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Seminar 1

(S1.1) Any polyhedron is a convex set.

Proof. Let P = {x ∈ Rn | Ax ≤ b} be a polyhedron, where A ∈ Rm×n and b ∈ Rm. Assume
that x, y ∈ P and λ1, λ2 ≥ 0 are such that λ1 + λ2 = 1. We get that

A(λ1x+ λ2y) = λ1Ax+ λ2Ay ≤ λ1b+ λ2b = b,

hence λ1x1 + λ2x2 ∈ P . It follows that P is convex.

(S1.2) Prove that

(i) Affine sets are polyhedra.

(ii) Singletons are polyhedra of dimension 0.

(iii) Lines are polyhedra of dimension 1.

(iv) The unit cube C3 = {x ∈ R3 | 0 ≤ xi ≤ 1 for all i = 1, 2, 3} in R3 is a full-dimensional
polyhedron.

Proof. (i) Let D be an affine set. By Proposition D.0.10, we have that D = {x ∈ Rn |
Ax = b}, with A ∈ Rm×n and b ∈ Rm. Then

D = {x ∈ Rn | Ax ≤ b and − Ax ≤ −b} =

{
x ∈ Rn |

(
A
−A

)
x ≤

(
b
−b

)}
.

Thus, D is a polyhedron.

(ii) Let b ∈ Rn. Then {b} = b+ {0}, hence {b} is an affine set of dimension 0.

(iii) Let x0, r ∈ Rn, r 6= 0 and Lx0,r be the line through x0 with direction vector r. Since
Lx0,r is affine, it is a polyhedron too. Furthermore, Lx0,r = x0 + span(r), hence Lx0,r is
an affine set of dimension 1.
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(iv) We have that x ∈ C3 if and only if x is a solution of the system x ≤ 1,−x ≤ 0. Thus,
C3 is a polyhedron. Since 0 ∈ C3 ⊆ aff(C3), it follows that aff(C3) is a linear space.
Since e1, e2, e3 ∈ C3 ⊆ aff(C3), we get that dim(aff(C3)) = 3.

(S1.3) [Farkas lemma - variant] The system Ax = b has a solution x ≥ 0 if and only if
yT b ≥ 0 for each y ∈ Rm with yTA ≥ 0T .

Proof. Farkas Lemma has the logical form ¬P ↔ ∃y(Q(y) ∧R(y)), where

P ≡ ∃x(Ax = b ∧ x ≥ 0), Q(y) ≡ yTA ≥ 0T , R(y) ≡ yT b < 0.

It follows that

P ↔ ¬∃y(Q(y) ∧R(y))↔ ∀y¬(Q(y) ∧R(y)))↔ ∀y(¬Q(y) ∨ ¬R(y))

↔ ∀y(Q(y)→ ¬R(y)).

(S1.4) [Farkas lemma - variant] The system Ax ≤ b has a solution if and only if yT b ≥ 0 for
each y ≥ 0 with yTA = 0T .

Proof. Theorem of the Alternatives has the logical form ¬P ↔ ∃y(Q(y) ∧R(y)), where

P ≡ ∃x(Ax ≤ b), Q(y) ≡ y ≥ 0 ∧ yTA = 0T , R(y) ≡ yT b < 0.

It follows that

P ↔ ¬¬P ↔ ¬∃y(Q(y) ∧R(y))↔ ∀y¬(Q(y) ∧R(y)))↔ ∀y(¬Q(y) ∨ ¬R(y))

↔ ∀y(Q(y)→ ¬R(y)).
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