Appendix A

General notions

$\mathbb{N}, \mathbb{Z}, \mathbb{Q}$, and \mathbb{R} denote the sets of natural, integer, rational numbers, and real numbers, respectively. The subscript + restricts the sets to the nonnegative numbers:

$$
\mathbb{Z}_{+}=\{x \in \mathbb{Z} \mid x \geq 0\}=\mathbb{N}, \quad \mathbb{Q}_{+}=\{x \in \mathbb{Q} \mid x \geq 0\}, \quad \mathbb{R}_{+}=\{x \in \mathbb{R} \mid x \geq 0\}
$$

Furthermore, \mathbb{N}^{*} denotes the set of positive natural numbers, that is $\mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$.
If $m, n \in \mathbb{Z}_{+}$, we use sometimes the notations $[m, n]:=\{m, m+1, \ldots, n\},[n]:=\{1, \ldots, n\}$. We also write $i=1, \ldots, n$ instead of $i \in[n]$.

If X is a set, we denote by $\mathcal{P}(X)$ the collection of its subsets and by $[X]^{2}$ the collection of 2-element subsets of X, i.e. $[X]^{2}=\{\{x, y\} \mid x, y \in X\}$.
If X is a finite set, the size of X or the cardinality of X, denoted by $|X|$ is the number of elements of X.

Let $m, n \in \mathbb{N}^{*}$. We denote by $\mathbb{R}^{m \times n}$ the set of $m \times n$-matrices with entries from \mathbb{R}. Let $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}$ be a matrix. The transpose of A is denoted by A^{T}. If $i=1, \ldots, m$, we denote by \mathbf{a}_{i} the i th row of A : $\mathbf{a}_{i}=\left(a_{i, 1}, a_{i, 2}, \ldots, a_{i, n}\right)$. If $I \subseteq\{1, \ldots, m\}$, we write A_{I} for the submatrix of A consisting of the rows in I only. Thus, $\mathbf{a}_{i}=A_{\{i\}}$. We denote by $0_{m, n}$ the zero matrix in $\mathbb{R}^{m \times n}$, by 0_{n} the zero matrix in $\mathbb{R}^{n \times n}$ and by I_{n} the identity matrix in $\mathbb{R}^{n \times n}$.

Let $n \in \mathbb{N}^{*}$. All vectors in \mathbb{R}^{n} are column vectors. Let

$$
x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}
$$

Then x is a matrix in $\mathbb{R}^{n \times 1}$ and its transpose x^{T} is a row vector, hence a matrix in $\mathbb{R}^{1 \times n}$.

Furthermore, for $I \subseteq\{1, \ldots, m\}, x_{I}$ is the subvector of x consisting of the components with indices in I. If $a \in \mathbb{R}$, we denote by a the vector in \mathbb{R}^{n} whose components are all equal to a.

Appendix B

Euclidean space \mathbb{R}^{n}

The Euclidean space \mathbb{R}^{n} is the n-dimensional real vector space with inner product

$$
x^{T} y=\sum_{i=1}^{n} x_{i} y_{i} .
$$

We let

$$
\|x\|=\left(x^{T} x\right)^{1 / 2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

denote the Euclidean norm of a vector $x \in \mathbb{R}^{n}$.
For every $i=1, \ldots, n$, we denote by e_{i} the i th unit vector in \mathbb{R}^{n}. Thus, $e_{1}=(1,0, \ldots, 0,0), e_{2}=$ $(0,1,0, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 0,1)$.
For vectors $x, y \in \mathbb{R}^{n}$ we write $x \leq y$ whenever $x_{i} \leq y_{i}$ for $i=1, \ldots, n$. Similarly, $x<y$ whenever $x_{i}<y_{i}$ for $i=1, \ldots, n$.
Let $x, y \in \mathbb{R}^{n}$. We say that x, y are parallel if one of them is a scalar multiple of the other.
Proposition B.0.1 (Cauchy-Schwarz inequality). For all $x, y \in \mathbb{R}^{n}$,

$$
\left|x^{T} y\right| \leq\|x\|\|y\|,
$$

with equality if and only if x and y are parallel.
The (closed) line segment joining x and y is defined as

