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(S2.1) Let A ∈ Rm×n, b ∈ Rm and c ∈ Rn. Then

max{cTx | x ≥ 0, Ax ≤ b} = min{bTy | y ≥ 0, yTA ≥ cT}.

(assuming both sets are nonempty).

Proof. Remark that

{x ∈ Rn | x ≥ 0, Ax ≤ b} = {x ∈ Rn | Cx ≤ d},

where C =

(
−In
A

)
∈ R(n+m)×n and d =

(
0
b

)
∈ Rn+m.

Hence, max{cTx | x ≥ 0, Ax ≤ b} is the primal problem

(P ) max{cTx | Cx ≤ d}.

The dual problem associated to (P) is

(D) min{dT z | z ≥ 0, zTC = cT}.

It suffices to prove that

min{dT z | z ≥ 0, zTC = cT} = min{bTy | y ≥ 0, yTA ≥ cT}.

Let P1 := {z ∈ Rn+m | z ≥ 0, zTC = cT} and P2 := {y ∈ Rm | y ≥ 0, yTA ≥ cT}. We
shall prove that {dT z | z ∈ P1} = {bTy | y ∈ P2}. We do this by showing that

(i) for all z ∈ P1 there exists y ∈ P2 such that dT z = bTy.

(ii) for all y ∈ P2 there exists z ∈ P1 such that dT z = bTy.
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Let z ∈ P1 Then z =

(
u
y

)
, where u ∈ Rn, y ∈ Rm, u ≥ 0, y ≥ 0 and

cT = zTC = zT
(
−In
A

)
= uT (−In) + yTA = yTA− uT .

Thus, y ≥ 0 and yTA = cT + uT ≥ cT , hence y ∈ P2. Moreover, dT z = (0T , bT )

(
u
y

)
= bTy.

Let now y ∈ P2 and take z :=

(
u
y

)
, where uT := yTA − cT ≥ 0. Then z ∈ P1 and

dT z = bTy.

(S2.2) Let A ∈ Rm×n be a TU matrix, let b ∈ Zm and c ∈ Zn. Assume that the primal LP
max{cTx | Ax ≤ b} and dual LP min{bTy | y ≥ 0, yTA = cT} are bounded. Then they have
integer optimal solutions.

Proof. By strong duality (Theorem 1.4.3 ), we have that

max{cTx | Ax ≤ b} = min{bTy | y ≥ 0, yTA = cT}.

By Theorem 1.8.3, P = {x | Ax ≤ b} is integer, so we can apply Theorem 1.7.3 to conclude
that max{cTx | Ax ≤ b} has an integer optimal solution x∗. Remark now that the dual LP

min{bTy | y ≥ 0, yTA = cT} = min{bTy | y ≥ 0, ATy = c}
= min{bTy | Cy ≤ d} = −max{(−b)Ty | Cy ≤ d},

where C =

−ImAT

−AT

 and d =

 0
c
−c

. Since C is obtained from A by using operations

that preserve the TU property, C is also a TU matrix. As d is an integer vector, the dual
polyhedron is integer and the dual LP has an integer optimal solution.

(S2.3) Let A ∈ Rm×n be a TU matrix, let b, b′, d, d′ be vectors in (Z ∪ {−∞,+∞})m with
b ≤ b′ and d ≤ d′. Then

P = {x ∈ Rn | b ≤ Ax ≤ b′, d ≤ x ≤ d′}

is an integer polyhedron.
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Proof. We have that P = {x ∈ Rn | Cx ≤ c}, where

C =


A
−A
Im
−Im

 , c =


b′

−b
d′

−d

 .

Whenever a component of b, b′, d, d′ is ±∞, the corresponding constraint is dropped. Let C ′

and c′ be obtained after dropping these constraints. Then P = {x ∈ Rn | C ′x ≤ c′}We have
that C is TU as it is obtained from A by TU preserving operations and C ′ is a submatrix of
C, hence C ′ is TU too. Since c′ is integer, we can apply Theorem 1.8.3 to conclude that P
is integer.
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