FMI, CS, Master I
Techniques of Combinatorial
Optimization
Laurenţiu Leuştean

Seminar 1

(S1.1) Any polyhedron is a convex set.
Proof. Let $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ be a polyhedron, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Assume that $x, y \in P$ and $\lambda_{1}, \lambda_{2} \geq 0$ are such that $\lambda_{1}+\lambda_{2}=1$. We get that

$$
A\left(\lambda_{1} x+\lambda_{2} y\right)=\lambda_{1} A x+\lambda_{2} A y \leq \lambda_{1} b+\lambda_{2} b=b
$$

hence $\lambda_{1} x_{1}+\lambda_{2} x_{2} \in P$. It follows that P is convex.
(S1.2) Prove that
(i) Affine sets are polyhedra.
(ii) Singletons are polyhedra of dimension 0 .
(iii) Lines are polyhedra of dimension 1.
(iv) The unit cube $C_{3}=\left\{x \in \mathbb{R}^{3} \mid 0 \leq x_{i} \leq 1\right.$ for all $\left.i=1,2,3\right\}$ in \mathbb{R}^{3} is a full-dimensional polyhedron.

Proof. (i) Let D be an affine set. By Proposition D.0.10, we have that $D=\left\{x \in \mathbb{R}^{n} \mid\right.$ $A x=b\}$, with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Then

$$
D=\left\{x \in \mathbb{R}^{n} \mid A x \leq b \text { and }-A x \leq-b\right\}=\left\{x \in \mathbb{R}^{n} \left\lvert\,\binom{ A}{-A} x \leq\binom{ b}{-b}\right.\right\} .
$$

Thus, D is a polyhedron.
(ii) Let $b \in \mathbb{R}^{n}$. Then $\{b\}=b+\{0\}$, hence $\{b\}$ is an affine set of dimension 0 .
(iii) Let $x_{0}, r \in \mathbb{R}^{n}, r \neq 0$ and $L_{x_{0}, r}$ be the line through x_{0} with direction vector r. Since $L_{x_{0}, r}$ is affine, it is a polyhedron too. Furthermore, $L_{x_{0}, r}=x_{0}+\operatorname{span}(r)$, hence $L_{x_{0}, r}$ is an affine set of dimension 1 .
(iv) We have that $x \in C_{3}$ if and only if x is a solution of the system $x \leq \mathbf{1},-x \leq \mathbf{0}$. Thus, C_{3} is a polyhedron. Since $0 \in C_{3} \subseteq \operatorname{aff}\left(C_{3}\right)$, it follows that $\operatorname{aff}\left(C_{3}\right)$ is a linear space. Since $e_{1}, e_{2}, e_{3} \in C_{3} \subseteq \operatorname{aff}\left(C_{3}\right)$, we get that $\operatorname{dim}\left(\operatorname{aff}\left(C_{3}\right)\right)=3$.
(S1.3) [Farkas lemma - variant] The system $A x=b$ has a solution $x \geq \mathbf{0}$ if and only if $y^{T} b \geq 0$ for each $y \in \mathbb{R}^{m}$ with $y^{T} A \geq \mathbf{0}^{T}$.

Proof. Farkas Lemma has the logical form $\neg P \leftrightarrow \exists y(Q(y) \wedge R(y))$, where

$$
P \equiv \exists x(A x=b \wedge x \geq \mathbf{0}), Q(y) \equiv y^{T} A \geq \mathbf{0}^{T}, R(y) \equiv y^{T} b<0
$$

It follows that

$$
\begin{aligned}
P & \leftrightarrow \neg \exists y(Q(y) \wedge R(y)) \leftrightarrow \forall y \neg(Q(y) \wedge R(y))) \leftrightarrow \forall y(\neg Q(y) \vee \neg R(y)) \\
& \leftrightarrow \forall y(Q(y) \rightarrow \neg R(y)) .
\end{aligned}
$$

(S1.4) [Farkas lemma - variant] The system $A x \leq b$ has a solution if and only if $y^{T} b \geq 0$ for each $y \geq \mathbf{0}$ with $y^{T} A=\mathbf{0}^{T}$.

Proof. Theorem of the Alternatives has the logical form $\neg P \leftrightarrow \exists y(Q(y) \wedge R(y))$, where

$$
P \equiv \exists x(A x \leq b), Q(y) \equiv y \geq \mathbf{0} \wedge y^{T} A=\mathbf{0}^{T}, R(y) \equiv y^{T} b<0
$$

It follows that

$$
\begin{aligned}
P & \leftrightarrow \neg \neg P \leftrightarrow \neg \exists y(Q(y) \wedge R(y)) \leftrightarrow \forall y \neg(Q(y) \wedge R(y))) \leftrightarrow \forall y(\neg Q(y) \vee \neg R(y)) \\
& \leftrightarrow \forall y(Q(y) \rightarrow \neg R(y)) .
\end{aligned}
$$

