FMI, CS, Master I

Techniques of Combinatorial
Optimization
Laurenţiu Leuştean

Seminar 2

(S2.1) Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$. Then

$$
\max \left\{c^{T} x \mid x \geq \mathbf{0}, A x \leq b\right\}=\min \left\{b^{T} y \mid y \geq \mathbf{0}, y^{T} A \geq c^{T}\right\}
$$

(assuming both sets are nonempty).
Proof. Remark that

$$
\left\{x \in \mathbb{R}^{n} \mid x \geq \mathbf{0}, A x \leq b\right\}=\left\{x \in \mathbb{R}^{n} \mid C x \leq d\right\}
$$

where $C=\binom{-I_{n}}{A} \in \mathbb{R}^{(n+m) \times n}$ and $d=\binom{\mathbf{0}}{b} \in \mathbb{R}^{n+m}$.
Hence, $\max \left\{c^{T} x \mid x \geq \mathbf{0}, A x \leq b\right\}$ is the primal problem

$$
(P) \quad \max \left\{c^{T} x \mid C x \leq d\right\}
$$

The dual problem associated to (P) is

$$
(D) \quad \min \left\{d^{T} z \mid z \geq \mathbf{0}, z^{T} C=c^{T}\right\}
$$

It suffices to prove that

$$
\min \left\{d^{T} z \mid z \geq \mathbf{0}, z^{T} C=c^{T}\right\}=\min \left\{b^{T} y \mid y \geq \mathbf{0}, y^{T} A \geq c^{T}\right\}
$$

Let $P_{1}:=\left\{z \in \mathbb{R}^{n+m} \mid z \geq \mathbf{0}, z^{T} C=c^{T}\right\}$ and $P_{2}:=\left\{y \in \mathbb{R}^{m} \mid y \geq \mathbf{0}, y^{T} A \geq c^{T}\right\}$. We shall prove that $\left\{d^{T} z \mid z \in P_{1}\right\}=\left\{b^{T} y \mid y \in P_{2}\right\}$. We do this by showing that
(i) for all $z \in P_{1}$ there exists $y \in P_{2}$ such that $d^{T} z=b^{T} y$.
(ii) for all $y \in P_{2}$ there exists $z \in P_{1}$ such that $d^{T} z=b^{T} y$.

Let $z \in P_{1}$ Then $z=\binom{u}{y}$, where $u \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}, u \geq \mathbf{0}, y \geq \mathbf{0}$ and

$$
c^{T}=z^{T} C=z^{T}\binom{-I_{n}}{A}=u^{T}\left(-I_{n}\right)+y^{T} A=y^{T} A-u^{T} .
$$

Thus, $y \geq \mathbf{0}$ and $y^{T} A=c^{T}+u^{T} \geq c^{T}$, hence $y \in P_{2}$. Moreover, $d^{T} z=\left(\mathbf{0}^{T}, b^{T}\right)\binom{u}{y}=b^{T} y$.
Let now $y \in P_{2}$ and take $z:=\binom{u}{y}$, where $u^{T}:=y^{T} A-c^{T} \geq 0$. Then $z \in P_{1}$ and $d^{T} z=b^{T} y$.
(S2.2) Let $A \in \mathbb{R}^{m \times n}$ be a TU matrix, let $b \in \mathbb{Z}^{m}$ and $c \in \mathbb{Z}^{n}$. Assume that the primal LP $\max \left\{c^{T} x \mid A x \leq b\right\}$ and dual LP $\min \left\{b^{T} y \mid y \geq \mathbf{0}, y^{T} A=c^{T}\right\}$ are bounded. Then they have integer optimal solutions.

Proof. By strong duality (Theorem 1.4.3), we have that

$$
\max \left\{c^{T} x \mid A x \leq b\right\}=\min \left\{b^{T} y \mid y \geq \mathbf{0}, y^{T} A=c^{T}\right\}
$$

By Theorem 1.8.3, $P=\{x \mid A x \leq b\}$ is integer, so we can apply Theorem 1.7.3 to conclude that $\max \left\{c^{T} x \mid A x \leq b\right\}$ has an integer optimal solution x^{*}. Remark now that the dual LP

$$
\begin{aligned}
\min \left\{b^{T} y \mid y \geq \mathbf{0}, y^{T} A=c^{T}\right\} & =\min \left\{b^{T} y \mid y \geq \mathbf{0}, A^{T} y=c\right\} \\
& =\min \left\{b^{T} y \mid C y \leq d\right\}=-\max \left\{(-b)^{T} y \mid C y \leq d\right\}
\end{aligned}
$$

where $C=\left(\begin{array}{c}-I_{m} \\ A^{T} \\ -A^{T}\end{array}\right)$ and $d=\left(\begin{array}{c}0 \\ c \\ -c\end{array}\right)$. Since C is obtained from A by using operations that preserve the TU property, C is also a TU matrix. As d is an integer vector, the dual polyhedron is integer and the dual LP has an integer optimal solution.
(S2.3) Let $A \in \mathbb{R}^{m \times n}$ be a TU matrix, let $b, b^{\prime}, d, d^{\prime}$ be vectors in $(\mathbb{Z} \cup\{-\infty,+\infty\})^{m}$ with $b \leq b^{\prime}$ and $d \leq d^{\prime}$. Then

$$
P=\left\{x \in \mathbb{R}^{n} \mid b \leq A x \leq b^{\prime}, d \leq x \leq d^{\prime}\right\}
$$

is an integer polyhedron.

Proof. We have that $P=\left\{x \in \mathbb{R}^{n} \mid C x \leq c\right\}$, where

$$
C=\left(\begin{array}{c}
A \\
-A \\
I_{m} \\
-I_{m}
\end{array}\right), \quad c=\left(\begin{array}{c}
b^{\prime} \\
-b \\
d^{\prime} \\
-d
\end{array}\right) .
$$

Whenever a component of $b, b^{\prime}, d, d^{\prime}$ is $\pm \infty$, the corresponding constraint is dropped. Let C^{\prime} and c^{\prime} be obtained after dropping these constraints. Then $P=\left\{x \in \mathbb{R}^{n} \mid C^{\prime} x \leq c^{\prime}\right\}$ We have that C is TU as it is obtained from A by TU preserving operations and C^{\prime} is a submatrix of C, hence C^{\prime} is TU too. Since c^{\prime} is integer, we can apply Theorem 1.8.3 to conclude that P is integer.

