FMI, CS, Master I
Techniques of Combinatorial
Optimization
Laurenţiu Leuştean

Seminar 6

(S6.1) Give an example where feasible circulations do not exist.
Proof. We consider the following example

Thus,
(i) $D=(V, A)$, where $V=\{1,2,3\}, A=\{(1,2),(2,3),(3,1)\}$,
(ii) $c((1,2))=3, c((2,3))=1, c((3,1))=2$ and
(iii) $d((1,2))=2, d((2,3))=0, d((3,1))=1$.

Let $f: A \rightarrow \mathbb{R}$ be feasible w.r.t. d, c. Then $\operatorname{in}_{f}(2)=f((1,2)) \geq d((1,2))=2$, while out $_{f}(2)=f((2,3)) \leq c((2,3))=1$. Thus, in $_{f}(2) \neq$ out $_{f}(2)$, so f cannot be a circulation.
(S6.2) Let $N=(D, s, t)$ be a unit capacity network, $k \geq 1$ and P_{1}, \ldots, P_{k} be k arc-disjoint s - t paths in D. Then for all $k \geq 1$,

$$
f:=\chi^{P_{1}}+\ldots+\chi^{P_{k}}
$$

is an s - $t\{0,1\}$-flow f with value $(f)=k$.

Proof. For $k=1$, we have that $f:=\chi^{P_{1}}$ is an $s-t\{0,1\}$-flow of value 1 , by (S5.4).
Let $k \geq 2$. By (S5.4) and Lemma 3.3.2, we have that f satisfies the flow conservation law at every $v \neq s, t$ and value $(f)=k$. It remains to prove that f takes values in $\{0,1\}$. For any $a \in A$, we have one of the two cases:
(i) $a \notin P_{1} \cup \ldots \cup P_{k}$, so $f(a)=0$.
(ii) there exists a unique $i=1, \ldots, k$ such that $a \in P_{i}$, so $f(a)=1$.

Thus, $f: A \rightarrow\{0,1\}$ is a flow.
(S6.3) Let $D=(V, A)$ be a digraph. Prove that
(i) Each s - t cut is an s - t disconnecting arc set.
(ii) Each s - t disconnecting arc set of minimum size is an s - t cut.
(iii) The minimum size of an s - t disconnecting arc set coincides with the minimum size of an s - t cut.

Proof. (i) Let $\delta^{\text {out }}(U)$ be an s - t cut, where $s \in U$ and $t \notin U$. Let $P=s v_{1} \ldots v_{k} t$ be an $s-t$ path and denote $v_{0}:=s$ and $v_{k+1}:=t$. We have two cases:
(a) there exists $i=1, \ldots, k$ such that $v_{i} \notin U$ and $v_{i-1} \in U$. Then $\left(v_{i-1}, v_{i}\right) \in \delta^{o u t}(U)$.
(b) $v_{i} \in U$ for all $i=1, \ldots, k$. Then $\left(v_{k}, t\right) \in \delta^{\text {out }}(U)$.
(ii) Let B be an $s-t$ disconnecting arc set of minimum size. Define U as the the set of vertices in V accessible from s by paths that contain no arcs of B. Then $s \in U$ and $t \notin U$, since B is s - t disconnecting. Hence, $\delta^{\text {out }}(U)$ is an s - t cut, hence it is an s-t disconnecting arc set, by (i).
Claim: $\delta^{\text {out }}(U) \subseteq B$
Proof of Claim: Let $a=(u, v) \in \delta^{o u t}(U)$. Since $u \in U$, there exists an $s-u$ path P containing no arcs of B. If $a \notin B$, then $P+a$ is an $s-v$ path containing no arcs of B, hence $v \in U$, which is a contradiction with the fact that $(u, v) \in \delta^{\text {out }}(U)$. Thus, $a \in B$.

By the fact that B is of minimum size, we must have $B=\delta^{\text {out }}(U)$.
(iii) Let m be the first minimum and m^{\prime} be the second minimum. We have that $m \leq m^{\prime}$ by (i) and that $m \geq m^{\prime}$ by (ii).
(S6.4) Prove that the incidence matrix M of a directed graph $D=(V, A)$ is totally unimodular.

Proof. Let B be a square submatrix of M of order t. We prove by induction on t that $\operatorname{det}(B)$ is $-1,0$ or 1 . The case $t=1$ is trivial. Let $t>1$. We have the following cases:
(i) B has a column with only zeros. Then obviously $\operatorname{det}(B)=0$.
(ii) B has a column with exactly one nonzero, which is ± 1. Expand the determinant by this column and use the induction hypothesis to conclude that $\operatorname{det}(B) \in\{-1,0,1\}$.
(iii) Each column of B contains two nonzeros, one of them 1 and the other -1 . Then the sum of all lines of B is $\mathbf{0}$, hence the lines of B are linearly dependent. As a consequence, $\operatorname{det}(B)=0$.

