . . . a
in

b
i

...
a
m1 a

m2 . . . a
mn

b
m

1

CCCCCA

Theorem C.1.6. Let us consider the linear system Ax = b and let S := {x 2 Rn | Ax = b}
be its solution set.

(i) S 6= ; if and only if rank(A) = rank(A | b).

(ii) If S 6= ; and x is a particular solution, then

S = x+ {x 2 Rn | Ax = 0}.

(iii) The system has a unique solution if and only if rank(A) = rank(A | b) = n.

Proof. See, for example, [3, Section III.3].
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Appendix D

A�ne sets

Definition D.0.1. A set A ✓ Rn

is a�ne if �1x1 + �2x2 2 A whenever x1, x2 2 A and

�1,�2 2 R satisfy �1 + �2 = 1.

Geometrically, this means that A contains the line through any pair of its points. Note that
by this definition the empty set is a�ne.

Example D.0.2. (i) A point is an a�ne set.

(ii) Any linear subspace is an a�ne set.

(iii) Any line is an a�ne set.

(iv) Another example of an a�ne set is P = {x + �1r1 + �2r2 | �1,�2 2 R} which is a
two-dimensional plane going through x and spanned by the nonzero vectors r1 and r2.

Definition D.0.3. We say that an a�ne set A is parallel to another a�ne set B if A =
B + x0 for some x0 2 Rn

, i.e. A is a translate of B.

Proposition D.0.4. Let A be a nonempty subset of Rn

. Then A is an a�ne set if and only

if A is parallel to a unique linear subspace S, i.e., A = S + x0 for some x0 2 A.

Proof. See [1, P.1.1, pag. 13].

Remark D.0.5. An a�ne set is a linear subspace if and only if it contains the origin.

Proof. To be done in the seminar.

Definition D.0.6. The dimension of a nonempty a�ne set A, denoted by dim(A), is the

dimension of the unique linear subspace parallel to A. By convention, dim(;) = �1.

The maximal a�ne sets not equal to the whole space are of particular importance, these are
the hyperplanes. More precisely,
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10 APPENDIX D. AFFINE SETS

Definition D.0.7. A hyperplane in Rn

is an a�ne set of dimension n� 1.

Proposition D.0.8. Any hyperplane H ✓ Rn

may be represented by

H = {x 2 Rn | aTx = �} for some nonzero a 2 Rn

and � 2 R,

i.e. H is the solution set of a nontrivial linear equation. Furthermore, any set of this form is

a hyperplane. Finally, the equation in this representation is unique up to a scalar multiple.

Proof. See [1, P.1.2, pag. 13-14].

Definition D.0.9. A (closed) halfspace in Rn

is the set of all points x 2 Rn

that satisfy

aTx  � for some a 2 Rn

and � 2 R.

We shall use the following notations

H=(a, �) = {x 2 Rn | aTx = �}
H(a, �) = {x 2 Rn | aTx  �}
H�(a, �) = {x 2 Rn | aTx � �}

Thus, each hyperplane H=(a, �) gives rise to a decomposition of the space in two halfspaces:

A�ne sets are closely linked to systems of linear equations.

Proposition D.0.10. Let A 2 Rm⇥n

and b 2 Rm

. Then the solution set {x 2 Rn | Ax = b}
of the system of linear equations Ax = b is an a�ne set. Furthermore, any a�ne set may

be represented in this way.

Proof. See [1, P.1.3, pag. 13-14].

Let x1, . . . , xm

be points in Rn. An a�ne combination of x1, . . . , xm

is a linear combination
mX

i=1

�
i

x
i

with the property that
mX

i=1

�
i

= 1.

Definition D.0.11. The a�ne hull a↵(X) of a subset X ✓ Rn

is the intersection of all

a�ne sets containing X.

Proposition D.0.12. (i) The a�ne hull a↵(X) of a subset X ✓ Rn

consists of all a�ne

combinations of points in X.

(ii) A ✓ Rn

is a�ne if and only if A = a↵(A).

Proof. See [1, P.1.4, pag. 16].

Definition D.0.13. The dimension dim(X) of a set X ✓ Rn

is the dimension of a↵(X).



Appendix E

Convex sets

Definition E.0.1. A set C ✓ Rn

is called convex if it contains line segments between each

pair of its points, that is, if �1x1 + �2x2 2 C whenever x1, x2 2 C and �1,�2 � 0 satisfy

�1 + �2 = 1.

Equivalently, C is convex if and only if (1 � �)C + �C ✓ C for every � 2 [0, 1]. Note that
by this definition the empty set is convex.

Example E.0.2. (i) All a�ne sets are convex, but the converse does not hold.

(ii) More generally, the solution set of a family (finite or infinite) of linear inequalities
aT
i

x  b
i

, i 2 I is a convex set.

