FMI, CS, Master I

Techniques of Combinatorial
Optimization
Laurenţiu Leuştean

Seminar 3

(S3.1) Let G be the complete graph K_{3} on three vertices. Prove that its incidence matrix is not totally unimodular.
(S3.2) Let A be the incidence matrix of a cycle of length 5 . Prove that A is a square matrix and compute its determinant.
(S3.3) Verify if the following matrices are totally unimodular:

$$
A=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right) \quad B=\left(\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

(S3.4) Let G be a graph. Prove that

$$
\max \{|M| \mid M \text { is a matching of } G\} \leq \min \{|S| \mid S \text { is a vertex cover of } G\} .
$$

Show that the complete graph K_{3} is an example of a graph where strict inequality holds.
(S3.5) Let $G=(V, E)$ be a bipartite graph and $w: E \rightarrow \mathbb{N}$ be a weight function. The maximum weight of a matching in G is equal to the minimum value of $\sum_{v \in V} y_{v}$, where y ranges over all functions $y: V \rightarrow \mathbb{N}$ such that $y_{u}+y_{v} \geq w(e)$ for each edge $e=u v$ of G.

