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Abstract

The material in these notes is taken from several existing sources, among which the main
ones are

• lecture notes from Chandra Chekuri’ s course ”Topics in Combinatorial Optimization”
at the University of Illinois at Urbana-Champaign:

https://courses.engr.illinois.edu/cs598csc/sp2010/

• lecture notes from Michel Goemans’s course ”Combinatorial Optimization” at MIT:

http://www-math.mit.edu/~goemans/18433S13/18433.html

• A. Schrijver, A course in Combinatorial Optimization, University of Amsterdam, 2013:

http://homepages.cwi.nl/~lex/files/dict.pdf

• Geir Dahl, An introduction to convexity, polyhedral theory and combinatorial opti-
mization, University of Oslo, 1997:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.78.5286

• A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, 3 Volumes, Springer,
2003

• D. Jungnickel, Graphs, Networks and Algorithms, 4th edition, Springer, 2013.

• B. Korte, J. Vygen, Combinatorial Optimization. Theory and Algorithms, Springer,
2000

• J. Lee, A First Course in Combinatorial Optimization, Cambridge University Press,
2004

• A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, 1986
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Chapter 1

Polyhedra and Linear Programming

1.1 Optimization problems

An optimization problem (or mathematical programming problem) is a maximiza-
tion problem

(P ) : maximize {f(x) | x ∈ A} (1.1)

or a minimization problem

(P ) : minimize {f(x) | x ∈ A} (1.2)

where f : A → R is a given function. Each point in A is called a feasible point, or a
feasible solution and A is the feasible region or feasible set. An optimization problem
is called feasible if it has some feasible solution; otherwise, it is called unfeasible. The
function f is called the objective function or the cost function.
Two maximization problems

(P ) : maximize {f(x) | x ∈ A} and (Q) : maximize {g(y) | y ∈ B}

are equivalent if for each feasible solution x ∈ A of (P) there is a corresponding feasible
solution y ∈ B of (Q) such that f(x) = g(y) and vice versa. Similarly for minimization
problems.
A point x∗ ∈ A is an optimal solution of the

(i) problem (1.1) if f(x∗) ≥ f(x) for all x ∈ A.

(ii) problem (1.2) if f(x∗) ≤ f(x) for all x ∈ A.

The optimal value v(P ) of (1.1) is defined as v(P ) = sup{f(x) | x ∈ A}. Similarly, the
optimal value v(P ) of (1.2) is defined as v(P ) = inf{f(x) | x ∈ A}. Thus, if x∗ is an
optimal solution, then f(x∗) = v(P ). Note that there may be several optimal solutions.
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6 CHAPTER 1. POLYHEDRA AND LINEAR PROGRAMMING

An optimization problem (P) is bounded if v(P ) is finite. For many bounded problems of
interest in optimization, this supremum (infimum) is attained, and then we may replace sup
(inf) by max (min).
We say that the maximization problem (1.1) is unbounded if for any M ∈ R there is
a feasible solution xM with f(xM) ≥ M , and we then write v(P ) = ∞. Similarly, the
minimization problem (1.2) is unbounded if for any m ∈ R there is a feasible solution xm

with f(xm) ≤ m; we then write v(P ) = −∞.
If (1.1) is unfeasible, we define v(P ) = −∞, as we are maximizing over the empty set. If
(1.2) is unfeasible, we define v(P ) =∞, as we are minimizing over the empty set.
Thus, for an optimization problem (P) there are three possibilities:

(i) (P) is unfeasible

(ii) (P) is unbounded

(iii) (P) is bounded.

1.2 Polyhedra

A linear inequality is an inequality of the form aTx ≤ β, where a, x ∈ Rn and β ∈ R. Note
that a linear equality (equation) aTx = β may be written as the two linear inequalities
aTx ≤ β, −aTx ≤ −β.
A system of linear inequalities, or linear system for short, is a finite set of linear
inequalities, so it may be written in matrix form as

(S1) Ax ≤ b,

where A = (aij) ∈ Rm×n, x ∈ Rn and b ∈ Rm. For every i = 1, . . . ,m, the ith inequality of
the system Ax ≤ b is the linear inequality aix ≤ bi, where ai = (ai,1, ai,2, . . . , ai,n) is the ith
row of A. Hence, (S1) can be written as

(S1′)
n∑
j=1

aijxj ≤ bi, for i = 1, 2, . . . ,m.

We say that two linear systems are equivalent if they have the same solution set. A linear
system Ax ≤ b is called real (resp. rational) if all the elements in A and b are real
(resp. rational). Note that a rational linear system is equivalent to a linear system with all
coefficients being integers; we just multiply each inequality by a suitably large integer.
A linear system is consistent (or solvable, or feasible) if it has at least one solution, i.e.,
there is an x0 satisfying Ax0 ≤ b.
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Definition 1.2.1. A polyhedron in Rn is the intersection of finitely many halfspaces.

One can easily see that a subset P ⊆ Rn is a polyhedron if and only if P = {x ∈ Rn | Ax ≤ b}
for some matrix A ∈ Rm×n and some vector b ∈ Rm. A polyhedron is real (resp. rational)
if it is the solution set of a real (resp. rational) linear system.

Definition 1.2.2. The dimension dim(P ) of a polyhedron P ⊆ Rn is the dimension of the
affine hull of P . If dim(P ) = n, we say that P is full-dimensional.

Proposition 1.2.3. Any polyhedron is a convex set.

Proof. Exercise.

Example 1.2.4. (i) Affine sets are polyhedra.

(ii) Singletons are polyhedra of dimension 0.

(iii) Lines are polyhedra of dimension 1.

(iv) The unit cube C3 = {x ∈ R3 | 0 ≤ xi ≤ 1 for all i = 1, 2, 3} in R3 is a full-dimensional
polyhedron.

Proof. Exercise.

1.3 Solvability of systems of linear inequalities

Theorem 1.3.1 (Theorem of the Alternatives).
Let A ∈ Rm×n and b ∈ Rm. For the system Ax ≤ b, exactly one of the following two
alternatives hold:

(i) The system is solvable.

(ii) There exists y ∈ Rm such that y ≥ 0, yTA = 0T and yT b < 0.

Proof. Supplementary exercise.

From the Theorem of the Alternatives one can derive the Farkas lemma.

Lemma 1.3.2 (Farkas Lemma).
The system Ax = b, x ≥ 0 has no solution if and only if there exists y ∈ Rm such that
yTA ≥ 0T , yT b < 0.
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Proof. Let us denote (S1): Ax = b, x ≥ 0 and (S2): yTA ≥ 0T , yT b < 0. We can rewrite

(S1) as Ax ≤ b,−Ax ≤ −b,−x ≤ 0, hence as

 A
−A
−In

x ≤

 b
−b
0

. Apply then Theorem of

the Alternatives to conclude that (S1) has no solution if and only if the system

(S3) : z ≥ 0, zT

 A
−A
−In

 = 0T , zT

 b
−b
0

 < 0

has a solution. Let us prove now that (S3) is solvable if and only if (S2) is solvable.

”⇒” Let z ∈ R2m+n be a solution of (S3). Then z =

uv
w

 with u, v ∈ Rm and w ∈ Rn

satisfying u, v, w ≥ 0, uTA − vTA − wT = 0T and uT b − vT b < 0. Take y := u − v. Then
y ∈ Rm, yTA = wT ≥ 0T and yT b < 0, that is y is a solution of (S2).
”⇐” Let y ∈ Rm be a solution of (S2). Take w := ATy ∈ Rn (so, wT = yTA) and u, v ∈ Rm

such that u, v ≥ 0 and y = u − v (for example, ui = max{yi, 0}, vi = max{−yi, 0}). Then

z :=

uv
w

 is a solution of (S3).

In the sequel we give some variants of Farkas lemma.

Lemma 1.3.3 (Farkas lemma - variant). The system Ax = b has a solution x ≥ 0 if and
only if yT b ≥ 0 for each y ∈ Rm with yTA ≥ 0T .

Proof. Exercise.

Lemma 1.3.4 (Farkas lemma - variant). The system Ax ≤ b has a solution if and only if
yT b ≥ 0 for each y ≥ 0 with yTA = 0T .

Proof. Exercise.

1.4 Linear programming

Linear programming, abbreviated to LP, concerns the problem of maximizing or mini-
mizing a linear functional over a polyhedron:

max{cTx | Ax ≤ b} or min{cTx | Ax ≤ b}, (1.3)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn and x ∈ Rn.
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An LP problem will be also called a linear program.
We shall refer to the maximization problem

(P ) max{cTx | Ax ≤ b}
as the primal LP.
The primal LP has its associated dual LP:

(D) min{bTy | y ≥ 0, yTA = cT} = min{bTy | y ≥ 0, ATy = c}.
Thus, we have n primal variables and m dual variables.
The following result follows from an immediate application of the Theorem of Alternatives
and Farkas Lemma 1.3.2.

Lemma 1.4.1. (i) (P) is unfeasible if and only if there exists u ∈ Rm such that u ≥ 0,
uTA = 0T and uT b < 0.

(ii) (D) is unfeasible if and only if there exists u ∈ Rn such that Au ≥ 0, cTu < 0.

Proposition 1.4.2 (Weak Duality). Let x be a feasible solution of the primal LP and y be
a feasible solution of the dual LP. Then

(i) cTx ≤ bTy.

(ii) If cTx = bTy, then x and y are optimal.

Proof. We have that cTx = (yTA)x = yT (Ax) ≤ yT b = bTy, since y ≥ 0.

The main result in the theory of linear programming is the Strong Duality Theorem:

Theorem 1.4.3 (Strong Duality). Assume that the primal and dual LPs are feasible. Then
they are bounded and

max{cTx | Ax ≤ b} = min{bTy | y ≥ 0, yTA = cT}.
Proof. Supplementary exercise.

As an immediate consequence, we have that

Corollary 1.4.4. Let x be a feasible solution of the primal LP and y be a feasible solution
of the dual LP. Then they are optimal solutions to (P) and (D) if and only if bTy = cTx.

Proposition 1.4.5. Let (P) and (D) be the primal and dual LPs.

(i) If both (P) and (D) are feasible, then they are bounded.

(ii) If either (P) or (D) is unfeasible, then the other is either unfeasible or unbounded.

(iii) If either (P) or (D) is unbounded, then the other is unfeasible.

(iv) If either (P) or (D) is bounded, then the other is bounded too.

Proof. Exercise.
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1.5 Polytopes

Let x1, . . . , xm be points in Rn. A convex combination of x1, . . . , xm is a linear combination
m∑
i=1

λix
i with the property that λi ≥ 0 for all i = 1, . . . ,m and

m∑
i=1

λi = 1.

Definition 1.5.1. The convex hull of a subset X ⊆ Rn, denoted by conv(X), is the
intersection of all convex sets containing X.

If X = {x1, . . . , xk}, we write conv(x1, . . . , xk) for conv(X).

Proposition 1.5.2. (i) The convex hull conv(X) of a subset X ⊆ Rn consists of all convex
combinations of points in X.

(ii) C ⊆ Rn is convex if and only if C is closed under convex combinations if and only if
C = conv(C).

Proof. See [1, P.1.6, pag. 19 and P.1.7, pag. 20].

Definition 1.5.3. A polytope is a set P ⊆ Rn which is the convex hull of a finite number
of points.

Thus, P is a polytope iff there are x1, . . . , xk ∈ Rn such that

P = conv(x1, . . . , xk) =

{
k∑
i=1

λix
i | λi ≥ 0,

k∑
i=1

λi = 1

}
.

We recall that

‖x‖ =
√
xTx =

√√√√ n∑
i=1

x2i

is the Euclidean norm of a vector x ∈ Rn.

A subset X ⊆ Rn is bounded if there exists M > 0 such that ‖x‖ ≤M for all x ∈ X.

The following fundamental result is also known as the Finite Basis Theorem for Polytopes:

Theorem 1.5.4 (Minkowski (1896), Steinitz (1916), Weyl (1935)).
A nonempty set P is a polytope if and only if it is a bounded polyhedron.
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1.6 Integer linear programming

A vector x ∈ Rn is called integer if each component is an integer, i.e., if x belongs to
Zn. Many combinatorial optimization problems can be described as maximizing a linear
function cTx over the integer vectors in some polyhedron P = {x ∈ Rn | Ax ≤ b}, where
A ∈ Rm×n, b ∈ Rm. Thus, this type of problems can be described as:

(ILP ) max{cTx | Ax ≤ b;x ∈ Zn}.

Such problems are called integer linear programming problems, for short, ILP problems.
They consist of maximizing a linear function over the intersection P ∩Zn of a polyhedron P
with the set Zn of integer vectors. It is obvious that one has always the following inequalities:

max{cTx | Ax ≤ b;x ∈ Zn} ≤ max{cTx | Ax ≤ b},
min{bTy | y ≥ 0, yTA = cT ; y ∈ Zm} ≥ min{bTy | y ≥ 0, yTA = cT}.

It is easy to make an example where strict inequalities holds.
This implies that generally one will have strict inequality in the following duality relation:

max{cTx | Ax ≤ b;x ∈ Zn} ≤ min{bTy | y ≥ 0, yTA = cT ; y ∈ Zm}.

1.7 Integer polyhedra

Let P ⊆ Rn be a nonempty polyhedron. We define its integer hull PI by

PI = conv(P ∩ Zn),

so this is the convex hull of the intersection between P and the lattice Zn of integer points.
Note that PI may be empty although P is not.

Proposition 1.7.1. If P is bounded, then PI is a polyhedron.

Proof. Assume that P is bounded and let M ∈ N be such that ‖x‖ ≤ M for all x ∈ P , so
|xi| ≤M for all i = 1, . . . , n. It follows that P ∩Zn ⊆ {−M,−M +1, . . . ,M−1,M}n, hence
P contains a finite number of integer points, and therefore PI is a polytope. By the finite
basis theorem for polytopes (Theorem 1.5.4), we get that PI is a polyhedron.

