FMI, CS, Master I
Techniques of Combinatorial
Optimization
Laurenţiu Leuştean

Seminar 4

(S4.1) Figure 1 represents a flow network $N=(D, c, s, t)$.

Figure 1: The flow network N

Write the corresponding digraph D and the capacity function c.
(S4.2) Find vectors b, d and a matrix B such that

$$
\max \{\operatorname{value}(f) \mid f \text { is an } s-t \text { flow for } N\}=\max \left\{d^{T} f \mid B f \leq b\right\}
$$

(S4.3) Figure 2 represents an s - t flow f for the network N.
(i) Verify that f is an $s-t$ flow. What is the value of f ?
(ii) Show that the set $\{(2,4),(3,4),(3,5)\}$ is an s - t cut and compute its capacity.
(iii) Prove that f is a maximum flow.

Figure 2: The flow network N with the flow f
(S4.4) Let $N=(D, c, s, t)$ be a flow network and $f: A \rightarrow \mathbb{R}$ be an $s-t$ flow. Prove that the value of f is equal to the net amount of flow entering t, that is prove that

$$
\operatorname{value}(f)=f\left(\delta^{\text {in }}(t)\right)-f\left(\delta^{\text {out }}(t)\right.
$$

(S4.5) Let $N=(D, c, s, t)$ be a flow network with the property that all capacities are even (that is, $c(a)$ is even for every arc a of D). Prove that the maximum value of a flow is even.