(iii) The open ball B(a, r) and the closed ball B(a, r) are convex sets.
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Appendix F

Graph Theory

Our presentation follows [2] and [9, Chapter 3].

F.1 Graphs

Definition F.1.1. A graph is a pair G = (V,E) of sets such that E ✓ [V ]2.

Thus, the elements of E are 2-element subsets of V . To avoid notational ambiguities, we
shall always assume tacitly that V \ E = ;. The elements of V are the vertices (or
nodes or points) of G, the elements of E are its edges. The vertices of G are denoted
x, y, z, u, v, v1, v2, . . .. The edge {x, y} of G is also denoted [x, y] or xy.

Definition F.1.2. The order of a graph G, written as |G| is the number of vertices of G.

The number of its edges is denoted by kGk.

Graphs are finite, infinite, countable and so on according to their order. The empty graph
(;, ;) is simply written ;. A graph of order 0 or 1 is called trivial.

Convention: Unless otherwise stated, our graphs will be finite.
In the sequel, G = (V,E) is a graph.

A graph with vertex set V is said to be a graph on V . The vertex set of a graph G is
referred to as V (G), its edge set as E(G). We shall not always distinguish strictly between
a graph and its vertex or edge set. For example, we may speak of a vertex v 2 G (rather
than v 2 V (G)), an edge e 2 G, and so on.
A vertex v is incident with an edge e if v 2 e; then e is an edge at v. The set of all edges
in E at v is denoted by E(v). The ends of an edge e are the two vertices incident with e.
Two edges e 6= f are adjacent if they have an end in common.

13



14 APPENDIX F. GRAPH THEORY

If e = xy 2 E is an edge, we say that e joins its vertices x and y, that x and y are adjacent
(or neighbours), that x and y are the ends of the edge e.

If F is a subset of [V ]2, we use the notations G� F := (V,E \ F ) and G+ F := (V,E [ F ).
Then G� {e} and G+ {e} are abbreviated G� e and G+ e.

F.1.1 The degree of a vertex

Definition F.1.3. The degree (or valency) of a vertex v is the number |E(v)| of edges at
v and it is denoted by d

G

(v) or simply d(v).

A vertex of degree 0 is isolated, and a vertex of degree 1 is a terminal vertex. Obviously,
the degree of a vertex is equal to the number of neighbours of v.

Proposition F.1.4. The number of vertices of odd degree is always even.

F.1.2 Subgraphs

Definition F.1.5. Let G = (V,E) and G0 = (V 0, E 0) be two graphs.

(i) G0
is a subgraph of G, written G0 ✓ G, if V 0 ✓ V and E 0 ✓ E. If G0 ✓ G we also

say that G is a supergraph of G0
or that G0

is contained in G.

(ii) If G0 ✓ G and G0
contains all the edges xy 2 E with x, y 2 V 0

, then G0
is an induced

subgraph of G; we say that V 0
induces or spans G0

in G and write G0 = G[V 0].

(iii) If G0 ✓ G, we say that G0
is a spanning subgraph of G if V 0 = V .

F.1.3 Paths, cycles

Definition F.1.6. A path is a nonempty graph P = (V (P ), E(P )) of the form

V (P ) = {x0, . . . , xk

}, E(P ) = {x0x1, x1x2, . . . , xk�1xk

},

where k � 1 and the x
i

’s are all distinct.

The vertices x0 and x
k

are linked by P and are called its endvertices or ends; the vertices
x1, . . . , xk�1 are the inner vertices of P . The number of edges of a path is its length. The
path of length k is denoted P k.
We often refer to a path by the natural sequence of its vertices, writing P = x0x1 . . . xk

and
saying that P is a path from x0 to x

k

(or between x0 and x
k

).
If a path P is a subgraph of a graph G = (V,E), we say that P is a path in G.
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Definition F.1.7. Let P = x0 . . . xk

, k � 2 be a path. The graph P +x
k

x0 is called a cycle.

As in the case of paths, we usually denote a cycle by its (cyclic) sequence of vertices: C =
x0 . . . xk

x0. The length of a cycle is the number of its edges (or vertices). The cycle of
length k is said to be a k-cycle and denoted Ck.

F.2 Directed graphs

Definition F.2.1. A directed graph (or digraph) is a pair D = (V,A), where V is a

finite set and A is a multiset of ordered pairs from V .

Let us recall that a multiset (or bag) is a generalization of the notion of a set in which
members are allowed to appear more than once.
The elements of V are the vertices (or nodes or points) of D, the elements of A are its
arcs (or directed edges). The vertex set of a digraph D is referred to as V (D), its set of
arcs as A(D).
Since A is a multiset, the same pair of vertices may occur several times in A. A pair occurring
more than once in A is called a multiple arc, and the number of times it occurs is called
its multiplicity. Two arcs are called parallel if they are represented by the same ordered
pair of vertices. Also loops are allowed, that is, arcs of the form (v, v).