Definition 1.7.2. A polyhedron is called integer if P = PI .

An equivalent description of integer polyhedra is given by the following result (see e.g., [1,
Proposition 5.4, p. 113]).
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Theorem 1.7.3. Let P = {x ∈ Rn | Ax ≤ b} be a nonempty polyhedron. The following are
equivalent:

(i) P is integer.

(ii) For each c ∈ Rn, the LP problem max{cTx | x ∈ P} has an integer optimal solution if
it is bounded.

As an immediate consequence, it follows that if a polyhedron P = {x | Ax ≤ b} is integer
and the LP max{cTx | Ax ≤ b} is bounded, we have that

max{cTx | Ax ≤ b;x ∈ Zn} = max{cTx | Ax ≤ b}.

1.8 Totally unimodular lattices

Total unimodularity of matrices is an important tool in integer linear programming.

Definition 1.8.1. A matrix A is called totally unimodular (TU) if each square submatrix
of A has determinant equal to 0,+1, or −1.

In particular, each entry of a totally unimodular matrix is 0,+1, or −1. Obviously, every
submatrix of a TU matrix is also TU.
The property of total unimodularity is preserved under a number of matrix operations, for
instance:

(i) transpose;

(ii) augmenting with the identity matrix;

(iii) multiplying a row or column by −1;

(iv) interchanging two rows or columns;

(v) duplication of rows or columns.

In order to determine if a matrix is TU , the following criterion due to Ghouila and Houri
(1962) is useful.

Proposition 1.8.2. Let A ∈ Rm×n. The following are equivalent:

(i) A is TU.

(ii) Each collection R of rows of A can be partitioned into classes R1 and R2 such that the
sum of rows in R1 minus the sum of rows in R2 is a vector with entries 0,−1, 1 only.
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(iii) Each collection C of columns of A can be partitioned into classes C1 and C2 such that
the sum of columns in C1 minus the sum of columns in C2 is a vector with entries
0,−1, 1 only.

Proof. See e.g. [8, Theorem 19.3].

Let us detail (ii) from the above proposition. It says that each collection R of rows of
A = (aij) can be partitioned into classes R1 and R2 such that for all j = 1, . . . , n, if we
define

xj :=
∑
i∈R1

aij −
∑
i∈R2

aij,

then xj ∈ {0,−1, 1}.
A link between total unimodularity and integer linear programming is given by the following
fundamental result.

Theorem 1.8.3. Let A ∈ Rm×n be a TU matrix and let b ∈ Zm. Then the polyhedron
P = {x ∈ Rn | Ax ≤ b} is integer.

Proof. See [1, Theorem 5.7].

An important converse result is due to Hoffman and Kruskal (1956):

Theorem 1.8.4. Let A ∈ Rm×n. Then A is TU if and only if the polyhedron P = {x ∈ Rn |
x ≥ 0, Ax ≤ b} is integer for every b ∈ Zm.

Proof. See [10, Corollary 8.2a, p. 137].

It follows that each linear programming problem with integer data and totally unimodular
constraint matrix has integer optimal primal and dual solutions:

Proposition 1.8.5. Let A ∈ Rm×n be a TU matrix, let b ∈ Zm and c ∈ Zn. Assume that
the primal LP max{cTx | Ax ≤ b} and dual LP min{bTy | y ≥ 0, yTA = cT} are bounded.
Then they have integer optimal solutions.

Proof. Exercise.

Proposition 1.8.6. Let A ∈ Rm×n be a TU matrix, let b, b′, d, d′ be vectors in (Z∪{−∞,+∞})m
with b ≤ b′ and d ≤ d′. Then

P = {x ∈ Rn | b ≤ Ax ≤ b′, d ≤ x ≤ d′}

is an integer polyhedron.

Proof. Exercise.
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1.9 Polyhedral combinatorics

A {0, 1}-valued vector is a vector with all entries in {0, 1}. An integer vector is a vector
with all entries integer. If E is a nonempty finite set, we identify the concept of a function
x : E → R with that of a vector x in RE. Its components are denoted equivalently by x(e)
or xe. An integer function is an integer-valued function.

A set system is a pair (E,F), where E is a nonempty finite set and F is a family of subsets
of E, called the feasible sets. Let w : E → R+ be a weight function. Define

w(X) :=
∑
e∈X

w(e) for each X ∈ F .

Thus, w(X) is the total weight of the elements in X. Then

maximize{w(X) | X ∈ F} or minimize{w(X) | X ∈ F} (1.4)

are combinatorial optimization problems.

For a subset X ⊆ E, the incidence vector of X (with respect to E) is the vector χX ∈
{0, 1}E defined as

χX(e) =

{
1 if e ∈ X
0 if e /∈ X.

Thus, the incidence vector χX is a vector in the space RE. Considering the weight function
w also as a vector in RE, it follows that for every x ∈ RE,

wTχX =
∑
e∈E

w(e)χX(e) =
∑
e∈X

w(e) = w(X).

Proposition 1.9.1. Let P := conv{χX | X ∈ F} be the convex hull (in RE) of the incidence
vectors of the elements of F . Then

max{wTx | x ∈ P} = max{w(X) | X ∈ F}.

Proof. ” ≥ ” is trivial, since w(X) = wTχX and χX ∈ P .
” ≤ ” P is the convex hull of finitely many vectors, hence it is a polytope. By Theorem
1.5.4, we get that P is a bounded polyhedron. Then the mapping

f : P → R, f(x) = wTx
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is a continuous function on a bounded subset of Rn. As a consequence, f is bounded and
attains its maximum and minimum. Thus, the LP problem

max{wTx | x ∈ P}

is bounded and has an optimal solution x∗. As x∗ ∈ P , there are X1, . . . , Xk ∈ F such that
x∗ =

∑k
i=1 λiχ

Xi for some λ1, . . . , λk ≥ 0,
∑k

i=1 λi = 1. Since

wTx∗ =
k∑
i=1

λiw
TχXi =

k∑
i=1

λiw(Xi),

there exists at least one j = 1, . . . , k such that w(Xj) ≥ wTx∗. Thus, max{w(X) | X ∈
F} ≥ wTx∗.

The previous result and Theorem 1.5.4 are the starting point of polyhedral combinatorics.
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Chapter 2

Matchings in bipartite graphs

Let G = (V,E) be a graph and w : E → R+ be a weight function.

Definition 2.0.1. A matching M ⊆ E is a set of disjoint edges, i.e. such that every vertex
of V is incident to at most one edge of M .

We are interested in the following problem:

Maximum weight matching problem(MWMP): Find a matching M of maximum
weight.

By letting w(e) := 1 for all e ∈ E, we obtain as a particular case the problem

Maximum matching problem: Find a matching M of maximum cardinality.

Thus, we want to solve

(MWMP ) max{w(M) |M matching in G}.

If we take F to be the set of matchings in G, we can apply Proposition 1.9.1 to conclude
that (MWMP) is equivalent to the problem

max{wTx | x ∈ conv{χM |M matching in G}.

The set
conv{χM |M matching in G}

is a polytope in RE, called the matching polytope of G and denoted by Pmatching(G). By
Theorem 1.5.4, it is a bounded polyhedron:

Pmatching(G) = {x ∈ RE | Cx ≤ d}

for some matrix C and some vector d. Then (MWMP) is equivalent to

max{wTx | Cx ≤ d}. (2.1)

17



18 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS

In this way we have formulated the original combinatorial problem as a linear program-
ming problem. This enables us to apply linear programming methods to study the original
problem.
The question at this point is, however, how to find the matrix C and the vector d. We
know that C and d do exist, but we must know them in order to apply linear programming
methods.

Let us give a solution for bipartite graphs.

2.1 (MWMP) for bipartite graphs

Definition 2.1.1. A graph G = (V,E) is bipartite if V admits a partition into two sets V1
and V2 such that every edge e ∈ E has one end in V1 and the other one in V2.
We say that {V1, V2} is a bipartition of G.

Let us recall that the V ×E-incidence matrix of G is the V ×E-matrix A = (ave)v∈V,e∈E
defined as follows:

ave =

{
1 if e ∈ E(v),

0 otherwise.

In the above definition, E(v) is the set of all edges in E at v. It follows that for all v ∈ V ,∑
e∈E ave =

∑
e∈E(v) ave = d(v), where d(v) is the degree of v.

The following characterization of bipartite graphs is very useful.

Proposition 2.1.2. G is bipartite if and only if G contains no odd cycle (i.e. cycle of odd
length).

Proof. Exercise.

Theorem 2.1.3. A graph G = (V,E) is bipartite if and only if its incidence matrix A is
totally unimodular.

Proof. ” ⇒ ” Assume that G is bipartite and let {V1, V2} be a bipartition of G. We apply
Proposition 1.8.2 to prove that A is TU. Let R ⊆ V be the index set of an arbitrary collection
of rows of A and define R1 := R ∩ V1 and R2 := R ∩ V2. Then R1, R2 form a partition of R.
We have to prove that for every e ∈ E, if we define

ae :=
∑
w∈R1

awe −
∑
w∈R2

awe,

then ae ∈ {0, 1,−1}. Let e = uv ∈ E. We have the following cases:
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(i) u, v /∈ R. Then awe = 0 for all w ∈ R1, R2. Hence ae = 0.

(ii) u ∈ R and v /∈ R. If u ∈ R1, then
∑

w∈R1
awe = aue = 1 and

∑
w∈R2

awe = 0. Thus,
ae = 1. We get similarly that, if u ∈ R2, then ae = −1.

(iii) v ∈ R and u /∈ R. Similarly.

(iv) u, v ∈ R. Then we can have either u ∈ R1, v ∈ R2 or u ∈ R2, v ∈ R1. Suppose that
u ∈ R1 and v ∈ R2, the other case being similar. Then

∑
w∈R1

awe = aue = 1 and∑
w∈R2

awe = ave = 1, so ae = 0.

”⇐ ” Assume thatG is not bipartite. By Proposition 2.1.2, G has a cycle Ck = v0v1 . . . vk−1v0,
with k odd, k ≥ 3. Let B the submatrix of A obtained by taking the rows v0, . . . vk−1 and
the columns v0v1, . . . , vk−1v0. Then B is the incidence matrix of Ck and one can easily see
that |det(B)| = 2. It follows that A is not TU.

Theorem 2.1.4. The matching polytope Pmatching(G) of a bipartite graph G is equal to the
set of all vectors x ∈ RE satisfying:

Pmatching(G) =
{
x ∈ RE | xe ≥ 0 for each e ∈ E and

∑
e∈E(v) xe ≤ 1 for each v ∈ V

}
= {x ∈ RE | x ≥ 0, Ax ≤ 1},

where A is the V × E-incidence matrix of G, 0 is the constant 0-vector in RV and 1 is the
constant 1-vector in RV .

Proof. Denote P := {x ∈ RE | x ≥ 0, Ax ≤ 1}. We have to prove that Pmatching(G) = P .
” ⊆ ” Since P is convex, it is enough to show that χM ∈ P for each matching M of G. This
can be easily verified. Obviously, χMe ≥ 0 for all e ∈ E. Furthermore, for every v ∈ V , we
have that there is at most one edge e ∈ E(v) ∩M , hence

∑
e∈E(v) χ

M
e ≤ 1.

” ⊇ ” Since G is bipartite, we can apply Theorem 2.1.3 to conclude that its incidence matrix
A is totally unimodular. The total unimodularity of A implies, by Theorem 1.8.4, that the
polyhedron P is integer, hence P = conv(P ∩ ZE).

Claim: If x ∈ P ∩ ZE, then x = χM for some matching M of G.
Proof of Claim: We have that xe ≥ 0 for all e ∈ E and, from the second condition,
xe ≤ 1 for all e. Since x is integer, it follows that x is a {0, 1}-valued vector. If we define
M := {e ∈ E | xe = 1}, we have that x = χM . Let us prove that M is a matching of G. If
e1, e2 ∈M are not disjoint, then there is some v ∈ V such that e1, e2 ∈ E(v). It follows that∑

e∈E(v) xe ≥ xe1 + xe2 = 2, a contradiction. �
It follows that P = conv(P ∩ ZE) ⊆ conv{χM |Mmatching in G} = Pmatching(G).

Thus,

Pmatching(G) = {x ∈ RE | x ≥ 0, Ax ≤ 1} = {x ∈ RE | Cx ≤ d},
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where C =

(
−IE
A

)
(with IE the E × E-identity matrix) and d =

(
0
1

)
.

We therefore can apply linear programming techniques to handle (MWMP). Thus we can find
a maximum-weight matching in a bipartite graph in polynomial time, with any polynomial-
time linear programming algorithm.

2.2 Min-max relations and König’s theorem

We prove first a variant of the Strong Duality theorem 1.4.3.

Proposition 2.2.1 (Strong Duality - variant). Let A ∈ Rm×n, b ∈ Rm and c ∈ Rn. Then

max{cTx | x ≥ 0, Ax ≤ b} = min{yT b | y ≥ 0, yTA ≥ cT}.

(assuming both sets are nonempty).

Proof. Exercise.

In the sequel, G is a bipartite graph and A is the V × E incidence matrix of G.

Applying Proposition 2.2.1, we get the following min-max relation:

Proposition 2.2.2.

max{wTx | x ≥ 0, Ax ≤ 1} = min{yT1 | y ≥ 0, yTA ≥ wT}

We have thus that

max{w(M) |M matching in G} = min{yT1 | y ≥ 0, yTA ≥ wT},

If we take w(e) := 1 for all e (i.e. w = 1 in RE), we get that

max{|M | |M matching in G} = min{yT1 | y ≥ 0, yTA ≥ 1} (2.2)

In the sequel, we show that we can derive from this König’s matching theorem.

Definition 2.2.3. A vertex cover of G is a set of vertices intersecting each edge.

