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(S5.1) Figure 1 represents a flow network N = (D, c, s, t).
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Figure 1: The flow network N

Give two iterations of the Ford-Fulkerson algorithm for N , considering the path P = 1246
for the first augmentation and Q = 1356 for the second augmentation.

Proof. The initial flow is f := 0, hence the residual network coincides with N .
Let us consider the s-t path P = 1246 as an f -augmenting path. Then

γ = min
e∈A(P )

cf (e) = min{7, 5, 6} = 5.

Thus, the algorithm augments f along P with 5 units, i.e. we replace f with f1 := fγP .
After the first augmentation, we get the following residual graph Df1 and residual capac-

ities cf1 :
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Figure 2: The flow network N with the flow f1
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Figure 3: The residual graph Df1

Let us consider at the second iteration the s-t path Q = 1356 as an f1-augmenting path.
Then

γ = min
e∈A(P )

cf1(e) = min{8, 3, 9} = 3.

Thus, the algorithm augments f along Q with 3 units, i.e. we replace f1 with f2 := f1
γ
Q.

After the second augmentation, we get the following residual graph Df2 and residual
capacities cf2 :

(S5.2) Figure 6 represents a flow network N and an s-t flow f for N .

(i) Represent the residual graph Df and the residual capacities cf .
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Figure 4: The flow network N with the flow f2
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Figure 5: The residual graph Df2

(ii) Choose an f -augmenting path P of minimum length and compute the flow g := fγP ,
where γ = mine∈A(P ) cf (e).

(iii) Represent the residual graph Dg and the residual capacities cg. Can you find an s-t
path in Dg?

(iv) What is the maximum value of and s-t flow for N?

(v) Give an example of an s-t cut in N of minimum capacity.

Proof. (i) The residual graph Df and residual capacities cf are given in Figure 7.

(ii) The s-t path of minimum length is P = 14256, so we choose it as an f -augmenting
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Figure 6: The flow network N with the flow f
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Figure 7: The residual graph Df

path. Then
γ = min

e∈A(P )
cf (e) = min{3, 4, 5} = 3.

The flow network N with the flow g := fγP is given in Figure 8.
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Figure 8: The flow network N with the flow g

(iii) The residual graph Dg and residual capacities cg are given in Figure 9.
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Figure 9: The residual graph Dg

It is obvious that there are no s-t paths in Dg.
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(iv) By Theorem 3.2.4, it follows that g is a maximum flow. Hence, the maximal value of
an s-t flow is value(g) = 5 + 2 + 5 = 12.

(v) By the Max-Flow Min-Cut Theorem 3.0.11, the minimum capacity of an s-t cut is 12.
Apply Proposition 3.2.3. to get that an s-t cut having this capacity is

{(1, 2), (4, 2), (4, 6), (3, 6)} = δout(U),

where U = {1, 3, 4} is the set of vertices reachable in Dg from 1.

(S5.3) Prove Proposition 3.4.2..

Proof. Apply the Flow Decomposition Theorem 3.4.1. Then there exist K,L ∈ Z+, positive
numbers w1, . . . , wK , µ1, . . . , µL, s-t paths P1, . . . , PK and circuits C1, . . . , CL such that

f =
K∑
i=1

wiχ
Pi +

L∑
j=1

µjχ
Cj and value(f) =

K∑
i=1

wi.

Furthermore, the wi’s, µj’s are positive integers. Since f is a {0, 1}-flow, we must have
wi = µj = 1 for all i, j. Thus,

f =
K∑
i=1

χPi +
L∑
j=1

χCj and value(f) = K.

It remains to show that the family F = {P1, . . . , PK , C1, . . . , CL} is arc-disjoint. If
Q1, Q2 ∈ F have an arc a in common, then f(a) ≥ χQ1(a) + χQ2(a) = 2, which contradicts
the fact that f is a {0, 1}-flow.

(S5.4) For any s-t path P in D, prove that χP satisfies the flow conservation law at every
v 6= s, t and that value(χP ) = 1.

Proof. If P = st, then χP (a) = 0 for all a 6= (s, t), hence inχP (v) = outχP (v) = 0 for all
v 6= s, t. Assume that P = sv1 . . . vkt with k ≥ 1. Let us denote v0 := s, vk+1 := t. Then
χP ((s, v1)) = χP ((v1, v2)) = . . . = χP ((vk−1, vk)) = χP ((vk, t)) = 1 and χP (a) = 0 for all the
other arcs a. For an arbitrary v 6= s, t we have two cases:

(i) v /∈ P . Then inχP (v) = outχP (v) = 0.
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(ii) v = vi, i = 1, . . . , k. Then

inχP (vi) =
∑

a∈δin(vi)

χP (a) = χP ((vi−1, vi)) + 0 = 1,

outχP (vi) =
∑

a∈δout(vi)

χP (a) = χP ((vi, vi+1)) + 0 = 1.

Finally,

value(χP ) = outχP (s)− inχP (s) = χP ((s, v1))− 0 = 1.
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