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Propositional logic



Language

Definition 1.1

The language of propositional logic PL consists of:
» a countable set V = {v, | n € N} of variables;
» the logic connectives = (non), — (implies)

» parantheses: ( , ).

e The set Sym of symbols of PL is

Sym:=VU{-,—,(,)}

e We denote variables by u,v,x,y,z...



Language

Definition 1.2

The set Expr of expressions of PL is the set of all finite sequences
of symbols of PL.

Definition 1.3
Let 0 = 0907 ...0,_1 be an expression, where 6; € Sym for all
i=0,...,k—1.
» If0 <i<j< k—1, then the expression 0; ...0; is called the
(i,j)-subexpression of 6.

> We say that an expression v appears in 0 if there exists
0 <i<j<k—1such thaty is the (i,j)-subexpression of 0.

» We denote by Var(0) the set of variables appearing in 0.



Language

he définition of formulas is an example of an inductive definition.

Definition 1.4
The formulas of PL are the expressions of PL defined as follows:
(FO) Any variable is a formula.
(F1) If ¢ is a formula, then (—p) is a formula.
(F2) If ¢ and v are formulas, then (o — 1) is a formula.
(F3) Only the expressions obtained by applying rules (F0), (F1),
(F2) are formulas.

Notations
The set of formulas is denoted by Form. Formulas are denoted by
()07 1/}7 X7 AR

Proposition 1.5

The set Form is countable.



Language

Unique readability

If ¢ is a formula, then exactly one of the following hold:
> o =v, where v e V.
» o = (), where 9 is a formula.
» o = (v = x), where 1, x are formulas.

Furthermore, ¢ can be written in a unique way in one of these
forms.

Definition 1.6

Let ¢ be a formula. A subformula of ¢ is any formula v that
appears in .



Language

Proposition 1.7 (Induction principle on formulas)
Let I be a set of formulas satisfying the following properties:
> VCIT.
» [ is closed to —, that is: p € [ implies (—¢) € T.
» [ is closed to —, that is: @,1) € I implies (¢ — ) € T.
Then I’ = Form.

It is used to prove that all formulas have a property P: we define '
as the set of all formulas satisfying P and apply induction on
formulas to obtain that [ = Form.



Language

The derived connectives V (or), A (and), <> (if and only if) are
introduced by the following abbreviations:

eV = ((mp) = ¥)
P NP (e = (—v)))
oo = ((p= )N — )

Conventions and notations
» The external parantheses are omitted, we put them only when
necessary. We write =, ¢ — 1), but we write (¢ — ¥) — x.
» To reduce the use of parentheses, we assume that

» = has higher precedence than —, A, V, ¢;
> A,V have higher precedence than —, .

» Hence, the formula (((¢ = (¥ V x)) A ((—%) < (¥ V X)) is
written as (o — ¥ V x) A (= <> ¥ V ).



Semantics

Truth values

We use the following notations for the truth values:
1 for true and O for false.

Hence, the set of truth values is {0,1}.

Define the following operations on {0, 1} using truth tables.

J
o

-:{0,1} — {0,1},

4
Q

—:{0,1} x {0,1} — {0, 1},

= = O O|T
= O R R O =



Semantics

v:{0,1} x {0,1} — {0,1},

A:{0,1} x {0,1} — {0,1},

&: 10,1} x {0,1} — {0,1},

PP OOT R ooOoOw ~EFO O
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Semantics

Definition 1.8

An evaluation (or interpretation) is a function e : V — {0, 1}.
v

Theorem 1.9
For any evaluation e : V — {0,1} there exists a unique function
et : Form — {0,1}
satisfying the following properties:
> et(v) =e(v) forallve V.
> et (—p) =—eT(p) for any formula .
> et (p — ) =eT(p) = et () for any formulas ¢, 1.

Proposition 1.10
For any formula ¢ and all evaluations e, e : V — {0,1},
if er(v) = ex(v) for all v € Var(y), then e (¢) = &5 ().



Semantics

Definition 1.11

» An evaluation e : V — {0,1} is a model of ¢ if eT(p) = 1.
Notation: e F .

» o is satisfiable if it has a model.

» If ¢ is not satisfiable, we also say that ¢ is unsatisfiable or
contradictory.

» o is a tautology if every evaluation is a model of .
Notation: E .

Notation 1.12
The set of models of ¢ is denoted by Mod ().



Semantics

Remark 1.13
» o is a tautology iff —~y is unsatisfiable.
»  is unsatisfiable iff —p is a tautology.

Proposition 1.14

Let e: V — {0,1} be an evaluation. Then for all formulas ¢, v,
> ek —p iffelf .

ek = iff (e E ¢ impliese E ) iff (e ¢ ore E ).

eEoViff(eEporeE).

eEoNYiff(eFpand eE ).

>
>
>
> eEpoiffleFpiffeEy).



Semantics

Definition 1.15
Let o, be formulas. We say that

» o is a semantic consequence of 1 if Mod(¢)) C Mod ().
Notation: ) E ¢.

» o and v are (logically) equivalent if Mod(v)) = Mod(y).
Notation: ¢ ~ .