Theorem 2.2.4 (König (1931)). The maximum cardinality of a matching in a bipartite
graph is equal to the minimum cardinality of a vertex cover.
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Proof. We can apply Proposition 1.8.5 to conclude that min{yT1 | y ≥ 0, yTA ≥ 1} is
attained by an integer optimal solution y∗ and that (y∗)T1 is the maximum cardinality of a
matching in G.
Remark that for every y = (yv)v∈V and every edge e = uw ∈ E, we have that (yTA)e =∑

v∈V yvave = yu + yw.

Claim: y∗ is a {0, 1}-valued vector.

Proof of Claim: Assume that there exists v0 ∈ V such that y∗v0 ≥ 2. Define then y′ as
follows: y′v = y∗v for v 6= v0 and y′v0 = 1. Obviously y′ ≥ 0 and one can easily see that
for every e = uw ∈ V , (y′TA)e = y′u + y′w ≥ 1. On the other hand, y′T1 < (y∗)T1, a
contradiction. �
Let W ⊆ V be an arbitrary vertex cover of G and let χW ⊆ RV be its incidence vector.
Then (χW )T1 = |W | and χW ≥ 0. Furthermore, ((χW )TA)e ≥ 1 for every edge e of
G, since e has at least one end v ∈ W , so χWv = 1. It follows that we must have that
|W | = (χW )T1 ≥ (y∗)T1 for every vertex cover W of G.

Let us define W0 := {v ∈ V | y∗v = 1}. Then y∗ = χW0 and (y∗)T1 = |W0|. It remains to
prove that W0 is a vertex cover of G. If e ∈ G is arbitrary, then, since ((y∗)TA)e ≥ 1, there
is v ∈ V such that y∗v = 1, i.e. v ∈ W0.

König’s matching theorem is an example of a min-max formula that can be derived from a
polyhedral characterization. The polyhedral description together with linear programming
duality also gives a certificate of optimality of a matching M : to convince that a certain
matching M has maximum size, it is possible and sufficient to display a vertex cover of
size |M |. In other words, it yields a good characterization for the maximum-size matching
problem in bipartite graphs.

One can also derive the weighted version of König’s matching theorem:

Theorem 2.2.5 (Egerváry (1931)). Let G = (V,E) be a bipartite graph and w : E → N be
a weight function. The maximum weight of a matching in G is equal to the minimum value
of
∑

v∈V yv, where y ranges over all functions y : V → N such that yu + yv ≥ w(e) for each
edge e = uv of G.

Proof. Exercise.



22 CHAPTER 2. MATCHINGS IN BIPARTITE GRAPHS



Chapter 3

Flows and cuts

This material is mostly from [9, Chapters 10,13] and [6, Chapter 8].

We assume that all directed graphs are loopless.
Convention: If E is a finite set and g : E → R is a mapping, for any F ⊆ E, we define
g(F ) =

∑
x∈F g(x).

Definition 3.0.1. A flow network is a quadruple N = (D, c, s, t), where D = (V,A) is a
directed graph, s, t ∈ V are two distinguished points and c : A→ R+ is a capacity function.

We say that s is the source, t is the sink and c(a) is the capacity of the arc a ∈ A.

In the sequel, N = (D, c, s, t) is a flow network.
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Figure 3.1: A flow network

Our main motivation is to transport as many units as possible simultaneously from s to t.

23
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A solution to this problem will be called a maximum flow. We give in the sequel formal
definitions.

Definition 3.0.2. Let f : A→ R+ be a function. We say that

(i) f is a flow if f(a) ≤ c(a) for each a ∈ A.

(ii) f satisfies the flow conservation law at vertex v ∈ V if∑
a∈δin(v)

f(a) =
∑

a∈δout(v)

f(a) (3.1)

(iii) f is an s-t-flow if f is a flow satisfying the flow conservation law at all vertices except
s and t.
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Figure 3.2: A flow network and a flow

Notation 3.0.3. If f : A→ R+ is a flow and v ∈ V , we use the following notation:

inf (v) =
∑

a∈δin(v)

f(a) = f(δin(v)), outf (v) :=
∑

a∈δout(v)

f(a) = f(δout(v)).

Thus, inf (v) is the amount of flow entering v and outf (v) is the amount of flow leaving v.
The flow conservation law at v says that these should be equal.

Definition 3.0.4. The value of an s-t flow f is defined as :

value(f) := outf (s)− inf (s) =
∑

a∈δout(s)

f(a)−
∑

a∈δin(s)

f(a).
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Hence, the value is the net amount of flow leaving s. One can prove that this is equal to the
net amount of flow entering t (exercise!).
The Maximum Flow Problem is then

(Max-Flow): Find an s-t flow of maximum value.

An s-t flow of maximum value is also called simply maximum flow.

To formulate a min-max relation, we need the notion of a cut. A subset B of A is called a
cut if B = δout(U) for some U ⊆ V . In particular, ∅ is a cut.

Definition 3.0.5. An s-t cut is a cut δout(U) such that s ∈ U and t /∈ U . The capacity of
an s-t cut δout(U) is

c(δout(U)) =
∑

a∈δout(U)

c(a).

The Minimum Cut Problem is then

(Min-Cut): Find an s-t cut of minimum capacity.

An s-t cut of minimum capacity is also called simply minimum cut.

One of the central results of flow network theory is the Max-Flow Min-Cut theorem, proved
by Ford and Fulkerson [1954,1956b] for undirected graphs and by Dantzig and Fulkerson
[1955,1956] for directed graphs.

Theorem 3.0.6 (Max-Flow Min-Cut theorem). Let N = (D, c, s, t) be a network flow. Then
the maximum value of an s-t flow is equal to the minimum capacity of an s-t cut.

We shall give two proofs to this theorem, one using polyhedra and linear programming, the
other one using the Ford-Fulkerson algorithm.

Let us introduce first a useful notion. For any f : A → R, we define the excess function
as the mapping

excessf : P(V )→ R, excessf (U) = f(δin(U))− f(δout(U)) for every U ⊆ V. (3.2)

Set excessf (v) := excessf ({v}) for every v ∈ V . Hence, if f is an s-t flow, the flow conser-
vation law says that excessf (v) = 0 for every v ∈ V \ {s, t}. Furthermore, the value of f is
equal to −excessf (s).

Lemma 3.0.7. (i) excessf (V ) = 0.

(ii) For every U ⊆ V , excessf (U) =
∑

v∈U excessf (v).



26 CHAPTER 3. FLOWS AND CUTS

Proof. (i) Obviously, since δin(V ) = δout(V ) = ∅.

(ii) Let us denote the left-hand term of the equality with (L) and the right-hand term of
the equality with (R). The equality follows by counting, for each a ∈ A, the multiplicity
of f(a) in (L) and (R).

Given an arbitrary arc a = (x, y) ∈ A, we have the following cases:

(a) x, y /∈ U . Then a /∈ δin(U)∪ δout(U) and a /∈ δin(v)∪ δout(v) for any v ∈ U . Thus
f(a) does not appear in (L) or (R).

(b) x, y ∈ U . Then a /∈ δin(U)∪ δout(U), hence f(a) does not appear in (L). Further-
more, we have that a ∈ δin(y)∩δout(x), so, f(a) ∈ f(δin(y)) and f(a) ∈ f(δout(x)),
hence in (R) we have −f(a) + f(a) = 0.

(c) x ∈ U, y /∈ U . Then a ∈ δout(U) and a /∈ δin(U), hence in (L) we have −f(a).
Furthermore, a ∈ δout(x), so in (R) we have −f(a) too.

(d) x /∈ U, y ∈ U . Then a ∈ δin(U) and a /∈ δout(U), hence in (L) we have f(a).
Furthermore, a ∈ δin(y), so in (R) we have f(a) too.

A first result towards obtaining the max-min relation is the following ”weak duality”:

Proposition 3.0.8. Assume that f is an s-t flow and that δout(U) is an s-t cut. Then

value(f) ≤ c(δout(U)). (3.3)

Equality holds if and only if f(a) = 0 for all a ∈ δin(U) and f(a) = c(a) for all a ∈ δout(U).

Proof. Remark that, since s ∈ U and t /∈ U , we have by Lemma 3.0.7.(ii) that

excessf (U) =
∑
v∈U

excessf (v) =
∑

v∈U\{s}

excessf (v) + excessf (s) = excessf (s),

by the flow conservation law (3.1). It follows that

value(f) = −excessf (s) = −excessf (U) = f(δout(U))− f(δin(U))

≤ f(δout(U))

≤ c(δout(U)).

with equality if and only if f(δin(U)) = 0 and f(δout(U)) = c(δout(U)). Since f(a) ≥ 0 for
all a ∈ A, we have that f(δin(U)) = 0 iff f(a) = 0 for all a ∈ δin(U). Since f(a) ≤ c(a) for
all a ∈ A, we have that f(δout(U)) = c(δout(U)) iff f(a) = c(a) for all a ∈ δout(U).

As an immediate consequence, we get

Corollary 3.0.9. If f is some s-t flow whose value equals the capacity of some s-t cut
δout(U), then f is a maximum flow and δout(U) is a minimum cut.
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3.1 An LP formulation of the Maximum Flow Problem

Let us show that the Maximum Flow Problem has an LP formulation. We want to solve the
problem

(Max−Flow) : max{value(f) | f is an s− t flow}.

As f, c : A → R, they can be seen as vectors in RA, hence we shall use the notation fa, ca
for f(a), c(a).
Let us recall that the incidence matrix (or V × A incidence matrix) of D = (V,A) is
the V × A-matrix M = (mva)v∈V,a∈A defined as follows:

mva =


1 if v is a head of a (i.e. a = (u, v) for some u ∈ V )

−1 if v is a tail of a (i.e. a = (v, u) for some u ∈ V )

0 otherwise.

Thus, for every v ∈ V , we have that mva = 1 if a ∈ δin(v), mva = −1 if a ∈ δout(v) and
mva = 0 otherwise.

Proposition 3.1.1. The incidence matrix M of a directed graph D = (V,A) is totally
unimodular.

Proof. Exercise.

For every v ∈ V let us denote with mv the v-th line of M . Then

mvf =
∑
a∈A

mvafa =
∑

a∈δin(v)

fa −
∑

a∈δout(v)

fa = inf (v)− outf (v).

In particular,

mtf = inf (t)− outf (t) = outf (s)− inf (s) = value(f).

Let M0 be the matrix obtained from M by deleting the rows ms,mt, corresponding to s and
t. The fact that f satisfies the flow conservation law for all vertices v 6= s, t can be written as
M0f = 0. Then (Max-Flow) is equivalent with the following linear programming problem

(Max− Flow)LP : max{mtf |M0f = 0,0 ≤ f ≤ c}.

It is obvious that f ≡ 0 is a feasible solution. Furthermore, (Max− Flow)LP is bounded,
since value(f) ≤

∑
a∈δout(s) fa ≤ c(δout(s)). It follows from linear programming that

Proposition 3.1.2. The Maximum Flow Problem always has an optimal solution.
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Another important consequence is the Integrity Theorem, due to Dantzig and Fulkerson
[1955,1956]:

Theorem 3.1.3 (The Integrity theorem). If all capacities are integers, then there exists an
integer flow of maximum value.

Proof. We have that

max{mtf |M0f = 0,0 ≤ f ≤ c} = max{mtf | 0 ≤M0f ≤ 0,0 ≤ f ≤ c}.

Since M is totally unimodular, M0 is also totally unimodular, as a submatrix of M . As
c is an integer vector by hypothesis, we can apply Proposition 1.8.6 with b = b′ = 0 and
d = 0, d′ = c to conclude that the polyhedron

P = {f ∈ RA |M0f = 0,0 ≤ f ≤ c}

is integer. Apply now Proposition 1.7.3.(ii) to conclude that max{mtf | x ∈ P} has an
integer optimal solution.

3.1.1 Proof of the Max-Flow Min-Cut Theorem 3.0.6

First, let us remark that, by LP-duality, we have that

max{mtf |M0f = 0,0 ≤ f ≤ c} = max{(mT
t )Tf | C ′f ≤ c′}

= min{c′Tw | w ≥ 0, wTC ′ = mt}
= min{c′Tw | w ≥ 0, C ′Tw = mT

t },

where C ′ =


M0

−M0

I
−I

 and c′ =


0
0
c
0

.

Claim: There are integer vectors r, z such that r ≥ 0, zs = 0, zt = −1, zTM + rT ≥ 0 and
rT c is the maximum value of an s-t flow.
Proof of Claim: (Supplementary)
Since C ′T is totally unimodular and mT

t is an integer vector, we can apply Proposition
1.8.6 with b = b′ = mT

t , d = 0, d′ = +∞ and Proposition 1.7.3.(ii) to conclude that
min{c′Tw | w ≥ 0, C ′Tw = mT

t } has an integer optimal solution w∗.

Let w∗ =


w1

w2

w3

w4

. Then w∗T c′ = w3T c, w1, w2, w3, w4 ≥ 0 and w1TM0 − w2TM0 + (w3T −

w4T ) = mt. Denote, for simplicity, w := w1 − w2. Then w ∈ ZV \{s,t}, wTM0 + w3T ≥
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mt + w4T ≥ mt. Extend w to z ∈ ZV by defining zt := −1, zs := 0 and zv := wv for all
v 6= s, t. Let us take r := w3. Then r ∈ ZA, r ≥ 0, wTM0 + rT ≥mt and

rT c = w∗T c′ = min{c′Tw | w ≥ 0, C ′Tw = mT
t } = max{mtf |M0f = 0,0 ≤ f ≤ c}.

It remains to prove that zTM + rT ≥ 0, i.e. that for every a = (u, v) ∈ A, we have that
(zv − zu) + ra ≥ 0. We have the following cases:

(i) u = s, v = t. Then (wTM0+rT )a = ra+0 ≥ mta = 1. Thus, (zt−zs)+ra = −1+ra ≥ 0.

(ii) u = s, v /∈ {s, t}. Then zv = wv, (wTM0 + rT )a = ra + wv ≥ mta = 0. It follows that
(zv − zs) + ra = wv + ra ≥ 0.