Definition F.2.2. Directed graphs without loops and multiple arcs are called simple, and

directed graphs without loops are called loopless.

Let a = (u, v) be an arc. We say that a connects u and v, that a leaves u and enters
v; u and v are called the ends of a, u is called the tail of a and v is called the head of
a. If there exists an arc connecting vertices u and v, then u and v are called adjacent or
connected. If there exists an arc (u, v), then v is called an outneighbour of u, and u is
called an inneighbour of v.

Each directed graph D = (V,A) gives rise to an underlying (undirected) graph, which
is the graph G = (V,E) obtained by ignoring the orientation of the arcs:

E = {{u, v} | (u, v) 2 A}.

If G is the underlying (undirected) graph of a digraph D, we call D an orientation of G.
Terminology from undirected graphs is often transfered to directed graphs.

For any arc a = (u, v) 2 A, we denote a�1 := (v, u) and define A�1 := {a�1 | a 2 A}. The
reverse digraph D�1 is defined by D�1 = (V,A�1).
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For any vertex v, we denote

�in
A

(v) := �in(v) := the set of arcs entering v,

�out
A

(v) := �out(v) := the set of arcs leaving v.

Definition F.2.3. The indegree deg

in(v) of a vertex v is the number of arcs entering v, i.e.
|�in(v)|. The outdegree deg

out(v) of a vertex v is the number of arcs leaving v, i.e. |�out(v)|.

For any U ✓ V , we denote
�in
A

(U) := �in(U) := the set of arcs entering U , i.e. the set of arcs with head in U

and tail in V \ U ,

�out
A

(U) := �out(U) := the set of arcs leaving U , i.e. the set of arcs with head in V \ U
and tail in U .

F.2.1 Subgraphs

One can define the concept of subgraph as for graphs.
Two subgraphs of D are

(i) vertex-disjoint if they have no vertex in common;

(ii) arc-disjoint if they have no arc in common.

In general, we say that a family of k subgraphs (k � 3) is (vertex, arc)-disjoint if the k
subgraphs are pairwise (vertex, arc)-disjoint, i.e. every two subgraphs from the family are
(vertex, arc)-disjoint.

F.2.2 Paths, circuits, walks

Definition F.2.4. A (directed) path is a digraph P = (V (P ), A(P )) of the form

V = {v0, . . . , vk}, E = {(v0, v1), (v1, v2), . . . , (vk�1, vk)},

where k � 1 and the v
i

’s are all distinct.

The vertices v0 and v
k

are called the endvertices or ends of P ; the vertices v1, . . . , vk�1 are
the inner vertices of P . The number of edges of a path is its length.
We often refer to a path by the natural sequence of its vertices, writing P = v0v1 . . . vk and
saying that P is a path from v0 to v

k

or that the path P runs from v0 to v
k

.
If a path P is a subgraph of a digraph D = (V,A), we say that P is a path in G.

Notation F.2.5. We denote by P�1 := (V (P ), E(P )�1).
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Definition F.2.6. Let P = v0 . . . vk, k � 1 be a path. The graph

P + (v
k

, v0) = ({v0, . . . , vk}, {(v0, v1), (v1, v2), . . . , (vk�1, vk), (vk, v0)}

is called a circuit.

As in the case of paths, we usually denote a circuit by its (cyclic) sequence of vertices:
C = v0 . . . vkv0. The length of a circuit is the number of its edges (or vertices). The circuit
of length k is said to be a k-circuit and denoted Ck.

Definition F.2.7. A walk in D is a nonempty alternating sequence v0a0v1a1 . . . ak�1vk of

vertices and arcs of D such that a
i

= (v1, vi+1) for all i = 0, . . . , k � 1. If v0 = v
k

, the walk

is closed.

Let D = (V,A) be a digraph. For s, t 2 V , a path in D is said to be an s-t path if it runs
from s to t, and for S, T ✓ V , an S-T path is a path in D that runs from a vertex in S to a
vertex in T . A vertex v 2 V is called reachable from a vertex s 2 V (or from a set S ✓ V )
if there exists an s-t path (or S-t path).
Two s-t-paths are internally vertex-disjoint if they have no inner vertex in common.

Definition F.2.8. A set U of vertices is

(i) S-T disconnecting if U intersects each S-T -path.

(ii) an s-t vertex-cut if s, t /2 U and each s-t-path intersects U .

We say that v0a0v1a1 . . . ak�1vk is a walk of length k from v0 to v
k

or between v0 and v
k

. If
all vertices in a walk are distinct, then the walk defines obviously a path in D.