$$
[x, y]=\{\lambda x+(1-\lambda) y \mid \lambda \in[0,1]\} .
$$

The open line segment joining x and y is defined as

$$
(x, y)=\{\lambda x+(1-\lambda) y \mid \lambda \in(0,1)\} .
$$

Definition B.0.2. A subset $L \subseteq \mathbb{R}^{n}$ is a line if there are $x, r \in \mathbb{R}^{n}$ with $r \neq \mathbf{0}$ such that

$$
L=\{x+\lambda r \mid \lambda \in \mathbb{R}\} .
$$

We also say that L is a line through point x with direction vector $r \neq 0$ and denote it by $L_{x, r}$.

Proposition B.o.3. A subset $L \subseteq \mathbb{R}^{n}$ is a line if and only if there are $x, y \in \mathbb{R}^{n}$ such that

$$
L=\{(1-\lambda) x+\lambda y \mid \lambda \in \mathbb{R}\} .
$$

We also say that L is the line through two points x, y and denote it by $\overline{x y}$.
Given $r>0$ and $x \in \mathbb{R}^{n}, B_{r}(x)=\left\{y \in \mathbb{R}^{n} \mid\|x-y\|<r\right\}$ is the open ball with center x and radius r and $\bar{B}_{r}(x)=\left\{y \in \mathbb{R}^{n} \mid\|x-y\| \leq r\right\}$ is the closed ball with center x and radius r.

Definition B.0.4. A subset $X \subseteq \mathbb{R}^{n}$ is bounded if there exists $M>0$ such that $\|x\| \leq M$ for all $x \in X$.

Appendix C

Linear algebra

Definition C.0.1. A nonempty set $S \subseteq \mathbb{R}^{n}$ is a (linear) subspace if $\lambda_{1} x_{1}+\lambda_{2} x_{2} \in S$ whenever $x_{1}, x_{2} \in S$ and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$.

Let x_{1}, \ldots, x_{m} be points in \mathbb{R}^{n}. Any point $x \in \mathbb{R}^{n}$ of the form $x=\sum_{i=1}^{m} \lambda_{i} x_{i}$, with $\lambda_{i} \in \mathbb{R}$ for each $i=1, \ldots, m$, is a linear combination of x_{1}, \ldots, x_{m}.

Definition C.0.2. The linear span of a subset $X \subseteq \mathbb{R}^{n}$ (denoted by $\operatorname{span}(X)$) is the intersection of all subspaces containing X.

If $\operatorname{span}(X)=\mathbb{R}^{n}$ we say that X is a spanning set of \mathbb{R}^{n} or that X spans \mathbb{R}^{n}.
Proposition C.0.3. (i) $\operatorname{span}(\emptyset)=\{\mathbf{0}\}$.
(ii) For every $X \subseteq \mathbb{R}^{n}$, $\operatorname{span}(X)$ consists of all linear combinations of points in X.
(iii) $S \subseteq \mathbb{R}^{n}$ is a subspace if and only if S is closed under linear combinations if and only $S=\operatorname{span}(S)$.

Definition C.0.4. A set of vectors $X=\left\{x_{1}, \ldots, x_{m}\right\}$ is linearly independent if

$$
\sum_{i=1}^{m} \lambda_{i} x_{i}=0 \quad \text { implies } \quad \lambda_{i}=0 \text { for each } i=1, \ldots, m
$$

Is X is not linearly independent, we say that X is linearly dependent. We also say that x_{1}, \ldots, x_{m} are linearly (in)dependent.

Proposition C.0.5. Let $X=\left\{x_{1}, \ldots, x_{m}\right\}$ be a set of vectors in \mathbb{R}^{n}. Then X is linearly dependent if and only if at least one of the vectors x_{i} can be written as a linear combination of the other vectors in X.

Definition C.0.6. Let S be a subspace of \mathbb{R}^{n}. A subset $B=\left\{x_{1}, \ldots, x_{m}\right\} \subseteq S$ is a basis of S if B spans S and B is linearly independent.

