FMI, CS, Master I
Techniques of Combinatorial
Optimization
Laurenţiu Leuştean

Seminar 1

(S1.1) Any polyhedron is a convex set.
(S1.2) Prove that
(i) Affine sets are polyhedra.
(ii) Singletons are polyhedra of dimension 0 .
(iii) Lines are polyhedra of dimension 1.
(iv) The unit cube $C_{3}=\left\{x \in \mathbb{R}^{3} \mid 0 \leq x_{i} \leq 1\right.$ for all $\left.i=1,2,3\right\}$ in \mathbb{R}^{3} is a full-dimensional polyhedron.
(S1.3) [Farkas lemma - variant] The system $A x=b$ has a solution $x \geq \mathbf{0}$ if and only if $y^{T} b \geq 0$ for each $y \in \mathbb{R}^{m}$ with $y^{T} A \geq \mathbf{0}^{T}$.
(S1.4) [Farkas lemma - variant] The system $A x \leq b$ has a solution if and only if $y^{T} b \geq 0$ for each $y \geq \mathbf{0}$ with $y^{T} A=\mathbf{0}^{T}$.