(iii) u = t, v = s. Then (wTM0+rT )a = ra+0 ≥ mta = −1. Thus, (zs−zt)+ra = 1+ra ≥ 0.

(iv) u = t, v /∈ {s, t}. Then zv = wv, (wTM0 + rT )a = ra + wv ≥ mta = −1. Thus,
(zv − zt) + ra = wv + 1 + ra ≥ 0.

(v) u, v /∈ {s, t}. Then zu = wu, zv = wv, and (zv − zu) + ra = (wv − wu) + ra =
(wTM0 + rT )a ≥ mta = 0.

(vi) u /∈ {s, t}, v = s. Then zu = wu, (wTM0 + rT )a = −wu + ra ≥ mta = 0. Thus,
(zs − zu) + ra = −wu + ra ≥ 0.

(vii) u /∈ {s, t}, v = t. Then zu = wu, (wTM0 + rT )a = −wu + ra ≥ mta = 1. Thus,
(zt − zu) + ra = −1− wu + ra ≥ 0.

�
Define now

U := {v ∈ V | zv ≥ 0}.
Then U is a subset of V containing s and not containing t, so δout(U) is an s-t cut.
Claim: c(δout(U)) ≤ rT c.
Proof of Claim: We have that c(δout(U)) =

∑
a∈δout(U) c(a).

Let a = (u, v) ∈ δout(U). Then u ∈ U and v /∈ U , hence zu ≥ 0 and zv ≤ −1 (since z is
integer). Since 0 ≤ (zTM + rT )a = (zv − zu) + ra, we must have ra ≥ zu − zv ≥ −zv ≥ 1.
Thus,

rT c =
∑
a∈A

rac(a) ≥
∑

a∈δout(U)

rac(a) since r, c ≥ 0

≥
∑

a∈δout(U)

c(a) = c(δout(U)).

�
Thus, we have found an s-t cut with capacity less or equal than the maximum value of an s-t
flow. Apply now Proposition 3.0.8 to conclude that the Max-Flow Min-Cut Theorem 3.0.6
holds.
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3.2 Ford-Fulkerson algorithm

In the following, D = (V,A) is a digraph, (D, c, s, t) is a flow network.
We define first the concepts of residual graph and augmenting path, which are very
important in studying flows.
For each arc a = (u, v) ∈ A, we define a−1 to be a new arc from v to u. We call a−1 the
reverse arc of a and vice versa. For any B ⊆ A, let B−1 = {a−1 | a ∈ B}.
We consider in the sequel the digraph D = (V,A ∪ A−1). Note that if a = (u, v) ∈ A and
a′ = (v, u) ∈ A, then a−1 and a′ are two distinct parallel arcs in D. We shall usually denote
the arcs of D with e, e0, e1, . . ..

Definition 3.2.1. Let f : A→ R+ be an s-t flow.

(i) The residual capacity cf associated to f is defined by

cf : A(D)→ R+, cf (e) =

{
c(a)− f(a) if e = a ∈ A
f(a) if e = a−1, a ∈ A.

(ii) The residual graph is the graph Df = (V,A(Df )), where

A(Df ) = {e ∈ A(D) | cf (e) > 0} = {a ∈ A | c(a) > f(a)} ∪ {a−1 | a ∈ A, f(a) > 0}.

(iii) An f-augmenting path is an s-t path in the residual graph Df .

Let P be an s-t path in Df . The following notation will be useful in the sequel:

A−1(P ) := {a ∈ A | a−1 ∈ A(P )}.

We define χP : A→ R as follows: for every a ∈ A,

χP (a) =


1 if a ∈ A(P )

−1 if a ∈ A−1(P ) ( i.e. a−1 ∈ A(P ))

0 otherwise.

For γ ≥ 0, let us denote
fγP : A→ R, fγP = f + γχP .

Then for every a ∈ A, we have that

fγP (a) =


f(a) + γ if a ∈ A(P )

f(a)− γ if a ∈ A−1(P )

f(a) otherwise.
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Lemma 3.2.2. If γ = mine∈A(P ) cf (e), then fγP is an s-t flow with value(fγP ) = value(f) + γ.

Proof. We denote for simplicity g := fγP . First, let us remark that γ > 0, since cf (e) >
0 for every arc e of the residual graph. Furthermore, γ = min{min{c(a) − f(a) | a ∈
A(P )},min{f(a) | a ∈ A−1(P )}}. It follows that f(a)+γ ≤ c(a) if a ∈ A(P ) and 0 ≤ f(a)−γ
if a ∈ A−1(P ). As a consequence, 0 ≤ g(a) ≤ c(a) for all a ∈ A.
Assume that P = v0v1 . . . vkvk+1, k ≥ 0, v0 := s, vk+1 := t.
Since χP (a) = 0 for all a /∈ A(P ) ∪ A−1(P ), it follows that for every v ∈ V , we have that

ing(v) =
∑

a∈δin(v)

g(a) =
∑

a∈δin(v)

f(a) + γ
∑

a∈δin(v)

χP (a) = inf (v) + γ
∑

a∈δin(v)

χP (a)

= inf (v) +
∑
a∈L(v)

χP (a),

outg(v) =
∑

a∈δout(v)

g(a) =
∑

a∈δout(v)

f(a) + γ
∑

a∈δout(v)

χP (a) = outf (v) + γ
∑

a∈δout(v)

χP (a)

= outf (v) +
∑
a∈R(v)

χP (a),

where L(v) := δin(v) ∩ (A(P ) ∪ A−1(P )), R(v) := δout(v) ∩ (A(P ) ∪ A−1(P )). Thus,

outg(v)− ing(v) = outf (v)− inf (v) + γ

 ∑
a∈R(v)

χP (a)−
∑
a∈L(v)

χP (a)

 .

Claim 1: value(g) = value(f) + γ.
Proof of Claim:

value(g) = value(f) + γ

 ∑
a∈R(s)

χP (a)−
∑
a∈L(s)

χP (a)


Let e := (s, v1) ∈ A(P ). We have two cases:

(i) e ∈ A. Then L(s) = ∅, R(s) = {e}, χP (e) = 1.

(ii) e ∈ A−1(P ), so e = a−1 with a = (v1, s) ∈ A. Then L(s) = {a}, χP (a) = −1, R(s) = ∅.

In both cases, one gets value(g) = value(f) + γ. �
Claim 2: g satisfies the flow conservation law at every v ∈ V \ {s, t}.
Proof of Claim: Let v ∈ V, v 6= s, t. Then

outg(v)− ing(v) = γ

 ∑
a∈R(v)

χP (a)−
∑
a∈L(v)

χP (a)

 ,
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since f satisfies the flow conservation law at v. Thus, we have to prove that∑
a∈R(v)

χP (a)−
∑
a∈L(v)

χP (a) = 0. (3.4)

If v /∈ P , then this is obvious, since χP (a) = 0 for every arc a ∈ A incident with v. If P = st,
then we do not have what to prove. Assume now that v = vi for some i = 1, . . . , k, where
k ≥ 1. Let e1 = (vi−1, vi), e2 = (vi, vi+1) be the arcs incident with v in P . We have the
following cases:

(i) e1, e2 ∈ A. Then L(v) = {e1}, χP (e1) = 1, R(v) = {e2}, χP (e2) = 1.

(ii) e1 ∈ A, e2 = a−12 , with a2 = (vi+1, vi) ∈ A. Then L(v) = {e1, a2}, χP (e1) = 1, χP (a2) =
−1, R(v) = ∅.

(iii) e2 ∈ A, e1 = a−11 , with a1 = (vi, vi−1) ∈ A. Then L(v) = ∅, R(v) = {e2, a1}, χP (e2) =
1, χP (a1) = −1.

(iv) e1 = a−11 and e2 = a−12 , with a1 = (vi, vi−1) ∈ A, a2 = (vi+1, vi) ∈ A. Then L(v) =
{a2}, χP (a2) = −1, R(v) = {a1}, χP (a1) = −1.

In all cases, one gets (3.4). �
Thus, the proof is concluded.

To augment f along P by γ means to replace the flow f with the flow fγP . Using these
concepts, the following algorithm for the Maximum Flow Problem, due to Ford and Fulkerson
[1957], is natural.

Ford-Fulkerson Algorithm

Input: A flow network (D, c, s, t)

Output: An s-t flow of maximum value.

Step 1 Set f(a) := 0 for all a ∈ A(D).
Step 2 Find an f -augmenting path P . If none exists then stop.
Step 3 Compute γ := mine∈A(P ) cf (e). Augment f along P by γ and go to Step 2.

As we proved in Lemma 3.2.2, the choice of γ guarantees that f continues to be a flow. To
find an f -augmenting path, we just have to find any s-t-path in the residual graph Df .
We will see that when the algorithm stops, then f is indeed an s-t flow of maximum value.
First, we prove the following important result.

Proposition 3.2.3. Suppose that f is an s-t flow such that the residual graph Df has no
s-t paths. If we let S be the set of vertices reachable in Df from s, then δout(S) is an s-t cut
in D such that

value(f) = c(δout(S)).
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In particular, f is an s-t flow of maximum value and δout(S) is an s-t cut in D of minimum
capacity.

Proof. Since Df has no s-t paths, it follows that t /∈ S. Since s ∈ S, we get that δout(S) is
an s-t cut in D. We apply Proposition 3.0.8 to get the result. Remark that if a ∈ δoutA (S),
then a = (u, v) with u ∈ S and v /∈ S, so v is not reachable in Df from s. As a consequence,
a /∈ A(Df ), hence f(a) = c(a). If a ∈ δin(S), then a = (u, v) with u /∈ S and v ∈ S, so u is
not reachable in Df from s. As a consequence, a−1 = (v, u) /∈ A(Df ), hence f(a) = 0.
It follows by Proposition 3.0.8 that value(f) = c(δout(S)). As a consequence, f is an s-t flow
of maximum value and δout(S) is an s-t cut in D of minimum capacity.

Theorem 3.2.4. An s-t flow f has maximum value if and only if there is no f -augmenting
path.

Proof. ”⇒” If there is an f -augmenting path p, then Step 3 of the Ford-Fulkerson algorithm
computes an s-t flow of greater value than f , hence f is not of maximal value.

”⇐” By Proposition 3.2.3.

By linear programming (Proposition 3.1.2), we know that there exists a maximal s-t flow.
Then, as an immediate consequence of the previous two results, we get the Max-Flow Min-
Cut Theorem 3.0.6.

Another important consequence is:

Theorem 3.2.5. If all capacities are integer (i.e. c : A → Z+), then the Ford-Fulkerson
algorithm terminates and the s-t flow of maximum value is integer.

Proof. Let

N := c(δout(s)) ∈ Z+.

Let fi be the s-t flow at iteration i. One can easily see by induction on i that fi is integer
and that value(fi+1) ≥ value(fi) + 1. Since for any s-t flow f we have that value(f) ≤ N , it
follows that the Ford-Fulkerson algorithm terminates after at most N iterations. Since the
flow at every iteration is integer, it follows that the maximal flow is also integer.

One can easily see that the Ford-Fulkerson algorithm terminates also when all capacities are
rational. However, if we allow irrational capacities, the algorithm might not terminate at all
(see [9, Section 10.4a]).
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3.3 Circulations

Let D = (V,A) be a digraph.

Definition 3.3.1. A mapping f : A→ R is a circulation if for each v ∈ V , one has∑
a∈δin(v)

f(a) =
∑

a∈δout(v)

f(a). (3.5)

Thus, f satisfies the flow conservation law (3.1) at every vertex v ∈ V . Hence, f is a
circulation if and only if inf (v) = outf (v) for all v ∈ V if and only if excessf (v) = 0 for all
v ∈ V .
We point out the following useful result, whose proof is immediate.

Lemma 3.3.2. Assume that v ∈ V and f1, . . . , fn : A→ R are mappings satisfying the flow
conservation law (3.1) at v. Then any linear combination of f1, . . . , fn satisfies (3.1) at v.

Proof. Exercise.

Let us recall that for any subgraph D′ of D, χD
′

denotes its characteristic function, defined
by

χD
′
: A→ {0, 1}, χD

′
(a) =

{
1 if a ∈ D′

0 otherwise.

Lemma 3.3.3. (i) Any linear combination of circulations is a circulation.

(ii) If C is a circuit in D, then χC is a nonnegative circulation.

Proof. (i) By Lemma 3.3.2.

(ii) Let C := v0v1 . . . vk−1vkv0, k ≥ 1 be a circuit in D. Then χC((v0, v1)) = χC((v1, v2)) =
. . . = χC((vk−1, vk)) = χC((vk, v0)) = 1 and χC(a) = 0 for all the other arcs a ∈ A. For
an arbitrary v ∈ V we have the following cases:

(a) v /∈ C. Then inχC (v) = outχC (v) = 0.

(b) v ∈ C, so v = vi for some i = 0, . . . , k. Then

inχC (vi) =
∑

a∈δin(vi)

χC(a) = χC(ai) + 0 = 1,

outχC (vi) =
∑

a∈δout(vi)

χC(a) = χC(bi) + 0 = 1,

where ai =

{
(vk, v0) if i = 0

(vi−1, vi) otherwise
and bi =

{
(vk, v0) if i = k

(vi, vi+1) otherwise.



3.3. CIRCULATIONS 35

Definition 3.3.4. The support of a mapping f : A→ R is the set

supp(f) := {a ∈ A | f(a) 6= 0}.

If supp(f) 6= ∅, then (V, supp(f)) is a nontrivial subgraph of D.

Proposition 3.3.5. Assume that there exists a nonnegative circulation f in D with nonempty
support. Then (V, supp(f)) contains a circuit.

