FMI, CS, Master I Techniques of Combinatorial Optimization Laurențiu Leuștean

Seminar 6

(S6.1) Give an example where feasible circulations do not exist.

Proof. We consider the following example

Thus,

(i)
$$D = (V, A)$$
, where $V = \{1, 2, 3\}, A = \{(1, 2), (2, 3), (3, 1)\},\$

(ii)
$$c((1,2)) = 3, c((2,3)) = 1, c((3,1)) = 2$$
 and

(iii)
$$d((1,2)) = 2, d((2,3)) = 0, d((3,1)) = 1.$$

Let $f : A \to \mathbb{R}$ be feasible w.r.t. d, c. Then $in_f(2) = f((1,2)) \ge d((1,2)) = 2$, while $out_f(2) = f((2,3)) \le c((2,3)) = 1$. Thus, $in_f(2) \ne out_f(2)$, so f cannot be a circulation. \Box

(S6.2) Let N = (D, s, t) be a unit capacity network, $k \ge 1$ and P_1, \ldots, P_k be k arc-disjoint s-t paths in D. Then for all $k \ge 1$,

$$f := \chi^{P_1} + \ldots + \chi^{P_k}$$

is an s-t $\{0, 1\}$ -flow f with value(f) = k.

Proof. For k = 1, we have that $f := \chi^{P_1}$ is an s-t $\{0, 1\}$ -flow of value 1, by (S5.4).

Let $k \ge 2$. By (S5.4) and Lemma 3.3.2, we have that f satisfies the flow conservation law at every $v \ne s, t$ and value(f) = k. It remains to prove that f takes values in $\{0, 1\}$. For any $a \in A$, we have one of the two cases:

- (i) $a \notin P_1 \cup \ldots \cup P_k$, so f(a) = 0.
- (ii) there exists a unique i = 1, ..., k such that $a \in P_i$, so f(a) = 1.

Thus, $f : A \to \{0, 1\}$ is a flow.

(S6.3) Let D = (V, A) be a digraph. Prove that

- (i) Each s-t cut is an s-t disconnecting arc set.
- (ii) Each s-t disconnecting arc set of minimum size is an s-t cut.
- (iii) The minimum size of an s-t disconnecting arc set coincides with the minimum size of an s-t cut.
- *Proof.* (i) Let $\delta^{out}(U)$ be an *s*-*t* cut, where $s \in U$ and $t \notin U$. Let $P = sv_1 \dots v_k t$ be an *s*-*t* path and denote $v_0 := s$ and $v_{k+1} := t$. We have two cases:
 - (a) there exists i = 1, ..., k such that $v_i \notin U$ and $v_{i-1} \in U$. Then $(v_{i-1}, v_i) \in \delta^{out}(U)$.

(b)
$$v_i \in U$$
 for all $i = 1, \ldots, k$. Then $(v_k, t) \in \delta^{out}(U)$.

(ii) Let B be an s-t disconnecting arc set of minimum size. Define U as the the set of vertices in V accessible from s by paths that contain no arcs of B. Then $s \in U$ and $t \notin U$, since B is s-t disconnecting. Hence, $\delta^{out}(U)$ is an s-t cut, hence it is an s-t disconnecting arc set, by (i).

Claim: $\delta^{out}(U) \subseteq B$

Proof of Claim: Let $a = (u, v) \in \delta^{out}(U)$. Since $u \in U$, there exists an *s*-*u* path *P* containing no arcs of *B*. If $a \notin B$, then P + a is an *s*-*v* path containing no arcs of *B*, hence $v \in U$, which is a contradiction with the fact that $(u, v) \in \delta^{out}(U)$. Thus, $a \in B$.

By the fact that B is of minimum size, we must have $B = \delta^{out}(U)$.

(iii) Let m be the first minimum and m' be the second minimum. We have that $m \leq m'$ by (i) and that $m \geq m'$ by (ii).

(S6.4) Prove that the incidence matrix M of a directed graph D = (V, A) is totally unimodular.

Proof. Let B be a square submatrix of M of order t. We prove by induction on t that det(B) is -1, 0 or 1. The case t = 1 is trivial. Let t > 1. We have the following cases:

- (i) B has a column with only zeros. Then obviously det(B) = 0.
- (ii) B has a column with exactly one nonzero, which is ± 1 . Expand the determinant by this column and use the induction hypothesis to conclude that $det(B) \in \{-1, 0, 1\}$.
- (iii) Each column of B contains two nonzeros, one of them 1 and the other -1. Then the sum of all lines of B is **0**, hence the lines of B are linearly dependent. As a consequence, det(B) = 0.