FMI, CS, Master I Techniques of Combinatorial Optimization Laurențiu Leuștean

Seminar 5

(S5.1) Figure 1 represents a flow network N = (D, c, s, t).

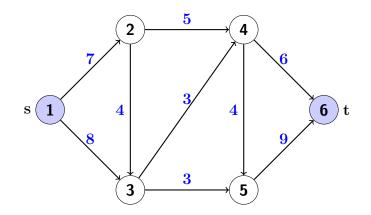


Figure 1: The flow network N

Give two iterations of the Ford-Fulkerson algorithm for N, considering the path P = 1246 for the first augmentation and Q = 1356 for the second augmentation.

(S5.2) Figure 2 represents a flow network N and an s-t flow f for N.

- (i) Represent the residual graph D_f and the residual capacities c_f .
- (ii) Choose an *f*-augmenting path *P* of minimum length and compute the flow $g := f_P^{\gamma}$, where $\gamma = \min_{e \in A(P)} c_f(e)$.
- (iii) Represent the residual graph D_g and the residual capacities c_g . Can you find an *s*-*t* path in D_g ?
- (iv) What is the maximum value of and s-t flow for N?

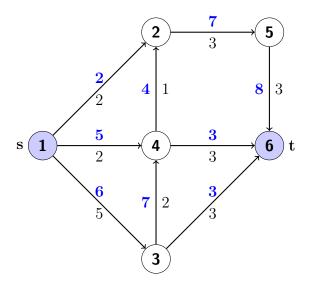


Figure 2: The flow network N with the flow f

- (v) Give an example of an s-t cut in N of minimum capacity.
- (S5.3) Prove Proposition 3.4.2..

(S5.4) For any *s*-*t* path *P* in *D*, prove that χ^P satisfies the flow conservation law at every $v \neq s, t$ and that value $(\chi^P) = 1$.