Proof. By hypothesis, there exists a = (u, v) ∈ A with a ∈ supp(f), so f(a) > 0, since f is
nonnegative. Take v0 := v. Since a ∈ δin(v), we have that inf (v) ≥ f(a) > 0. It follows that
outf (v) > 0, so we must have a1 = (v, v1) ∈ δout(v) such that f(a1) > 0. As D is loopless,
we have that v1 6= v.
Since a1 ∈ δin(v1), we must have a2 = (v1, v2) ∈ δout(v1) with f(a2) > 0. If v2 = v0, then
we have found a circuit C = v0v1v0 and we stop. If v2 6= v0, then we reason similarly to
get a sequence of different vertices v0, v1, v2, v3, . . . with (vi, vi+1) ∈ supp(f), i = 0, 1, 2, . . . ,.
Since D is finite, we must stop after a finite number of steps. Thus, there exists N such
that vN = vi for some i = 0, . . . , N − 2. It follows that C := vivi+1 . . . vN−1vi is a circuit in
(V, supp(f)).

Proposition 3.3.6. A function f : A → R+ is a circulation if and only if there exist
N ∈ Z+, positive real numbers µ1, . . . , µN and circuits C1, . . . , CN in D such that

f =
N∑
i=1

µiχ
Ci . (3.6)

Furthermore, if f is integer, then the µi’s can be chosen to be integer.

Proof. ”⇐” By Lemma 3.3.3.
”⇒” We use induction on |supp(f)|. If |supp(f)| = 0, the result is trivial. So assume that
|supp(f)| > 0. Then, by Proposition 3.3.5, the subgraph (V, supp(f)) of D contains a circuit
C. Let µ := mina∈A(C) f(a) > 0 and define

f ′ := f − µχC , so f ′(a) =

{
f(a)− µ if a ∈ A(C)

f(a) otherwise
.

Then f ′ is a nonnegative circulation.
Claim: |supp(f ′)| < |supp(f)|.
Proof of Claim: Obviously, supp(f ′) ⊆ supp(f). We show that the inclusion is strict. Take
a0 ∈ A(C) with f(a0) = µ. Then a0 ∈ supp(f), but f ′(a0) = 0, hence a0 /∈ supp(f ′). �
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Then by the induction hypothesis, there exist numbers L ∈ Z+, µ1, . . . , µL > 0 and circuits
C1, . . . , CL in D such that

f ′ =
L∑
i=1

µiχ
Ci . (3.7)

Take N := L+ 1, µN := µ and CN := C. Then the result follows.

3.4 Flow Decomposition Theorem

In this section we give a proof of the Flow Decomposition theorem, due to Gallai [1958],
Ford and Fulkerson [1962].

Theorem 3.4.1. [Flow Decomposition Theorem]
Let D = (V,A) be a digraph, N = (D, c, s, t) a flow network and f be an s-t-flow in N with
value(f) ≥ 0. Then there exist K,L ∈ Z+, positive numbers w1, . . . , wK , µ1, . . . , µL, s-t paths
P1, . . . , PK and circuits C1, . . . , CL in N such that

f =
K∑
i=1

wiχ
Pi +

L∑
j=1

µjχ
Cj and value(f) =

K∑
i=1

wi.

Moreover, if f is integer then the wi’s, µj’s can be chosen to be integer.

Proof. We have two cases:
Case 1: value(f) = 0. Then inf (v) = outf (v) for all v ∈ V , hence f is a circulation. The
result follows (with K = 0) by Proposition 3.3.6.

Case 2: value(f) > 0. We show that we can reduce the problem to Case 1. Consider a
new vertex x and add arcs (x, s), (t, x), both carrying flow value(f). Formally, we define the
graph D′ := (V ′, A′), where V ′ := V ∪ {x}, A′ = A ∪ {(x, s), (t, x)} and a function

f ′ : A′ → R, f ′(a) =

{
f(a) if a ∈ A
value(f) otherwise.

Claim: f ′ is a nonnegative circulation in D′.
Proof of Claim: It is obvious that f ′ satisfies the flow circulation law (3.1) at every vertex
v ∈ V ′ \ {s, t, x}. Since

inf ′(x) =
∑

a∈δin(x)

f ′(a) = f ′((t, x)) = value(f),

outf ′(x) =
∑

a∈δout(x)

f ′(a) = f ′((x, s)) = value(f),
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f ′ satisfies (3.1) at x. Furthermore,

inf ′(s) =
∑

a∈δin(s)

f ′(a) = f ′((x, s)) +
∑

a∈δinA (s)

f ′(a) = value(f) +
∑

a∈δinA (s)

f(a)

= value(f) + inf (s) = (outf (s)− inf (s)) + inf (s) = outf (s),

outf ′(s) =
∑

a∈δout(s)

f ′(a) =
∑

a∈δoutA (s)

f ′(a) =
∑

a∈δoutA (s)

f(a) = outf (s),

hence f ′ satisfies (3.1) at s. Finally,

inf ′(t) =
∑

a∈δin(t)

f ′(a) =
∑

a∈δinA (t)

f ′(a) =
∑

a∈δinA (t)

f(a) = inf (t),

outf ′(t) =
∑

a∈δout(t)

f ′(t) = f ′((t, x)) +
∑

a∈δoutA (t)

f ′(a) = value(f) +
∑

a∈δoutA (t)

f(a)

= value(f) + outf (t) = (inf (t)− outf (t)) + outf (t) = inf (t),

hence f ′ satisfies (3.1) at t. �
We can apply Proposition 3.3.6 to f ′ to getK,L ∈ Z+, positive numbers w1, . . . , wK , µ1, . . . , µL,
F1, . . . , FK circuits in D′ containing x and C1, . . . , CL circuits in D such that

f ′ =
K∑
i=1

wiχ
Fi +

L∑
j=1

µjχ
Cj .

If Fi is a circuit in D′ containing x, then we must have Fi = Pi + (t, x) + (x, s) for some s-t
path Pi. Furthermore, χFi(a) = χPi(a) for all a ∈ A. It follows that

f =
K∑
i=1

wiχ
Fi +

L∑
j=1

µjχ
Cj =

K∑
i=1

wiχ
Pi +

L∑
j=1

µjχ
Cj .

Finally, let us remark that for all j = 1, . . . , L,

value(χCj) = outχCj (s)− inχCj (s) = 0,

since χCj is a circulation, by Lemma 3.3.3.(ii). Furthermore, for all i = 1, . . . , K, value(χPi) =

1, since Pi is an s-t path. Hence, value(f) =
K∑
i=1

wi.

Let us recall that two subgraphs of D are
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(i) vertex-disjoint if they have no vertex in common;

(ii) arc-disjoint if they have no arc in common.

In general, we say that a family of k subgraphs (k ≥ 3) is (vertex, arc)-disjoint if the k
subgraphs are pairwise (vertex, arc)-disjoint, i.e. every two subgraphs from the family are
(vertex, arc)-disjoint.

By taking c : A→ R+, c(a) = 1 for all a ∈ A, we obtain a network N = (D, c, s, t) that has
all capacities equal to 1. We say that N is a unit capacity network. Then, the capacity of
any subset B ⊆ A is its size, i.e. c(B) = |B|. Furthermore, any integer s-t-flow f in N is a
{0, 1}-flow, i.e. f : A→ {0, 1}.
The Flow Decomposition Theorem 3.4.1 gives us in this case

Proposition 3.4.2. Let D = (V,A) be a digraph, N = (D, s, t) be a unit capacity network
and f be an s-t {0, 1}-flow in N with value(f) ≥ 0. Then there exist K,L ∈ Z+, s-t paths
P1, . . . , PK and circuits C1, . . . , CL in N such that

f =
K∑
i=1

χPi +
L∑
j=1

χCj and value(f) = K.

Furthermore, the family {P1, . . . , PK , C1, . . . , CL} is arc-disjoint.

Proof. Exercise.

3.5 Minimum-cost flows

Let D = (V,A) be a digraph and let k : A→ R, called the cost function. For any function
f : A→ R, the cost of f is, by definition

cost(f) :=
∑
a∈A

k(a)f(a). (3.8)

The following is the minimum-cost flow problem (or min-cost flow problem):

given: a flow network N = (D, c, s, t), a cost function k : A→ R and a value ϕ ∈ R+

find: a minimum-cost s-t flow f in N of value ϕ.

This problem includes the problem of finding an s-t flow of maximum value that has minimum
cost among all s-t flows of maximum value.

Assume that d, c : A→ R are mappings satisfying d(a) ≤ c(a) for each arc a ∈ A. We call d
the demand mapping and c the capacity mapping.
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Definition 3.5.1. A circulation f is said to be feasible (with respect to the constraints d
and c) if

d(a) ≤ f(a) ≤ c(a) for each arc a ∈ A.
We point out that it is quite possible that no feasible circulations exist.
The minimum-cost circulation problem is the following:

given: a digraph D = (V,A), d, c : A→ R and a cost function k : A→ R
find: a feasible circulation f of minimum cost.

One can easily reduce the minimum-cost flow problem to the minimum-cost circulation
problem.
Let a0 := (t, s) be a new arc and define the extended digraph D′ := (V,A′), where A′ =
A ∪ {a0}. For every f : A→ R and ϕ ∈ R, let us denote

fϕ : A′ → R, fϕ(a0) = ϕ, fϕ(a) = f(a) for all a ∈ A.

Define d(a0) := c(a0) := ϕ, k(a0) := 0, and d(a) := 0 for each arc a ∈ A.

Proposition 3.5.2. The following are equivalent

(i) f ′ : A′ → R is a minimum-cost feasible circulation in D′

(ii) f ′ = fϕ for some minimum-cost s-t flow f in N of value ϕ.

Proof. It is obvious that a mapping f ′ : A′ → R is feasible w.r.t. d, c if and only if f ′ = fϕ
for some f : A→ R satisfying 0 ≤ f ≤ c.
Claim: fϕ is a circulation in D′ if and only if f satisfies the flow conservation law at all
v 6= s, t and value(f) = ϕ.
Proof of Claim: Remark that

(i) for all v 6= s, t, we have that inf (v) = infϕ(v) and outf (v) = outfϕ(v),

(ii) infϕ(s) = inf (s) + ϕ, outfϕ(s) = outf (s)

(iii) outfϕ(t) = outf (t) + ϕ, infϕ(t) = inf (t).

�
Thus, f ′ : A′ → R is a feasible circulation in D′ if and only if f ′ = fϕ for some s-t flow f in
N of value ϕ.
Remark, finally, that

cost(fϕ) =
∑
a∈A′

k(a)fϕ(a) = k(a0)fϕ(a0) +
∑
a∈A

k(a)fϕ(a) = 0 +
∑
a∈A

k(a)f(a) = cost(f).

Thus, a minimum-cost feasible circulation in D′ gives a minimum-cost flow of value ϕ in the
original flow network N .
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3.5.1 Minimum-cost circulations and the residual graph

Let D = (V,A) be a digraph, d, c : A → R, and f be a feasible circulation in D. Let
k : A→ R be a cost function.

Recall the notation D = (V,A ∪ A−1).

Definition 3.5.3. (i) The residual capacity cf associated to f is defined by

cf : A(D)→ R+, cf (e) =

{
c(a)− f(a) if e = a ∈ A
f(a)− d(a) if e = a−1, a ∈ A.

(ii) The residual graph is the graph Df = (V,A(Df )), where

A(Df ) = {e ∈ A(D) | cf (e) > 0} = {a ∈ A | c(a) > f(a)}∪{a−1 | a ∈ A, f(a) > d(a)}.

We extend the cost function k to A−1 by defining

k(a−1) := −k(a) for each a ∈ A.

Lemma 3.5.4. Let f ′, f be feasible circulations in D and define g : A∪A−1 → R as follows:
for all a ∈ A,

g(a) = max{0, f ′(a)− f(a)}, g(a−1) = max{0, f(a)− f ′(a)}.

Then

(i) g is a circulation in D;

(ii) cost(g) = cost(f ′)− cost(f);

(iii) g(e) = 0 for all e /∈ A(Df ).

Proof. One can easily see that g(a)− g(a−1) = f ′(a)− f(a) for all a ∈ A.

(i) We get that

ing(v) =
∑

e∈δin
D

(v)

g(e) =
∑

a∈δinD (v)

g(a) +
∑

a∈δoutD (v)

g(a−1)

outg(v) =
∑

e∈δout
D

(v)

g(e) =
∑

a∈δoutD (v)

g(a) +
∑

a∈δinD (v)

g(a−1).
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Thus,

outg(v)− ing(v) =
∑

a∈δoutD (v)

(g(a)− g(a−1))−
∑

a∈δinD (v)

(g(a)− g(a−1))

=
∑

a∈δoutD (v)

(f ′(a)− f(a))−
∑

a∈δinD (v)

(f ′(a)− f(a))

= outf ′(v)− outf (v)− inf ′(v) + inf (v) = 0.

since f and f ′ are circulations.

(ii) We have that

cost(g) =
∑

e∈A∪A−1

k(e)g(e) =
∑
a∈A

k(a)g(a) +
∑
a∈A

k(a−1)g(a−1)

=
∑
a∈A

k(a)(g(a)− g(a−1)) =
∑
a∈A

k(a)(f ′(a)− f(a)) = cost(f ′)− cost(f).

(iii) Let e /∈ A(Df ). We have two cases:

(a) e = a ∈ A. Then c(a) = f(a), so f ′(a) ≤ f(a). It follows that g(e) = g(a) = 0.

(b) e = a−1, a ∈ A. Then d(a) = f(a), so f ′(a) ≥ f(a). It follows that g(e) =
g(a−1) = 0.

Let C be a circuit in Df . We define ψC : A→ R as follows: for every a ∈ A,

ψC(a) =


1 if a is an arc of C

−1 if a−1 is an arc of C

0 otherwise.

For γ ≥ 0, let us denote

fγC : A→ R, fγC = f + γψC .

Lemma 3.5.5. Let γ := mine∈A(C) cf (e). Then fγC is a feasible circulation with cost(fγC) =
cost(f) + γcost(ψC).

Proof. Exercise.

The following result is fundamental.
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Theorem 3.5.6. f is a minimum-cost feasible circulation if and only if each circuit of Df

has nonnegative cost.

