FMI, CS, Master I
Techniques of Combinatorial
Optimization
Laurenţiu Leuştean

Seminar 5

(S5.1) Figure 1 represents a flow network $N=(D, c, s, t)$.

Figure 1: The flow network N

Give two iterations of the Ford-Fulkerson algorithm for N, considering the path $P=1246$ for the first augmentation and $Q=1356$ for the second augmentation.

Proof. The initial flow is $f:=0$, hence the residual network coincides with N.
Let us consider the s - t path $P=1246$ as an f-augmenting path. Then

$$
\gamma=\min _{e \in A(P)} c_{f}(e)=\min \{7,5,6\}=5
$$

Thus, the algorithm augments f along P with 5 units, i.e. we replace f with $f_{1}:=f_{P}^{\gamma}$.
After the first augmentation, we get the following residual graph $D_{f_{1}}$ and residual capacities $c_{f_{1}}$:

Figure 2: The flow network N with the flow f_{1}

Figure 3: The residual graph $D_{f_{1}}$

Let us consider at the second iteration the s - t path $Q=1356$ as an f_{1}-augmenting path. Then

$$
\gamma=\min _{e \in A(P)} c_{f_{1}}(e)=\min \{8,3,9\}=3
$$

Thus, the algorithm augments f along Q with 3 units, i.e. we replace f_{1} with $f_{2}:=f_{1}{ }_{Q}^{\gamma}$.
After the second augmentation, we get the following residual graph $D_{f_{2}}$ and residual capacities $c_{f_{2}}$:
(S5.2) Figure 6 represents a flow network N and an $s-t$ flow f for N.
(i) Represent the residual graph D_{f} and the residual capacities c_{f}.

Figure 4: The flow network N with the flow f_{2}

Figure 5: The residual graph $D_{f_{2}}$
(ii) Choose an f-augmenting path P of minimum length and compute the flow $g:=f_{P}^{\gamma}$, where $\gamma=\min _{e \in A(P)} c_{f}(e)$.
(iii) Represent the residual graph D_{g} and the residual capacities c_{g}. Can you find an s - t path in D_{g} ?
(iv) What is the maximum value of and s - t flow for N ?
(v) Give an example of an $s-t$ cut in N of minimum capacity.

Proof. (i) The residual graph D_{f} and residual capacities c_{f} are given in Figure 7.
(ii) The s - t path of minimum length is $P=14256$, so we choose it as an f-augmenting

Figure 6: The flow network N with the flow f

Figure 7: The residual graph D_{f}
path. Then

$$
\gamma=\min _{e \in A(P)} c_{f}(e)=\min \{3,4,5\}=3
$$

The flow network N with the flow $g:=f_{P}^{\gamma}$ is given in Figure 8.

Figure 8: The flow network N with the flow g
(iii) The residual graph D_{g} and residual capacities c_{g} are given in Figure 9.

Figure 9: The residual graph D_{g}

It is obvious that there are no s - t paths in D_{g}.
(iv) By Theorem 3.2.4, it follows that g is a maximum flow. Hence, the maximal value of an s - t flow is value $(g)=5+2+5=12$.
(v) By the Max-Flow Min-Cut Theorem 3.0.11, the minimum capacity of an s - t cut is 12 . Apply Proposition 3.2.3. to get that an $s-t$ cut having this capacity is

$$
\{(1,2),(4,2),(4,6),(3,6)\}=\delta^{\text {out }}(U)
$$

where $U=\{1,3,4\}$ is the set of vertices reachable in D_{g} from 1 .
(S5.3) Prove Proposition 3.4.2..
Proof. Apply the Flow Decomposition Theorem 3.4.1. Then there exist $K, L \in \mathbb{Z}_{+}$, positive numbers $w_{1}, \ldots, w_{K}, \mu_{1}, \ldots, \mu_{L}$, s-t paths P_{1}, \ldots, P_{K} and circuits C_{1}, \ldots, C_{L} such that

$$
f=\sum_{i=1}^{K} w_{i} \chi^{P_{i}}+\sum_{j=1}^{L} \mu_{j} \chi^{C_{j}} \quad \text { and } \quad \text { value }(f)=\sum_{i=1}^{K} w_{i} .
$$

Furthermore, the w_{i} 's, μ_{j} 's are positive integers. Since f is a $\{0,1\}$-flow, we must have $w_{i}=\mu_{j}=1$ for all i, j. Thus,

$$
f=\sum_{i=1}^{K} \chi^{P_{i}}+\sum_{j=1}^{L} \chi^{C_{j}} \quad \text { and } \quad \text { value }(f)=K
$$

It remains to show that the family $\mathcal{F}=\left\{P_{1}, \ldots, P_{K}, C_{1}, \ldots, C_{L}\right\}$ is arc-disjoint. If $Q_{1}, Q_{2} \in \mathcal{F}$ have an arc a in common, then $f(a) \geq \chi^{Q_{1}}(a)+\chi^{Q_{2}}(a)=2$, which contradicts the fact that f is a $\{0,1\}$-flow.
(S5.4) For any $s-t$ path P in D, prove that χ^{P} satisfies the flow conservation law at every $v \neq s, t$ and that value $\left(\chi^{P}\right)=1$.

Proof. If $P=s t$, then $\chi^{P}(a)=0$ for all $a \neq(s, t)$, hence $i n_{\chi^{P}}(v)=o u t_{\chi^{P}}(v)=0$ for all $v \neq s, t$. Assume that $P=s v_{1} \ldots v_{k} t$ with $k \geq 1$. Let us denote $v_{0}:=s, v_{k+1}:=t$. Then $\chi^{P}\left(\left(s, v_{1}\right)\right)=\chi^{P}\left(\left(v_{1}, v_{2}\right)\right)=\ldots=\chi^{P}\left(\left(v_{k-1}, v_{k}\right)\right)=\chi^{P}\left(\left(v_{k}, t\right)\right)=1$ and $\chi^{P}(a)=0$ for all the other $\operatorname{arcs} a$. For an arbitrary $v \neq s, t$ we have two cases:
(i) $v \notin P$. Then $\operatorname{in}_{\chi^{P}}(v)=$ out $_{\chi^{P}}(v)=0$.
(ii) $v=v_{i}, i=1, \ldots, k$. Then

$$
\begin{aligned}
\operatorname{in}_{\chi^{P}}\left(v_{i}\right) & =\sum_{a \in \delta^{i n}\left(v_{i}\right)} \chi^{P}(a)=\chi^{P}\left(\left(v_{i-1}, v_{i}\right)\right)+0=1, \\
\text { out }_{\chi^{P}}\left(v_{i}\right) & =\sum_{a \in \delta^{\delta o u t}\left(v_{i}\right)} \chi^{P}(a)=\chi^{P}\left(\left(v_{i}, v_{i+1}\right)\right)+0=1
\end{aligned}
$$

Finally,

$$
\operatorname{value}\left(\chi^{P}\right)=\text { out }_{\chi^{P}}(s)-i n_{\chi^{P}}(s)=\chi^{P}\left(\left(s, v_{1}\right)\right)-0=1
$$