Proposition C.0.7. Let S be a subspace of \mathbb{R}^{n} and B be a basis of S with $|B|=m$.
(i) Every vector in S can be written in a unique way as a linear combination of vectors in B.
(ii) Every subset of S containing more than m vectors is linearly dependent.
(iii) Every other basis of S has m vectors.

Definition C.0.8. The dimension $\operatorname{dim}(S)$ of a subspace S of \mathbb{R}^{n} is the number of vectors in a basis of S.

Proposition C.0.9. Let S be a subspace of \mathbb{R}^{n}.
(i) If $S=\{0\}$, then $\operatorname{dim}(S)=0$, since its basis is empty.
(ii) $\operatorname{dim}(S) \geq 1$ if and only if $S \neq\{0\}$.
(iii) If $X=\left\{x_{1}, \ldots, x_{m}\right\} \subseteq S$ is a linearly independent set, then $m \leq \operatorname{dim}(S)$.
(iv) If $X=\left\{x_{1}, \ldots, x_{m}\right\} \subseteq S$ is a spanning set for S, then $m \geq \operatorname{dim}(S)$.

Proposition C.0.10. Let S be a subspace of dimension m and $X=\left\{x_{1}, \ldots, x_{m}\right\} \subseteq S$. Then X is a basis of S if and only if X spans S if and only if X is linearly independent.

Proposition C.0.11. Suppose that U and V are subspaces of \mathbb{R}^{n} such that $U \subseteq V$. Then
(i) $\operatorname{dim}(U) \leq \operatorname{dim}(V)$.
(ii) $\operatorname{dim}(U)=\operatorname{dim}(V)$ if and only if $U=V$.

C. 1 Matrices

Let $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}$.
Definition C.1.1. The column space of A is the linear span of the set of its columns. The column rank of A is the dimension of the column space, the number of linearly independent columns.

Definition C.1.2. The row space of A is the linear span of the set of its rows. The row rank of A is the dimension of the row space, the number of linearly independent rows.

Proposition C.1.3. The row rank and column rank of A are equal.
Proof. See [3, Theorem 3.11, p. 131].
Definition C.1.4. The rank of a matrix A, denoted by $\operatorname{rank}(A)$, is its row rank or column rank.

The $m \times n$ matrix A has full row rank if its rank is m and it has full column rank if its column rank is n.

Theorem C.1.5. Let us consider the homogeneous system $A x=\mathbf{0}$ (with n unknowns and m equations) and let $S:=\left\{x \in \mathbb{R}^{n} \mid A x=\mathbf{0}\right\}$ be its solution set. Then
(i) S is a linear subspace of \mathbb{R}^{n}.
(ii) $\operatorname{dim}(S)=n-\operatorname{rank}(A)$.

Proof. See [3, Theorem 3.13, p. 131].
Thus, the homogeneous system $A x=\mathbf{0}$ has a unique solution (namely $x=\mathbf{0}$) if and only if $\operatorname{rank}(A)=n$.

Let $b \in \mathbb{R}^{m}$ and $A \mid b$ be the matrix A augmented by b. Thus,

$$
A \left\lvert\, b=\left(\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
\vdots & & & & \\
a_{i 1} & a_{i 2} & \ldots & a_{i n} & b_{i} \\
\vdots & & & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{m}
\end{array}\right)\right.
$$

Theorem C.1.6. Let us consider the linear system $A x=b$ and let $S:=\left\{x \in \mathbb{R}^{n} \mid A x=b\right\}$ be its solution set.
(i) $S \neq \emptyset$ if and only if $\operatorname{rank}(A)=\operatorname{rank}(A \mid b)$.
(ii) If $S \neq \emptyset$ and \bar{x} is a particular solution, then

$$
S=\bar{x}+\left\{x \in \mathbb{R}^{n} \mid A x=\mathbf{0}\right\}
$$

(iii) The system has a unique solution if and only if $\operatorname{rank}(A)=\operatorname{rank}(A \mid b)=n$.

Proof. See, for example, [3, Section III.3].