Proof. ”⇒” Assume by contradiction that there exists a circuit C in Df with negative
cost. Applying Lemma 3.5.5, there exists γ > 0 such that fγC is a feasible circulation with
cost(fγC) < cost(f). It follows that the cost of f is not minimum, a contradiction.
”⇐” Suppose that each circuit in Df has nonnegative cost. Let f ′ be any feasible circulation
and define g as in Lemma 3.5.4. Then g is a circulation in D, g(e) = 0 for all e /∈ A(Df )
and cost(g) = cost(f ′)− cost(f).
We can apply Proposition 3.3.6 to get L ∈ Z+, µ1, . . . , µL > 0 and circuits C1, . . . , CL in D
such that

g =
L∑
i=1

µiχ
Ci . (3.9)

Claim: For each i = 1, . . . , L, Ci is a circuit in Df .
Proof of Claim: If e ∈ Ci, then χCi(e) = 1, so g(e) ≥ µi > 0. Thus, we must have
e ∈ A(Df ). �

It follows that cost(g) =
L∑
i=1

µicost(χCi) ≥ 0, so cost(f ′) ≥ cost(f).

Theorem 3.5.6 gives us a method to improve a given circulation f :

Choose a negative-cost circuit C in the residual graph Df , and reset f := fγC ,
where γ is as in Lemma 3.5.5.
If no such circuit exists, f is a minimum-cost circulation.

It is not difficult to see that for rational data this leads to a finite algorithm.

3.6 Hofmann’s circulation theorem

Let D = (V,A) be a digraph. We consider mappings d, c : A→ R satisfying d(a) ≤ c(a) for
each arc a ∈ A.
In the sequel, we shall prove Hoffman’s circulation theorem, which gives a characterization
of the existence of feasible circulations. We get this result as an application of the Max-Flow
Min-Cut Theorem. We refer to [9, Theorem 11.2] for a direct proof.
We assume for simplicity that the constraints d, c are nonnegative. However, the
below proof can be adapted to the general case.

Add to D two new vertices s and t and all arcs (s, v), (v, t) for v ∈ V . We denote the new
digraph by H. Thus, V (H) = V ∪ {s, t} and A(H) = A ∪ {(s, v), (v, t) | v ∈ V }. We define
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a capacity function on H as follows:

c′(a) = c(a)− d(a) for all a ∈ A
c′((s, v)) = d(δinA (v)) =

∑
a∈δinA (v)

d(a) for all v ∈ V

c′((v, t)) = d(δoutA (v)) =
∑

a∈δoutA (v)

d(a) for all v ∈ V.

Since 0 ≤ d(a) ≤ c(a) for all a, it follows that we have got a flow network N = (H, c′, s, t).

Lemma 3.6.1. (i) c′(δout(s)) = c′(δin(t)) = d(A).

(ii) For any s-t flow g in N , value(g) ≤ d(A) and equality holds if and only if g((s, v)) =
c′((s, v)) for all v ∈ V if and only if g((v, t)) = c′((v, t)) for all v ∈ V .

Proof. (Supplementary)

(i)

c′(δout(s)) =
∑
v∈V

c′((s, v)) =
∑
v∈V

d(δinA (v)) = d(A)

c′(δin(t)) =
∑
v∈V

c′((v, t)) =
∑
v∈V

d(δoutA (v)) = d(A).

(ii) If we take U1 := {s} and U2 := V ∪{s}, we have that δout(U1) = δout(s) and δout(U2) =
δin(t), hence, by (i), c′(δout(U1)) = c′(δout(U2)) = d(A). Apply now Proposition 3.0.8.

Theorem 3.6.2. There exists a feasible circulation in D if and only if the maximum value
of an s-t flow on N is d(A).

Proof. (Supplementary) ”⇐” Let g be an s-t flow in N of maximum value d(A). We define
f : A→ R by

f(a) = g(a) + d(a) for all a ∈ A.

We shall prove that f is a feasible circulation in D. Since 0 ≤ g(a) ≤ c′(a) = c(a)− d(a) for
all a ∈ A, we get that f is feasible w.r.t. d, c. It remains to check the flow conservation law
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at every vertex v ∈ V . We have that

ing(v) =
∑

a∈δinA (v)

g(a) + g((s, v)) =
∑

a∈δinA (v)

g(a) + c′((s, v)

=
∑

a∈δinA (v)

f(a)−
∑

a∈δinA (v)

d(a) +
∑

a∈δinA (v)

d(a) = inf (v)

outg(v) =
∑

a∈δoutA (v)

g(a) + g((v, t)) =
∑

a∈δoutA (v)

g(a) + c′((v, t)

=
∑

a∈δoutA (v)

f(a)−
∑

a∈δoutA (v)

d(a) +
∑

a∈δoutA (v)

d(a) = outf (v).

Since g is an s-t flow, we have that ing(v) = outg(v), so inf (v) = outf (v).
”⇒” Let f be a feasible circulation in D. Define g : A(H)→ R as follows:

g(a) = f(a)− d(a) for all a ∈ A, g((s, v)) = c′((s, v)), g((v, t)) = c′((v, t)).

As f is feasible, we have that 0 ≤ g ≤ c′. As above, we get that g satisfies the flow
conservation law at every vertex v ∈ V \ {s, t}. Finally,

value(g) = g(δout(s)) =
∑
v∈V

g((s, v)) =
∑
v∈V

c′((s, v)) = d(A).

Theorem 3.6.3 (Hoffman’s Circulation Theorem). There exists a feasible circulation in D
if and only if for each subset U of V ,∑

a∈δin(U)

d(a) ≤
∑

a∈δout(U)

c(a). (3.10)

Proof. (Supplementary) ”⇒” If there exists a feasible circulation f , then excessf (v) = 0 for
all v ∈ V . Thus, by Lemma 3.0.7.(ii), we get that for all U ⊆ V , excessf (U) = 0, that is,
f(δin(U)) = f(δout(U)). It follows that∑

a∈δin(U)

d(a) ≤
∑

a∈δin(U)

f(a) = f(δin(U)) = f(δout(U)) =
∑

a∈δout(U)

f(a) ≤
∑

a∈δout(U)

c(a).

”⇐” By Theorem 3.6.2 and the Max-Flow Min-Cut Theorem, there exists a feasible circu-
lation inD if and only if the maximum value of an s-t flow on N is d(A) if and only if the
minimum capacity of an s-t cut in N is d(A).
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We shall prove that if (3.10) holds for all U ⊆ V , then the minimum capacity of an s-t cut
in N is d(A).
Every s-t cut in N is of the form δout(U ∪ {s}), where U ⊆ V . Let us denote for simplicity

LU :=
∑

a∈δoutA (U)

c(a)−
∑

a∈δinA (U)

d(a). (3.11)

Claim: For every U ⊆ V , we have that c′(δout(U ∪ {s})) = LU + d(A).
Proof of Claim: Let U ⊆ V . Then

c′(δout(U ∪ {s})) =
∑

a∈δout(U∪{s})

c′(a) =
∑
v/∈U

c′((s, v)) +
∑
v∈U

c′((v, t)) +
∑

a∈δoutA (U)

c′(a)

=
∑
v/∈U

d(δinA (v)) +
∑
v∈U

d(δoutA (v)) +
∑

a∈δoutA (U)

c(a)−
∑

a∈δoutA (U)

d(a)

= LU +

∑
v/∈U

d(δinA (v)) +
∑
v∈U

d(δoutA (v)) +
∑

a∈δinA (U)

d(a)−
∑

a∈δoutA (U)

d(a)

 .

Let us denote

S1 :=
∑
v/∈U

d(δinA (v)), S2 :=
∑
v∈U

d(δoutA (v)), S3 :=
∑

a∈δinA (U)

d(a) and S4 :=
∑

a∈δoutA (U)

d(a).

We have to prove that S1 + S2 + S3 − S4 = d(A) =
∑
a∈A

d(a). Let a = (u1, u2) ∈ A. We have

four cases:

(i) u1, u2 ∈ U . Then d(a) appears only in S2.

(ii) u1, u2 /∈ U . Then d(a) appears in S1.

(iii) u1 ∈ U , u2 /∈ U . Then d(a) appears in S1, S2, S4

(iv) u1 /∈ U , u2 ∈ U . Then d(a) appears in S3.

�
Since, by (3.10), LU ≥ 0 for all U ⊆ V , we have got that the capacity of any s-t cut in N
is at least d(A). Furthermore, c′(δout(s)) = d(A), hence there exists an s-t cut in N with
capacity d(A). The proof is concluded.

As a consequence of the proofs above, one has moreover

Corollary 3.6.4. If c and d are integer and there exists a feasible circulation f in D, then
there exists an integer-valued feasible circulation f ′.
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Chapter 4

Combinatorial applications

4.1 Menger’s Theorems

We assume that D = (V,A) is a digraph and s, t ∈ V . In this section we study the maximum
number of pairwise disjoint s-t paths in D. One of the central results is a min-max theorem
due to Menger [1927].
We give a proof of this result using networks flows and the Max-Flow Min-Cut Theorem. In
the sequel, N = (D, s, t) is a unit capacity network.

Proposition 4.1.1. Let k ∈ Z+.

(i) If N has an s-t {0, 1}-flow f with value(f) = k, then D has k arc-disjoint s-t paths.

(ii) If D has k arc-disjoint s-t paths, then N has an s-t {0, 1}-flow f with value(f) = k.

Proof. (i) Apply Proposition 3.4.2.

(ii) Let P1, . . . , Pk be k arc-disjoint s-t paths in D and take f := χP1 + . . .+ χPk . One can
easily see that f is an s-t {0, 1}-flow with value(f) = k (exercise!).

Corollary 4.1.2. The maximum number of arc-disjoint s-t paths in D coincides with the
value of the maximum flow in N .

Proof. Let M be the maximum number of arc-disjoint s-t paths and L be the value of the
maximum flow. We have that M ≤ L, by Proposition 4.1.1.(ii). By the Integrity Theorem
3.1.3, there exists an integer s-t flow f of maximum value L. Then f must be a {0, 1}-flow.
Apply now Proposition 4.1.1.(i) to conclude that L ≤M .

An immediate consequence of the previous corollary and of the Max-Flow Min-Cut Theorem
is Menger’s Theorem:

47
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Theorem 4.1.3 (Menger’s theorem (directed arc-disjoint version)). The maximum number
of arc-disjoint s-t-paths is equal to the minimum size of an s-t-cut.

In the sequel, we show how can we get other versions of Menger’s theorem.

Definition 4.1.4. A subset B ⊆ A is said to be an s-t disconnecting arc set if B intersects
each s-t path.

If B ⊆ A is an s-t disconnecting arc set, we also say simply that B is s-t disconnecting
or that B is s-t separating or that B disconnects or separates s and t or that B is an arc
separator for s and t (see [5, Section 7.1]).

Lemma 4.1.5. (i) Each s-t cut is an s-t disconnecting arc set.

(ii) Each s-t disconnecting arc set of minimum size is an s-t cut.

(iii) The minimum size of an s-t disconnecting arc set coincides with the minimum size of
an s-t cut.

Proof. Exercise.

As an immediate consequence of the previous proposition and Menger’s Theorem 4.1.3 we
get the following version:

Theorem 4.1.6. The maximum number of arc-disjoint s-t-paths is equal to the minimum
size of an s-t disconnecting arc set.

Another version of Menger’s Theorem is the variant on internally vertex-disjoint s-t-paths.

Definition 4.1.7. Two s-t-paths are internally vertex-disjoint if they have no inner vertex
in common.

Definition 4.1.8. A set U of vertices is called an s-t vertex-cut (or a vertex separator for
s and t) if s, t /∈ U and each s-t-path intersects U .

Theorem 4.1.9 (Menger’s theorem (directed internally vertex-disjoint version)).
Let s and t be two nonadjacent vertices of D. Then the maximum number of internally
vertex-disjoint s-t-paths is equal to the minimum size of an s-t vertex-cut.

Proof. Make a digraph D′ as follows from D: replace any vertex v ∈ V by two vertices
vin, vout and make an arc (vin, vout); moreover, replace each arc (u, v) by (uout, vin). Thus,

V (D′) = {vin, vout | v ∈ A} and A(D′) = {(vin, vout) | v ∈ V } ∪ {(uout, vin) | (u, v) ∈ A}.

Since s and t are nonadjacent, (sout, tin) /∈ A(D′).
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If P = sv1 . . . vkt is an s-t path in D, then

P ′ := soutvin1 v
out
1 vin2 v

out
2 . . . voutk−1v

in
k v

out
k tin

is an sout-tin path in D′. Furthermore, any sout-tin path in D′ is of the form P ′ for some s-t
path P in D.
Claim 1: Two s-t paths P,Q in D are internally vertex-disjoint if and only the sout-tin

paths P ′, Q′ in D′ are arc-disjoint.
Proof of Claim: ”⇒ ” Assume that P ′, Q′ have an arc a′ in common. Then a′ = (vin, vout)
or a′ = (vout, win). In both cases, we must have that v is a common vertex of P,Q.
”⇐ ” If P,Q have a common vertex v, then (vin, vout) is a common arc of P ′, Q′. �
For any U ⊆ V , let U ′ ⊆ A(D′) be defined by

U ′ := {(vin, vout) | v ∈ U}.

Then U and U ′ have the same size.
Claim 2: Let U ⊆ V \ {s, t}. Then U is an s-t vertex-cut in D if and only if U ′ is an
sout-tin disconnecting arc set in D′.
Proof of Claim: Remark that for any s-t path P in D and any v ∈ V, v 6= s, t, we have
that v ∈ P if and only if (vin, vout) ∈ P ′. �
Claim 3: There exists U ⊆ V \ {s, t} such that U ′ is an sout-tin disconnecting arc set of
minimum size.
Proof of Claim: If B ⊆ A(D′) is an sout-tin disconnecting arc set, remark that

(i) B′ = B \ {(sin, sout), (tin, tout)} continues to be an sout-tin disconnecting arc set.

