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(S5.1) Figure 1 represents a flow network N = (D, ¢, s,t).
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Figure 1: The flow network N

Give two iterations of the Ford-Fulkerson algorithm for /V, considering the path P = 1246
for the first augmentation and () = 1356 for the second augmentation.

Proof. The initial flow is f := 0, hence the residual network coincides with N.
Let us consider the s-t path P = 1246 as an f-augmenting path. Then

— mj — min{7,5,6} = 5.
7= miin c/(e) = min{7,5,6)
Thus, the algorithm augments f along P with 5 units, i.e. we replace f with f; := f2.

After the first augmentation, we get the following residual graph Dy, and residual capac-
ities cy,:



Figure 3: The residual graph Dy,

Let us consider at the second iteration the s-t path () = 1356 as an fi-augmenting path.

Then
= mi = min{8, 3,9} = 3.
7= min e (¢) = min{s,3,}

Thus, the algorithm augments f along () with 3 units, i.e. we replace f; with fy := flzg.

After the second augmentation, we get the following residual graph Dy, and residual
capacities cy,:

O

(S5.2) Figure 6 represents a flow network N and an s-t flow f for N.

i) Represent the residual graph Dy and the residual capacities cy.
f f
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Figure 5: The residual graph Dy,

(ii) Choose an f-augmenting path P of minimum length and compute the flow g := f7,
where v = min.ca(py cs(e).

iii) Represent the residual graph D, and the residual capacities ¢,. Can you find an s-¢
g g9
path in D,?

(iv) What is the maximum value of and s-t flow for N?
(v) Give an example of an s-t cut in N of minimum capacity.
Proof. (i) The residual graph D and residual capacities ¢y are given in Figure 7.

(ii)) The s-t path of minimum length is P = 14256, so we choose it as an f-augmenting



Figure 7: The residual graph Dy

— - — 3 3 4 5 — 3.

The flow network N with the flow g := f} is given in Figure 8.
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Figure 8: The flow network N with the flow ¢

iii) The residual graph D, and residual capacities c, are given in Figure 9.
g g

Figure 9: The residual graph D,

It is obvious that there are no s-t paths in D,.



(iv) By Theorem 3.2.4, it follows that g is a maximum flow. Hence, the maximal value of
an s-t flow is value(g) =5+2+5 = 12.

(v) By the Max-Flow Min-Cut Theorem 3.0.11, the minimum capacity of an s-t cut is 12.
Apply Proposition 3.2.3. to get that an s-t cut having this capacity is

{(17 2)7 (47 2)7 (4’ 6)7 (37 6)} = 50“t(U)7

where U = {1, 3,4} is the set of vertices reachable in D, from 1.

(S5.3) Prove Proposition 3.4.2..

Proof. Apply the Flow Decomposition Theorem 3.4.1. Then there exist K, L € Z, , positive

numbers wy, ..., Wk, {41, - .., i, -t paths P, ..., P and circuits C1, ...,y such that
K L K
f= Zwixpi + Z/J/jXCj and value(f) = Zwi.
i=1 j=1 i=1

Furthermore, the w;’s, u;’s are positive integers. Since f is a {0, 1}-flow, we must have
w; = p; = 1 for all 4, 5. Thus,

K L

f= pri +ZXCJ' and value(f) = K.

i=1 j=1

It remains to show that the family F = {P,..., Pk,C,...,Cr} is arc-disjoint. If
Q1,Q, € F have an arc a in common, then f(a) > x9(a) + x%2(a) = 2, which contradicts
the fact that f is a {0, 1}-flow. O

(S5.4) For any s-t path P in D, prove that x satisfies the flow conservation law at every
v # s,t and that value(x?) = 1.

Proof. If P = st, then x”(a) = 0 for all a # (s,t), hence in,r(v) = out,»(v) = 0 for all
v # s,t. Assume that P = sv; ... vt with & > 1. Let us denote vy := s,v5y1 := t. Then

xP((s,v1)) = xF((v1,v0)) = ... = xF((vk—1,v1)) = xF ((vg, 1)) = 1 and xF(a) = 0 for all the
other arcs a. For an arbitrary v # s,t we have two cases:

(i) v ¢ P. Then in,r(v) = out,r(v) = 0.



Finally,



