FMI, CS, Master I
Techniques of Combinatorial
Optimization
Laurenţiu Leuştean

Seminar 2

(S2.1) Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$. Then

$$
\max \left\{c^{T} x \mid x \geq \mathbf{0}, A x \leq b\right\}=\min \left\{b^{T} y \mid y \geq \mathbf{0}, y^{T} A \geq c^{T}\right\}
$$

(assuming both sets are nonempty).
(S2.2) Let $A \in \mathbb{R}^{m \times n}$ be a TU matrix, let $b \in \mathbb{Z}^{m}$ and $c \in \mathbb{Z}^{n}$. Assume that the primal LP $\max \left\{c^{T} x \mid A x \leq b\right\}$ and dual LP $\min \left\{b^{T} y \mid y \geq \mathbf{0}, y^{T} A=c^{T}\right\}$ are bounded. Then they have integer optimal solutions.
(S2.3) Let $A \in \mathbb{R}^{m \times n}$ be a TU matrix, let $b, b^{\prime}, d, d^{\prime}$ be vectors in $(\mathbb{Z} \cup\{-\infty,+\infty\})^{m}$ with $b \leq b^{\prime}$ and $d \leq d^{\prime}$. Then

$$
P=\left\{x \in \mathbb{R}^{n} \mid b \leq A x \leq b^{\prime}, d \leq x \leq d^{\prime}\right\}
$$

is an integer polyhedron.