Appendix D

Affine sets

Definition D.0.1. A set $A \subseteq \mathbb{R}^{n}$ is affine if $\lambda_{1} x_{1}+\lambda_{2} x_{2} \in A$ whenever $x_{1}, x_{2} \in A$ and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ satisfy $\lambda_{1}+\lambda_{2}=1$.

Geometrically, this means that A contains the line through any pair of its points. Note that by this definition the empty set is affine.

Example D.0.2. (i) A point is an affine set.
(ii) Any linear subspace is an affine set.
(iii) Any line is an affine set.
(iv) Another example of an affine set is $P=\left\{x+\lambda_{1} r_{1}+\lambda_{2} r_{2} \mid \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\}$ which is a two-dimensional plane going through x and spanned by the nonzero vectors r_{1} and r_{2}.

Definition D.0.3. We say that an affine set A is parallel to another affine set B if $A=$ $B+x_{0}$ for some $x_{0} \in \mathbb{R}^{n}$, i.e. A is a translate of B.

Proposition D.0.4. Let A be a nonempty subset of \mathbb{R}^{n}. Then A is an affine set if and only if A is parallel to a unique linear subspace S, i.e., $A=S+x_{0}$ for some $x_{0} \in A$.

Proof. See [1, P.1.1, pag. 13].
Remark D.0.5. An affine set is a linear subspace if and only if it contains the origin.
Proof. To be done in the seminar.
Definition D.0.6. The dimension of a nonempty affine set A, denoted by $\operatorname{dim}(A)$, is the dimension of the unique linear subspace parallel to A. By convention, $\operatorname{dim}(\emptyset)=-1$.

The maximal affine sets not equal to the whole space are of particular importance, these are the hyperplanes. More precisely,

Definition D.0.7. A hyperplane in \mathbb{R}^{n} is an affine set of dimension $n-1$.
Proposition D.0.8. Any hyperplane $H \subseteq \mathbb{R}^{n}$ may be represented by

$$
H=\left\{x \in \mathbb{R}^{n} \mid a^{T} x=\beta\right\} \quad \text { for some nonzero } a \in \mathbb{R}^{n} \text { and } \beta \in \mathbb{R},
$$

i.e. H is the solution set of a nontrivial linear equation. Furthermore, any set of this form is a hyperplane. Finally, the equation in this representation is unique up to a scalar multiple.

Proof. See [1, P.1.2, pag. 13-14].
Definition D.0.9. A (closed) halfspace in \mathbb{R}^{n} is the set of all points $x \in \mathbb{R}^{n}$ that satisfy $a^{T} x \leq \beta$ for some $a \in \mathbb{R}^{n}$ and $\beta \in \mathbb{R}$.

We shall use the following notations

$$
\begin{aligned}
& H_{=}(a, \beta)=\left\{x \in \mathbb{R}^{n} \mid a^{T} x=\beta\right\} \\
& H_{\leq}(a, \beta)=\left\{x \in \mathbb{R}^{n} \mid a^{T} x \leq \beta\right\} \\
& H_{\geq}(a, \beta)=\left\{x \in \mathbb{R}^{n} \mid a^{T} x \geq \beta\right\}
\end{aligned}
$$

Thus, each hyperplane $H_{=}(a, \beta)$ gives rise to a decomposition of the space in two halfspaces:
Affine sets are closely linked to systems of linear equations.
Proposition D.0.10. Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Then the solution set $\left\{x \in \mathbb{R}^{n} \mid A x=b\right\}$ of the system of linear equations $A x=b$ is an affine set. Furthermore, any affine set may be represented in this way.

Proof. See [1, P.1.3, pag. 13-14].

Let x_{1}, \ldots, x_{m} be points in \mathbb{R}^{n}. An affine combination of x_{1}, \ldots, x_{m} is a linear combination $\sum_{i=1}^{m} \lambda_{i} x_{i}$ with the property that $\sum_{i=1}^{m} \lambda_{i}=1$.

Definition D.0.11. The affine hull aff (X) of a subset $X \subseteq \mathbb{R}^{n}$ is the intersection of all affine sets containing X.