(ii) if B contains the arc (uout, vin) and one of the arcs (uin, uout), (vin, vout) for some u, v ∈
V \ {s, t}, then B′ = B \ {(uout, vin)} continues to be an sout-tin disconnecting arc set.

(iii) if B contains both arcs (sout, vin), (vin, vout) for some v ∈ V \ {s, t}, then B′ = B \
{(sout, vin)} continues to be an sout-tin disconnecting arc set.

(iv) if B contains both arcs (uout, tin), (uin, uout) for some u ∈ V \ {s, t}, then B′ = B \
{(uout, tin)} continues to be an sout-tin disconnecting arc set.

Let B ⊆ A(D′) be an s-t disconnecting arc set of minimum size. Since B is minimal, we
have that (sin, sout), (tin, tout) /∈ B, by (i) above. If B contains an arc of the form (uout, vin),
then we replace it with

B′ :=

{
B \ {(uout, vin)} ∪ {(uin, uout)} if u 6= s.

B \ {(uout, vin)} ∪ {(vin, vout)} if u = s,
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which, by (ii)-(iv) above, is again an sout-tin disconnecting arc set and has the same size as
B. By applying repeatedly this procedure we get the claim. �
Claim 4: The minimum size of an s-t vertex-cut in D coincides with the minimum size of
an sout-tin disconnecting arc set in D′.
Proof of Claim: Let m1 be first minimum and m2 be the second minimum.
If U ⊆ V \ {s, t} is an s-t vertex-cut in D with |U | = m1, then, by Claim 2, we have that U ′

is an sout-tin disconnecting arc set with |U ′| = |U | = m1. Thus, m1 ≥ m2.
By Claim 3, there exists W ⊆ V \{s, t} such that W ′ is an sout-tin disconnecting arc set with
|W | = |W ′| = m2. Since, by Claim 2, W is an s-t vertex-cut in D, we get that m2 ≥ m1. �
Apply now Theorem 4.1.6 for D′, sout, tin to get the result.

4.2 Maximum matching in bipartite graphs (Supple-

mentary)

Let G = (V,E) be a graph. Let us recall that a matching in G is a set M ⊆ E of pairwise
disjoint edges and a vertex cover of G is a set of vertices intersecting each edge of G. A
maximum matching is a matching of maximum size and a minimum vertex cover is a vertex
cover of minimum size. Let us define

ν(G) := the maximum size of a matching in G,

τ(G) := the minimum size of a vertex cover in G.

These numbers are called the matching number and the vertex cover number of G, respec-
tively. One can easily see that, for any graph G,

Lemma 4.2.1. ν(G) ≤ τ(G).

Proof. Exercise.

However, if G is bipartite, equality holds, which is the content of König’s Matching Theorem
2.2.4. In Section 2, we gave a proof of this theorem using linear programming methods.
In the sequel, we give another proof using the directed internally vertex-disjoint version of
Menger’s Theorem.
For the rest of the section, we assume that G is a bipartite graph with classes X and Y .
Thus, X ∩ Y = ∅,X ∪ Y = V and E ⊆ {uv | u ∈ X, v ∈ Y }. We write also G = (X ∪ Y,E).
We associate to the bipartite graph G = (X ∪ Y,E) a unit capacity network N = (D, s, t)
as follows. Let s, t be new vertices and consider the digraph D = (V ∪ {s, t}, A), where

A = {(u, v) | uv ∈ E, u ∈ X, v ∈ Y } ∪ {(s, v) | v ∈ X} ∪ {(v, t) | v ∈ Y }.

Proposition 4.2.2. Let k ∈ Z+. The following are equivalent
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(i) N has an s-t {0, 1}-flow with value k

(ii) G has a matching of size k

(iii) D has k internally-vertex disjoint s-t paths.

Proof. ”(i) ⇒ (ii)” Let f be an s-t {0, 1}-flow with value(f) = k. Then there are exactly
k vertices u1, . . . , uk ∈ X such that f((s, ui)) = 1 for all i = 1, . . . , k. Furthermore, by the
flow conservation law and the fact that f is a {0, 1}-flow, we get that for every i there exists
a unique vi ∈ Y such that (ui, vi) is an arc in D with f((ui, vi)) = 1.
Claim: vi 6= vj for i 6= j.
Proof of Claim: Assume that there are i 6= j such that vi = vj = v. Then (ui, v), (uj, v) ∈
A, so inf (v) ≥ f((ui, v)) + f((uj, v)) ≥ 2, while outf (v) = f(v, t) ≤ 1. We have got a
contradiction. �
Take M := {uivi | i = 1, . . . , k}. Then M is a matching of size k.

”(ii)⇒(ii)” Let M = {uivi | i = 1, . . . , k} be a matching of size k. Let Pi := suivit for every
i = 1, . . . , k. Then P1, . . . , Pk are k internally-vertex disjoint s-t paths.

”(iii)⇒(i)” Let P1, . . . , Pk be internally-vertex disjoint s-t paths. Take f := χP1 + . . .+ χPk .
Then f is an s-t {0, 1}-flow with value(f) = k.

Proposition 4.2.3. ν(G) coincides with the maximum value of a flow in N .

Proof. Let F be the value of the maximum flow. We have that ν(G) ≤ F , by Proposition
4.2.2. By the Integrity Theorem 3.1.3, there exists an integer s-t flow f of maximum value F .
Then f must be a {0, 1}-flow. Apply now Proposition 4.2.2 to conclude that F ≤ ν(G).

Thus, we can apply the Ford-Fulkerson algorithm for the network N to find a maximum
matching in G.

Theorem 4.2.4 (König (1931)). If G is a bipartite graph, ν(G) = τ(G).

Proof. By Lemma 4.2.2, we have that ν(G) is equal to the maximum number of internally-
vertex disjoint s-t paths in D.
One can easily see that U ⊆ X ∪ Y is a vertex cover in G iff U intersects every uv ∈ E iff U
intersects every path P = suvt in D iff U is an s-t vertex cut in D.
Finally, apply Menger’s Theorem 4.1.9 to get the result.
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Appendix A

General notions

N,Z,Q, and R denote the sets of natural, integer, rational numbers, and real numbers,
respectively. The subscript + restricts the sets to the nonnegative numbers:

Z+ = {x ∈ Z | x ≥ 0} = N, Q+ = {x ∈ Q | x ≥ 0}, R+ = {x ∈ R | x ≥ 0}.

Furthermore, N∗ denotes the set of positive natural numbers, that is N∗ = N \ {0}.
If m,n ∈ Z+, we use sometimes the notations [m,n] := {m,m+ 1, . . . , n}, [n] := {1, . . . , n}.
We also write i = 1, . . . , n instead of i ∈ [n].

If X is a set, we denote by P(X) the collection of its subsets and by [X]2 the collection of
2-element subsets of X, i.e. [X]2 = {{x, y} | x, y ∈ X}.
If X is a finite set, the size of X or the cardinality of X, denoted by |X| is the number
of elements of X.

Let m,n ∈ N∗. We denote by Rm×n the set of m × n-matrices with entries from R. Let
A = (aij) ∈ Rm×n be a matrix. The transpose of A is denoted by AT . If i = 1, . . . ,m, we
denote by ai the ith row of A: ai = (ai,1, ai,2, . . . , ai,n). If I ⊆ {1, . . . ,m}, we write AI for
the submatrix of A consisting of the rows in I only. Thus, ai = A{i}. We denote by 0m,n
the zero matrix in Rm×n, by 0n the zero matrix in Rn×n and by In the identity matrix in Rn×n.

Let n ∈ N∗. All vectors in Rn are column vectors. Let

x =


x1
x2
...
xn

 = (x1, x2, . . . , xn)T ∈ Rn.

Then x is a matrix in Rn×1 and its transpose xT is a row vector, hence a matrix in R1×n.

1
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Furthermore, for I ⊆ {1, . . . ,m}, xI is the subvector of x consisting of the components with
indices in I. If a ∈ R, we denote by a the vector in Rn whose components are all equal to a.



Appendix B

Euclidean space Rn

The Euclidean space Rn is the n-dimensional real vector space with inner product

xTy =
n∑
i=1

xiyi.

We let

‖x‖ = (xTx)1/2 =

√√√√ n∑
i=1

x2i

denote the Euclidean norm of a vector x ∈ Rn.
For every i = 1, . . . , n, we denote by ei the ith unit vector in Rn. Thus, e1 = (1, 0, . . . , 0, 0), e2 =
(0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 0, 1).
For vectors x, y ∈ Rn we write x ≤ y whenever xi ≤ yi for i = 1, . . . , n. Similarly, x < y
whenever xi < yi for i = 1, . . . , n.
Let x, y ∈ Rn. We say that x, y are parallel if one of them is a scalar multiple of the other.

Proposition B.0.1 (Cauchy-Schwarz inequality). For all x, y ∈ Rn,

|xTy| ≤ ‖x‖‖y‖,

with equality if and only if x and y are parallel.

The (closed) line segment joining x and y is defined as

[x, y] = {λx+ (1− λ)y | λ ∈ [0, 1]}.

The open line segment joining x and y is defined as

(x, y) = {λx+ (1− λ)y | λ ∈ (0, 1)}.

3
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Definition B.0.2. A subset L ⊆ Rn is a line if there are x, r ∈ Rn with r 6= 0 such that

L = {x+ λr | λ ∈ R}.

We also say that L is a line through point x with direction vector r 6= 0 and denote it by
Lx,r.

Proposition B.0.3. A subset L ⊆ Rn is a line if and only if there are x, y ∈ Rn such that

L = {(1− λ)x+ λy | λ ∈ R}.

We also say that L is the line through two points x, y and denote it by xy.

Given r > 0 and x ∈ Rn, Br(x) = {y ∈ Rn | ‖x − y‖ < r} is the open ball with center
x and radius r and Br(x) = {y ∈ Rn | ‖x − y‖ ≤ r} is the closed ball with center x and
radius r.

Definition B.0.4. A subset X ⊆ Rn is bounded if there exists M > 0 such that ‖x‖ ≤ M
for all x ∈ X.



Appendix C

Linear algebra

Definition C.0.1. A nonempty set S ⊆ Rn is a (linear) subspace if λ1x1 + λ2x2 ∈ S
whenever x1, x2 ∈ S and λ1, λ2 ∈ R.

Let x1, . . . , xm be points in Rn. Any point x ∈ Rn of the form x =
m∑
i=1

λixi, with λi ∈ R for

each i = 1, . . . ,m, is a linear combination of x1, . . . , xm.

Definition C.0.2. The linear span of a subset X ⊆ Rn (denoted by span(X)) is the
intersection of all subspaces containing X.

If span(X) = Rn we say that X is a spanning set of Rn or that X spans Rn.

Proposition C.0.3. (i) span(∅) = {0}.

(ii) For every X ⊆ Rn, span(X) consists of all linear combinations of points in X.

(iii) S ⊆ Rn is a subspace if and only if S is closed under linear combinations if and only
S = span(S).

Definition C.0.4. A set of vectors X = {x1, . . . , xm} is linearly independent if

m∑
i=1

λixi = 0 implies λi = 0 for each i = 1, . . . ,m.

Is X is not linearly independent, we say that X is linearly dependent. We also say that
x1, . . . , xm are linearly (in)dependent.

Proposition C.0.5. Let X = {x1, . . . , xm} be a set of vectors in Rn. Then X is linearly
dependent if and only if at least one of the vectors xi can be written as a linear combination
of the other vectors in X.

5
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Definition C.0.6. Let S be a subspace of Rn. A subset B = {x1, . . . , xm} ⊆ S is a basis
of S if B spans S and B is linearly independent.

Proposition C.0.7. Let S be a subspace of Rn and B be a basis of S with |B| = m.

(i) Every vector in S can be written in a unique way as a linear combination of vectors in
B.

(ii) Every subset of S containing more than m vectors is linearly dependent.

(iii) Every other basis of S has m vectors.

Definition C.0.8. The dimension dim(S) of a subspace S of Rn is the number of vectors
in a basis of S.

Proposition C.0.9. Let S be a subspace of Rn.

(i) If S = {0}, then dim(S) = 0, since its basis is empty.

(ii) dim(S) ≥ 1 if and only if S 6= {0}.

(iii) If X = {x1, . . . , xm} ⊆ S is a linearly independent set, then m ≤ dim(S).

(iv) If X = {x1, . . . , xm} ⊆ S is a spanning set for S, then m ≥ dim(S).

Proposition C.0.10. Let S be a subspace of dimension m and X = {x1, . . . , xm} ⊆ S.
Then X is a basis of S if and only if X spans S if and only if X is linearly independent.

Proposition C.0.11. Suppose that U and V are subspaces of Rn such that U ⊆ V . Then

(i) dim(U) ≤ dim(V ).

(ii) dim(U) = dim(V ) if and only if U = V .

C.1 Matrices

Let A = (aij) ∈ Rm×n.

Definition C.1.1. The column space of A is the linear span of the set of its columns. The
column rank of A is the dimension of the column space, the number of linearly independent
columns.

Definition C.1.2. The row space of A is the linear span of the set of its rows. The row
rank of A is the dimension of the row space, the number of linearly independent rows.



C.1. MATRICES 7

Proposition C.1.3. The row rank and column rank of A are equal.

Proof. See [3, Theorem 3.11, p. 131].

Definition C.1.4. The rank of a matrix A, denoted by rank(A), is its row rank or column
rank.

The m× n matrix A has full row rank if its rank is m and it has full column rank if its
column rank is n.

Theorem C.1.5. Let us consider the homogeneous system Ax = 0 (with n unknowns and
m equations) and let S := {x ∈ Rn | Ax = 0} be its solution set. Then

(i) S is a linear subspace of Rn.

(ii) dim(S) = n− rank(A).

Proof. See [3, Theorem 3.13, p. 131].

Thus, the homogeneous system Ax = 0 has a unique solution (namely x = 0) if and only if
rank(A) = n.

