FMI, CS, Master I Techniques of Combinatorial Optimization Laurențiu Leuștean

Seminar 1

(S1.1) Any polyhedron is a convex set.

(S1.2) Prove that

- (i) Affine sets are polyhedra.
- (ii) Singletons are polyhedra of dimension 0.
- (iii) Lines are polyhedra of dimension 1.
- (iv) The unit cube $C_3 = \{x \in \mathbb{R}^3 \mid 0 \le x_i \le 1 \text{ for all } i = 1, 2, 3\}$ in \mathbb{R}^3 is a full-dimensional polyhedron.

(S1.3) [Farkas lemma - variant] The system Ax = b has a solution $x \ge 0$ if and only if $y^T b \ge 0$ for each $y \in \mathbb{R}^m$ with $y^T A \ge \mathbf{0}^T$.

(S1.4) [Farkas lemma - variant] The system $Ax \leq b$ has a solution if and only if $y^T b \geq 0$ for each $y \geq \mathbf{0}$ with $y^T A = \mathbf{0}^T$.