Proposition D.0.12. (i) The affine hull afff(X) of a subset $X \subseteq \mathbb{R}^{n}$ consists of all affine combinations of points in X.
(ii) $A \subseteq \mathbb{R}^{n}$ is affine if and only if $A=\operatorname{aff}(A)$.

Proof. See [1, P.1.4, pag. 16].
Definition D.0.13. The dimension $\operatorname{dim}(X)$ of a set $X \subseteq \mathbb{R}^{n}$ is the dimension of aff (X).

Appendix E

Convex sets

Definition E.0.1. A set $C \subseteq \mathbb{R}^{n}$ is called convex if it contains line segments between each pair of its points, that is, if $\lambda_{1} x_{1}+\lambda_{2} x_{2} \in C$ whenever $x_{1}, x_{2} \in C$ and $\lambda_{1}, \lambda_{2} \geq 0$ satisfy $\lambda_{1}+\lambda_{2}=1$.

Equivalently, C is convex if and only if $(1-\lambda) C+\lambda C \subseteq C$ for every $\lambda \in[0,1]$. Note that by this definition the empty set is convex.

Example E.0.2. (i) All affine sets are convex, but the converse does not hold.
(ii) More generally, the solution set of a family (finite or infinite) of linear inequalities $a_{i}^{T} x \leq b_{i}, i \in I$ is a convex set.
(iii) The open ball $B(a, r)$ and the closed ball $\bar{B}(a, r)$ are convex sets.

Appendix F

Graph Theory

Our presentation follows [2] and [9, Chapter 3].

F. 1 Graphs

Definition F.1.1. A graph is a pair $G=(V, E)$ of sets such that $E \subseteq[V]^{2}$.
Thus, the elements of E are 2-element subsets of V. To avoid notational ambiguities, we shall always assume tacitly that $V \cap E=\emptyset$. The elements of V are the vertices (or nodes or points) of G, the elements of E are its edges. The vertices of G are denoted $x, y, z, u, v, v_{1}, v_{2}, \ldots$. The edge $\{x, y\}$ of G is also denoted $[x, y]$ or $x y$.

Definition F.1.2. The order of a graph G, written as $|G|$ is the number of vertices of G. The number of its edges is denoted by $\|G\|$.

Graphs are finite, infinite, countable and so on according to their order. The empty graph (\emptyset, \emptyset) is simply written \emptyset. A graph of order 0 or 1 is called trivial.

Convention: Unless otherwise stated, our graphs will be finite.
In the sequel, $G=(V, E)$ is a graph.
A graph with vertex set V is said to be a graph on V. The vertex set of a graph G is referred to as $V(G)$, its edge set as $E(G)$. We shall not always distinguish strictly between a graph and its vertex or edge set. For example, we may speak of a vertex $v \in G$ (rather than $v \in V(G)$), an edge $e \in G$, and so on.
A vertex v is incident with an edge e if $v \in e$; then e is an edge at v. The set of all edges in E at v is denoted by $E(v)$. The ends of an edge e are the two vertices incident with e. Two edges $e \neq f$ are adjacent if they have an end in common.

If $e=x y \in E$ is an edge, we say that e joins its vertices x and y, that x and y are adjacent (or neighbours), that x and y are the ends of the edge e.

If F is a subset of $[V]^{2}$, we use the notations $G-F:=(V, E \backslash F)$ and $G+F:=(V, E \cup F)$. Then $G-\{e\}$ and $G+\{e\}$ are abbreviated $G-e$ and $G+e$.

F.1.1 The degree of a vertex

Definition F.1.3. The degree (or valency) of a vertex v is the number $|E(v)|$ of edges at v and it is denoted by $d_{G}(v)$ or simply $d(v)$.

A vertex of degree 0 is isolated, and a vertex of degree 1 is a terminal vertex. Obviously, the degree of a vertex is equal to the number of neighbours of v.

Proposition F.1.4. The number of vertices of odd degree is always even.