Let b ∈ Rm and A | b be the matrix A augmented by b. Thus,

A | b =


a11 a12 . . . a1n b1
...
ai1 ai2 . . . ain bi
...
am1 am2 . . . amn bm


Theorem C.1.6. Let us consider the linear system Ax = b and let S := {x ∈ Rn | Ax = b}
be its solution set.

(i) S 6= ∅ if and only if rank(A) = rank(A | b).

(ii) If S 6= ∅ and x is a particular solution, then

S = x+ {x ∈ Rn | Ax = 0}.

(iii) The system has a unique solution if and only if rank(A) = rank(A | b) = n.

Proof. See, for example, [3, Section III.3].
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Appendix D

Affine sets

Definition D.0.1. A set A ⊆ Rn is affine if λ1x1 + λ2x2 ∈ A whenever x1, x2 ∈ A and
λ1, λ2 ∈ R satisfy λ1 + λ2 = 1.

Geometrically, this means that A contains the line through any pair of its points. Note that
by this definition the empty set is affine.

Example D.0.2. (i) A point is an affine set.

(ii) Any linear subspace is an affine set.

(iii) Any line is an affine set.

(iv) Another example of an affine set is P = {x + λ1r1 + λ2r2 | λ1, λ2 ∈ R} which is a
two-dimensional plane going through x and spanned by the nonzero vectors r1 and r2.

Definition D.0.3. We say that an affine set A is parallel to another affine set B if A =
B + x0 for some x0 ∈ Rn, i.e. A is a translate of B.

Proposition D.0.4. Let A be a nonempty subset of Rn. Then A is an affine set if and only
if A is parallel to a unique linear subspace S, i.e., A = S + x0 for some x0 ∈ A.

Proof. See [1, P.1.1, pag. 13].

Remark D.0.5. An affine set is a linear subspace if and only if it contains the origin.

Proof. To be done in the seminar.

Definition D.0.6. The dimension of a nonempty affine set A, denoted by dim(A), is the
dimension of the unique linear subspace parallel to A. By convention, dim(∅) = −1.

The maximal affine sets not equal to the whole space are of particular importance, these are
the hyperplanes. More precisely,

9
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Definition D.0.7. A hyperplane in Rn is an affine set of dimension n− 1.

Proposition D.0.8. Any hyperplane H ⊆ Rn may be represented by

H = {x ∈ Rn | aTx = β} for some nonzero a ∈ Rn and β ∈ R,

i.e. H is the solution set of a nontrivial linear equation. Furthermore, any set of this form is
a hyperplane. Finally, the equation in this representation is unique up to a scalar multiple.

Proof. See [1, P.1.2, pag. 13-14].

Definition D.0.9. A (closed) halfspace in Rn is the set of all points x ∈ Rn that satisfy
aTx ≤ β for some a ∈ Rn and β ∈ R.

We shall use the following notations

H=(a, β) = {x ∈ Rn | aTx = β}
H≤(a, β) = {x ∈ Rn | aTx ≤ β}
H≥(a, β) = {x ∈ Rn | aTx ≥ β}

Thus, each hyperplane H=(a, β) gives rise to a decomposition of the space in two halfspaces:

Affine sets are closely linked to systems of linear equations.

Proposition D.0.10. Let A ∈ Rm×n and b ∈ Rm. Then the solution set {x ∈ Rn | Ax = b}
of the system of linear equations Ax = b is an affine set. Furthermore, any affine set may
be represented in this way.

Proof. See [1, P.1.3, pag. 13-14].

Let x1, . . . , xm be points in Rn. An affine combination of x1, . . . , xm is a linear combination
m∑
i=1

λixi with the property that
m∑
i=1

λi = 1.

Definition D.0.11. The affine hull aff(X) of a subset X ⊆ Rn is the intersection of all
affine sets containing X.

Proposition D.0.12. (i) The affine hull aff(X) of a subset X ⊆ Rn consists of all affine
combinations of points in X.

(ii) A ⊆ Rn is affine if and only if A = aff(A).

Proof. See [1, P.1.4, pag. 16].

Definition D.0.13. The dimension dim(X) of a set X ⊆ Rn is the dimension of aff(X).



Appendix E

Convex sets

Definition E.0.1. A set C ⊆ Rn is called convex if it contains line segments between each
pair of its points, that is, if λ1x1 + λ2x2 ∈ C whenever x1, x2 ∈ C and λ1, λ2 ≥ 0 satisfy
λ1 + λ2 = 1.

Equivalently, C is convex if and only if (1 − λ)C + λC ⊆ C for every λ ∈ [0, 1]. Note that
by this definition the empty set is convex.

Example E.0.2. (i) All affine sets are convex, but the converse does not hold.

(ii) More generally, the solution set of a family (finite or infinite) of linear inequalities
aTi x ≤ bi, i ∈ I is a convex set.

(iii) The open ball B(a, r) and the closed ball B(a, r) are convex sets.

11
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Appendix F

Graph Theory

Our presentation follows [2] and [9, Chapter 3].

F.1 Graphs

Definition F.1.1. A graph is a pair G = (V,E) of sets such that E ⊆ [V ]2.

Thus, the elements of E are 2-element subsets of V . To avoid notational ambiguities, we
shall always assume tacitly that V ∩ E = ∅. The elements of V are the vertices (or
nodes or points) of G, the elements of E are its edges. The vertices of G are denoted
x, y, z, u, v, v1, v2, . . .. The edge {x, y} of G is also denoted [x, y] or xy.

Definition F.1.2. The order of a graph G, written as |G| is the number of vertices of G.
The number of its edges is denoted by ‖G‖.

Graphs are finite, infinite, countable and so on according to their order. The empty graph
(∅, ∅) is simply written ∅. A graph of order 0 or 1 is called trivial.

Convention: Unless otherwise stated, our graphs will be finite.
In the sequel, G = (V,E) is a graph.

A graph with vertex set V is said to be a graph on V . The vertex set of a graph G is
referred to as V (G), its edge set as E(G). We shall not always distinguish strictly between
a graph and its vertex or edge set. For example, we may speak of a vertex v ∈ G (rather
than v ∈ V (G)), an edge e ∈ G, and so on.
A vertex v is incident with an edge e if v ∈ e; then e is an edge at v. The set of all edges
in E at v is denoted by E(v). The ends of an edge e are the two vertices incident with e.
Two edges e 6= f are adjacent if they have an end in common.

13
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If e = xy ∈ E is an edge, we say that e joins its vertices x and y, that x and y are adjacent
(or neighbours), that x and y are the ends of the edge e.

If F is a subset of [V ]2, we use the notations G− F := (V,E \ F ) and G+ F := (V,E ∪ F ).
Then G− {e} and G+ {e} are abbreviated G− e and G+ e.

F.1.1 The degree of a vertex

Definition F.1.3. The degree (or valency) of a vertex v is the number |E(v)| of edges at
v and it is denoted by dG(v) or simply d(v).

A vertex of degree 0 is isolated, and a vertex of degree 1 is a terminal vertex. Obviously,
the degree of a vertex is equal to the number of neighbours of v.

Proposition F.1.4. The number of vertices of odd degree is always even.

F.1.2 Subgraphs

Definition F.1.5. Let G = (V,E) and G′ = (V ′, E ′) be two graphs.

(i) G′ is a subgraph of G, written G′ ⊆ G, if V ′ ⊆ V and E ′ ⊆ E. If G′ ⊆ G we also
say that G is a supergraph of G′ or that G′ is contained in G.

(ii) If G′ ⊆ G and G′ contains all the edges xy ∈ E with x, y ∈ V ′, then G′ is an induced
subgraph of G; we say that V ′ induces or spans G′ in G and write G′ = G[V ′].

(iii) If G′ ⊆ G, we say that G′ is a spanning subgraph of G if V ′ = V .

F.1.3 Paths, cycles

Definition F.1.6. A path is a nonempty graph P = (V (P ), E(P )) of the form

V (P ) = {x0, . . . , xk}, E(P ) = {x0x1, x1x2, . . . , xk−1xk},

where k ≥ 1 and the xi’s are all distinct.

The vertices x0 and xk are linked by P and are called its endvertices or ends; the vertices
x1, . . . , xk−1 are the inner vertices of P . The number of edges of a path is its length. The
path of length k is denoted P k.
We often refer to a path by the natural sequence of its vertices, writing P = x0x1 . . . xk and
saying that P is a path from x0 to xk (or between x0 and xk).
If a path P is a subgraph of a graph G = (V,E), we say that P is a path in G.



F.2. DIRECTED GRAPHS 15

Definition F.1.7. Let P = x0 . . . xk, k ≥ 2 be a path. The graph P +xkx0 is called a cycle.

As in the case of paths, we usually denote a cycle by its (cyclic) sequence of vertices: C =
x0 . . . xkx0. The length of a cycle is the number of its edges (or vertices). The cycle of
length k is said to be a k-cycle and denoted Ck.

F.2 Directed graphs

Definition F.2.1. A directed graph (or digraph) is a pair D = (V,A), where V is a
finite set and A is a multiset of ordered pairs from V .

Let us recall that a multiset (or bag) is a generalization of the notion of a set in which
members are allowed to appear more than once.
The elements of V are the vertices (or nodes or points) of D, the elements of A are its
arcs (or directed edges). The vertex set of a digraph D is referred to as V (D), its set of
arcs as A(D).
Since A is a multiset, the same pair of vertices may occur several times in A. A pair occurring
more than once in A is called a multiple arc, and the number of times it occurs is called
its multiplicity. Two arcs are called parallel if they are represented by the same ordered
pair of vertices. Also loops are allowed, that is, arcs of the form (v, v).

Definition F.2.2. Directed graphs without loops and multiple arcs are called simple, and
directed graphs without loops are called loopless.

Let a = (u, v) be an arc. We say that a connects u and v, that a leaves u and enters
v; u and v are called the ends of a, u is called the tail of a and v is called the head of
a. If there exists an arc connecting vertices u and v, then u and v are called adjacent or
connected. If there exists an arc (u, v), then v is called an outneighbour of u, and u is
called an inneighbour of v.

Each directed graph D = (V,A) gives rise to an underlying (undirected) graph, which
is the graph G = (V,E) obtained by ignoring the orientation of the arcs:

E = {{u, v} | (u, v) ∈ A}.

If G is the underlying (undirected) graph of a digraph D, we call D an orientation of G.
Terminology from undirected graphs is often transfered to directed graphs.

For any arc a = (u, v) ∈ A, we denote a−1 := (v, u) and define A−1 := {a−1 | a ∈ A}. The
reverse digraph D−1 is defined by D−1 = (V,A−1).
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For any vertex v, we denote

δinA (v) := δin(v) := the set of arcs entering v,

δoutA (v) := δout(v) := the set of arcs leaving v.

Definition F.2.3. The indegree degin(v) of a vertex v is the number of arcs entering v, i.e.
|δin(v)|. The outdegree degout(v) of a vertex v is the number of arcs leaving v, i.e. |δout(v)|.

For any U ⊆ V , we denote
δinA (U) := δin(U) := the set of arcs entering U , i.e. the set of arcs with head in U

and tail in V \ U ,

δoutA (U) := δout(U) := the set of arcs leaving U , i.e. the set of arcs with head in V \ U
and tail in U .

F.2.1 Subgraphs

One can define the concept of subgraph as for graphs.
Two subgraphs of D are

(i) vertex-disjoint if they have no vertex in common;

(ii) arc-disjoint if they have no arc in common.

In general, we say that a family of k subgraphs (k ≥ 3) is (vertex, arc)-disjoint if the k
subgraphs are pairwise (vertex, arc)-disjoint, i.e. every two subgraphs from the family are
(vertex, arc)-disjoint.

F.2.2 Paths, circuits, walks

Definition F.2.4. A (directed) path is a digraph P = (V (P ), A(P )) of the form

V = {v0, . . . , vk}, E = {(v0, v1), (v1, v2), . . . , (vk−1, vk)},

where k ≥ 1 and the vi’s are all distinct.

The vertices v0 and vk are called the endvertices or ends of P ; the vertices v1, . . . , vk−1 are
the inner vertices of P . The number of edges of a path is its length.
We often refer to a path by the natural sequence of its vertices, writing P = v0v1 . . . vk and
saying that P is a path from v0 to vk or that the path P runs from v0 to vk.
If a path P is a subgraph of a digraph D = (V,A), we say that P is a path in G.

Notation F.2.5. We denote by P−1 := (V (P ), E(P )−1).
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Definition F.2.6. Let P = v0 . . . vk, k ≥ 1 be a path. The graph

P + (vk, v0) = ({v0, . . . , vk}, {(v0, v1), (v1, v2), . . . , (vk−1, vk), (vk, v0)}

is called a circuit.

As in the case of paths, we usually denote a circuit by its (cyclic) sequence of vertices:
C = v0 . . . vkv0. The length of a circuit is the number of its edges (or vertices). The circuit
of length k is said to be a k-circuit and denoted Ck.

Definition F.2.7. A walk in D is a nonempty alternating sequence v0a0v1a1 . . . ak−1vk of
vertices and arcs of D such that ai = (v1, vi+1) for all i = 0, . . . , k − 1. If v0 = vk, the walk
is closed.

Let D = (V,A) be a digraph. For s, t ∈ V , a path in D is said to be an s-t path if it runs
from s to t, and for S, T ⊆ V , an S-T path is a path in D that runs from a vertex in S to a
vertex in T . A vertex v ∈ V is called reachable from a vertex s ∈ V (or from a set S ⊆ V )
if there exists an s-t path (or S-t path).
Two s-t-paths are internally vertex-disjoint if they have no inner vertex in common.

Definition F.2.8. A set U of vertices is

(i) S-T disconnecting if U intersects each S-T -path.

(ii) an s-t vertex-cut if s, t /∈ U and each s-t-path intersects U .

We say that v0a0v1a1 . . . ak−1vk is a walk of length k from v0 to vk or between v0 and vk. If
all vertices in a walk are distinct, then the walk defines obviously a path in D.
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