FMI, CS, Master I
Techniques of Combinatorial
Optimization
Laurenţiu Leuştean

Seminar 4

(S4.1) Figure 1 represents a flow network $N=(D, c, s, t)$.

Figure 1: The flow network N

Write the corresponding digraph D and the capacity function c.
Proof. We have that $D=(V, A)$, where $V=\{1,2,3,4,5,6\}$ and

$$
A=\{(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(4,5),(4,6),(5,6)\}
$$

Furthermore, $c: A \rightarrow \mathbb{Z}_{+}, c(1,2)=7, c(1,3)=8, c(2,4)=5, c(2,3)=c(4,5)=$ $4, c(3,4)=c(3,5)=3, c(4,6)=6, c(5,6)=9$.
(S4.2) Find vectors b, d and a matrix B such that

$$
\max \{\operatorname{value}(f) \mid f \text { is an } s-t \text { flow for } N\}=\max \left\{d^{T} f \mid B f \leq b\right\}
$$

Proof. Let M be the incidence matrix of D and for every $i=1, \ldots, 6$, let us denote by \mathbf{m}_{i} the i-th line of M. Let M_{0} be the matrix obtained from M by deleting the lines \mathbf{m}_{1} and \mathbf{m}_{6}. Thus,

$$
\left.\begin{array}{rl}
\\
M=\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array}\left(\begin{array}{ccccccccc}
(1,2) & (1,3) & (2,3) & (2,4) & (3,4) & (3,5) & (4,5) & (4,6) & (5,6) \\
-1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & -1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right), \\
M_{0}= & \begin{array}{c}
(1,2) \\
2 \\
3 \\
4 \\
5
\end{array}\left(\begin{array}{cccccccc}
1 & 0 & -1 & 3,3) & (2,4) & (3,4) & (3,5) & (4,5) \\
0 & 1 & -1 & (4,6) & (5,6) \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)-1
\end{array}\right) .
$$

Then (see Section 3.1.1 in the lecture notes),

$$
\begin{aligned}
\max \{\operatorname{value}(f) \mid f \text { is an } s-t \text { flow }\} & =\max \left\{\mathbf{m}_{6} f \mid M_{0} f=\mathbf{0}, \mathbf{0} \leq f \leq c\right\} \\
& =\max \left\{d^{T} f \mid B f \leq b\right\},
\end{aligned}
$$

where

$$
d=\mathbf{m}_{6}^{T}, \quad B=\left(\begin{array}{c}
M_{0} \\
-M_{0} \\
I \\
-I
\end{array}\right), \quad b=\left(\begin{array}{c}
\mathbf{0} \\
\mathbf{0} \\
c \\
\mathbf{0}
\end{array}\right) .
$$

(S4.3) Figure 2 represents an s - t flow f for the network N.
(i) Verify that f is an s - t flow. What is the value of f ?
(ii) Show that the set $\{(2,4),(3,4),(3,5)\}$ is an s - t cut and compute its capacity.
(iii) Prove that f is a maximum flow.

Proof. (i) $f: A \rightarrow \mathbb{Z}_{+}$is defined by $f(1,2)=7, f(1,3)=4, f(2,3)=f(4,5)=2, f(3,4)=$ $f(3,5)=3, f(2,4)=f(5,6)=5, f(4,6)=6$. It is obvious that $0 \leq f \leq c$. It remains to verify the flow conservation law at every vertex $v \neq 1,6$:

Figure 2: The flow network N with the flow f
(a) $v=2$. in $_{f}(2)=7$, out $_{f}(2)=2+5=7$
(b) $v=3 . i i_{f}(3)=2+4=6$, out $_{f}(3)=3+3=6$
(c) $v=4$. in $_{f}(4)=5+3=8$, out $_{f}(4)=2+6=8$
(d) $v=5$. in $_{f}(5)=3+2=5$, out $_{f}(5)=5$.

We have that value $(f)=$ out $_{f}(s)-$ in $_{f}(s)=$ out $_{f}(s)=7+4=11$.
(ii) Let $U=\{1,2,3\}$, hence $s \in U$, but $t \notin U$. We have that $\delta^{\text {out }}(U)=\{(2,4),(3,4),(3,5)\}$ and its capacity is $c\left(\delta^{\text {out }}(U)\right)=5+3+3=11$.
(iii) Since $\operatorname{value}(f)=c\left(\delta^{\text {out }}(U)\right)$, we can apply Corollary 3.0.9 to conclude that f is a maximum flow.
(S4.4) Let $N=(D, c, s, t)$ be a flow network and $f: A \rightarrow \mathbb{R}$ be an s - t flow. Prove that the value of f is equal to the net amount of flow entering t, that is prove that

$$
\operatorname{value}(f)=f\left(\delta^{\text {in }}(t)\right)-f\left(\delta^{\text {out }}(t)\right.
$$

Proof. Applying Lemma 3.0.7 and the flow conservation law for $v \neq s, t$ we get that

$$
\begin{aligned}
0 & =\operatorname{excess}_{f}(V)=\sum_{v \in V} \operatorname{excess}_{f}(v)=\sum_{v \in V \backslash\{s, t\}} \operatorname{excess}_{f}(v)+\operatorname{excess}_{f}(s)+\operatorname{excess}_{f}(t) \\
& =\operatorname{excess}_{f}(s)+\operatorname{excess}_{f}(t)
\end{aligned}
$$

Thus, $\operatorname{value}(f)=-\operatorname{excess}_{f}(s)=\operatorname{excess}_{f}(t)=f\left(\delta^{\text {in }}(t)\right)-f\left(\delta^{\text {out }}(t)\right.$.
(S4.5) Let $N=(D, c, s, t)$ be a flow network with the property that all capacities are even (that is, $c(a)$ is even for every arc a of D). Prove that the maximum value of a flow is even.

Proof. Since all capacities are even, the capacity of every cut is even, hence the minimum capacity of a cut is even. Apply the Max-Flow Min-Cut theorem to conclude that the maximum value of a flow is even.