F.1.2 Subgraphs

Definition F.1.5. Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two graphs.
(i) G^{\prime} is a subgraph of G, written $G^{\prime} \subseteq G$, if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. If $G^{\prime} \subseteq G$ we also say that G is a supergraph of G^{\prime} or that G^{\prime} is contained in G.
(ii) If $G^{\prime} \subseteq G$ and G^{\prime} contains all the edges $x y \in E$ with $x, y \in V^{\prime}$, then G^{\prime} is an induced subgraph of G; we say that V^{\prime} induces or spans G^{\prime} in G and write $G^{\prime}=G\left[V^{\prime}\right]$.
(iii) If $G^{\prime} \subseteq G$, we say that G^{\prime} is a spanning subgraph of G if $V^{\prime}=V$.

F.1.3 Paths, cycles

Definition F.1.6. A path is a nonempty graph $P=(V(P), E(P))$ of the form

$$
V(P)=\left\{x_{0}, \ldots, x_{k}\right\}, \quad E(P)=\left\{x_{0} x_{1}, x_{1} x_{2}, \ldots, x_{k-1} x_{k}\right\}
$$

where $k \geq 1$ and the x_{i} 's are all distinct.
The vertices x_{0} and x_{k} are linked by P and are called its endvertices or ends; the vertices x_{1}, \ldots, x_{k-1} are the inner vertices of P. The number of edges of a path is its length. The path of length k is denoted P^{k}.
We often refer to a path by the natural sequence of its vertices, writing $P=x_{0} x_{1} \ldots x_{k}$ and saying that P is a path from x_{0} to x_{k} (or between x_{0} and x_{k}).
If a path P is a subgraph of a graph $G=(V, E)$, we say that P is a path in G.

Definition F.1.7. Let $P=x_{0} \ldots x_{k}, k \geq 2$ be a path. The graph $P+x_{k} x_{0}$ is called a cycle.
As in the case of paths, we usually denote a cycle by its (cyclic) sequence of vertices: $C=$ $x_{0} \ldots x_{k} x_{0}$. The length of a cycle is the number of its edges (or vertices). The cycle of length k is said to be a k-cycle and denoted C^{k}.

F. 2 Directed graphs

Definition F.2.1. A directed graph (or digraph) is a pair $D=(V, A)$, where V is a finite set and A is a multiset of ordered pairs from V.

Let us recall that a multiset (or bag) is a generalization of the notion of a set in which members are allowed to appear more than once.
The elements of V are the vertices (or nodes or points) of D, the elements of A are its arcs (or directed edges). The vertex set of a digraph D is referred to as $V(D)$, its set of arcs as $A(D)$.
Since A is a multiset, the same pair of vertices may occur several times in A. A pair occurring more than once in A is called a multiple arc, and the number of times it occurs is called its multiplicity. Two arcs are called parallel if they are represented by the same ordered pair of vertices. Also loops are allowed, that is, arcs of the form (v, v).

Definition F.2.2. Directed graphs without loops and multiple arcs are called simple, and directed graphs without loops are called loopless.

Let $a=(u, v)$ be an arc. We say that a connects u and v, that a leaves u and enters $v ; u$ and v are called the ends of a, u is called the tail of a and v is called the head of a. If there exists an arc connecting vertices u and v, then u and v are called adjacent or connected. If there exists an arc (u, v), then v is called an outneighbour of u, and u is called an inneighbour of v.

Each directed graph $D=(V, A)$ gives rise to an underlying (undirected) graph, which is the graph $G=(V, E)$ obtained by ignoring the orientation of the arcs:

$$
E=\{\{u, v\} \mid(u, v) \in A\} .
$$

If G is the underlying (undirected) graph of a digraph D, we call D an orientation of G. Terminology from undirected graphs is often transfered to directed graphs.

For any arc $a=(u, v) \in A$, we denote $a^{-1}:=(v, u)$ and define $A^{-1}:=\left\{a^{-1} \mid a \in A\right\}$. The reverse digraph D^{-1} is defined by $D^{-1}=\left(V, A^{-1}\right)$.

For any vertex v, we denote
$\delta_{A}^{i n}(v):=\delta^{i n}(v) \quad:=$ the set of arcs entering v,
$\delta_{A}^{\text {out }}(v):=\delta^{\text {out }}(v):=$ the set of arcs leaving v.
Definition F.2.3. The indegree $\operatorname{deg}^{i n}(v)$ of a vertex v is the number of arcs entering v, i.e. $\left|\delta^{\text {in }}(v)\right|$. The outdegree deg ${ }^{\text {out }}(v)$ of a vertex v is the number of arcs leaving v, i.e. $\left|\delta^{\text {out }}(v)\right|$.

For any $U \subseteq V$, we denote
$\delta_{A}^{i n}(U):=\overline{\delta^{i n}}(U) \quad:=$ the set of arcs entering U, i.e. the set of arcs with head in U and tail in $V \backslash U$,
$\delta_{A}^{\text {out }}(U):=\delta^{\text {out }}(U) \quad:=$ the set of arcs leaving U, i.e. the set of arcs with head in $V \backslash U$ and tail in U.

F.2.1 Subgraphs

One can define the concept of subgraph as for graphs.
Two subgraphs of D are
(i) vertex-disjoint if they have no vertex in common;
(ii) arc-disjoint if they have no arc in common.

In general, we say that a family of k subgraphs $(k \geq 3)$ is (vertex, arc)-disjoint if the k subgraphs are pairwise (vertex, arc)-disjoint, i.e. every two subgraphs from the family are (vertex, arc)-disjoint.

F.2.2 Paths, circuits, walks

Definition F.2.4. A (directed) path is a digraph $P=(V(P), A(P))$ of the form

$$
V=\left\{v_{0}, \ldots, v_{k}\right\}, \quad E=\left\{\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)\right\},
$$

where $k \geq 1$ and the v_{i} 's are all distinct.
The vertices v_{0} and v_{k} are called the endvertices or ends of P; the vertices v_{1}, \ldots, v_{k-1} are the inner vertices of P. The number of edges of a path is its length.
We often refer to a path by the natural sequence of its vertices, writing $P=v_{0} v_{1} \ldots v_{k}$ and saying that P is a path from v_{0} to v_{k} or that the path P runs from v_{0} to v_{k}. If a path P is a subgraph of a digraph $D=(V, A)$, we say that P is a path in G.

Notation F.2.5. We denote by $P^{-1}:=\left(V(P), E(P)^{-1}\right)$.

Definition F.2.6. Let $P=v_{0} \ldots v_{k}, k \geq 1$ be a path. The graph

$$
P+\left(v_{k}, v_{0}\right)=\left(\left\{v_{0}, \ldots, v_{k}\right\},\left\{\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right),\left(v_{k}, v_{0}\right)\right\}\right.
$$

is called a circuit.
As in the case of paths, we usually denote a circuit by its (cyclic) sequence of vertices: $C=v_{0} \ldots v_{k} v_{0}$. The length of a circuit is the number of its edges (or vertices). The circuit of length k is said to be a k-circuit and denoted C^{k}.

Definition F.2.7. A walk in D is a nonempty alternating sequence $v_{0} a_{0} v_{1} a_{1} \ldots a_{k-1} v_{k}$ of vertices and arcs of D such that $a_{i}=\left(v_{1}, v_{i+1}\right)$ for all $i=0, \ldots, k-1$. If $v_{0}=v_{k}$, the walk is closed.

Let $D=(V, A)$ be a digraph. For $s, t \in V$, a path in D is said to be an s - t path if it runs from s to t, and for $S, T \subseteq V$, an $S-T$ path is a path in D that runs from a vertex in S to a vertex in T. A vertex $v \in V$ is called reachable from a vertex $s \in V$ (or from a set $S \subseteq V$) if there exists an s - t path (or S-t path).
Two s - t-paths are internally vertex-disjoint if they have no inner vertex in common.
Definition F.2.8. A set U of vertices is
(i) S-T disconnecting if U intersects each S-T-path.
(ii) an s-t vertex-cut if $s, t \notin U$ and each s-t-path intersects U.

We say that $v_{0} a_{0} v_{1} a_{1} \ldots a_{k-1} v_{k}$ is a walk of length k from v_{0} to v_{k} or between v_{0} and v_{k}. If all vertices in a walk are distinct, then the walk defines obviously a path in D.