Remark 1.16

Let v, be formulas.
> @ iff EY— .
> )~ iff(WE @ and o EY) iff B+ .



Semantics

E
E
E
E
E
E
E
E
E
E

mulas ¢, 9, X,

@V P

(e A=)

pAY =

o= pVY

o= (¥ =)

(=W —=>x) = (=)= (¢ — X))
(e =)= (¥ = x) = (¢ = x))
(e =)V (mp =)

(o = )V (p = )

= (Y < (Y — )

(o= ¥) = (((p = x) =) =)
) = (Y = )



Semantics

(0

¢

YA (p — )
(p=V)N (Y —Xx)
e (p =)

{v, 4}

{1, e}

L | | | A | N | RN

Y — (- = )
(o = =p) = —p
(=)=
=Y

=Y

¢

@ — X

(Y — »)



Semantics

=Y
oV
eNY
o= (Y —=x)
p~PAP

eAY

VY
oA (W AX)
eV (¥Vx)
oV (p A1)
e A (pVY)

——p
P = -
(= A=)
(= Vv )
pAY =X
PV
YAp
YV

(e Ap) A x
(pV)Vv x



Semantics

ANV X)
oV (¥ AX)
=P AX
=P VX
N = x
eV =X
o= (v —x)

P~ =
=P~ VY
PV Y~V (mpA)
o < (Y < x)

(e AP)VI(pAx)
(e VY)A(pVX)
(e =v)A(p—X)
(p=¥) V(e —x)
(e = x) V(¥ —x)
(= x) A (¥ = X)
Y= (o= X)

(p = ¥) = (¢ —=X)
(e =YY A (p = )
(o A=)

(p =) =

(p = P) < x

Vv
A



Semantics

eful to have a canonical tautology and a canonical
unsatisfia

Remark 1.17

Vo — W Is a tautology and —(vp — vo) is unsatisfiable.

Notation 1.18

Denote vy — vy by T and call it the truth.
Denote —(vop — vp) by L and call it the false.

Remark 1.19
» o is a tautology iff o ~ T.
» o is unsatisfiable iff p ~ L.



Semantics

et of formulas.

Definition 1.20

An evaluation e : V — {0,1} is a model of T if it is a model of
every formula from I,
Notation: e ET.

Notation 1.21
The set of models of I is denoted by Mod(I').

Definition 1.22

A formula ¢ is a semantic consequence of I' if Mod(I') C Mod(y).
Notation: T E .

20



Semantics

Definition 1.23
» [ is satisfiable if it has a model.
» [ is finitely satisfiable if every finite subset of [ is satisfiable.

» IfT is not satisfiable, we say also that I is unsatisfiable or
contradictory.

Proposition 1.24
The following are equivalent:

» [ js unsatisfiable.
> NE L.

Theorem 1.25 (Compactness Theorem)
[" is satisfiable iff [ is finitely satisfiable.

21



Syntax

We deductive system of Hilbert type for LP.

Logical axioms

The set Axm of (logical) axioms of LP consists of:
(A1) o= (¥ = ¢)
(A2) (e = (¥ = X)) = (¢ = ¥) = (¢ = X))
(A3)  (— = =) = (¢ = V),

where ¢, 1 and x are formulas.

The deduction rule
For any formulas ¢, 1, from ¢ and ¢ — 1) infer ¢ (modus ponens
or (MP)):
©, ¢ 7Y
Y

22



Definition 1.26
The I-theorems of PL are the formulas defined as follows:

(TO) Every logical axiom is a [-theorem.

(T1) Every formula of T is a ['-theorem.

(T2) If ¢ and ¢ — 1 are [-theorems, then 1 is a I-theorem.

(T3) Only the formulas obtained by applying rules (T0), (T1),
(T2) are T-theorems.

If ¢ is a [-theorem, then we also say that ¢ is deduced from the
hypotheses T.

23



Syntax

Notations
N=¢ :& isal-theorem
Fo = Ok .

Definition 1.27
A formula ¢ is called a theorem of LP if - .

By a reformulation of the conditions (T0), (T1), (T2) using the
notation F, we get

Remark 1.28
» If v is an axiom, then [ F ¢.
> lfoel, thenl I .
> IfTFpandT @ — 1, then T 1.

24



Syntax

Definition 1.29

A [-proof (or proof from the hypotheses I') is a sequence of
formulas 01, . .., 0, such that for all i € {1,...,n}, one of the
following holds:

» 0; is an axiom.
> 0, er.
> there exist k,j < i such that 0 = 0; — 0;.

Definition 1.30
Let ¢ be a formula. A T-proof of ¢ or a proof of ¢ from the
hypotheses [ is a -proof 01, ..., 0, such that 0, = ¢.

Proposition 1.31
For any formula ¢,

+@ iff there exists a [-proof of .

25



Syntax

Theorem 1.32 (Deduction Theorem)
Let T U{p, 9} be a set of formulas. Then
Fry{etrey iff TEep—1).

Proposition 1.33

For any formulas ¢, x,
(e =) = (¥ = x) = (¢ = X))
Fle—= (¥ —=x) = @ —=(¢—=x)

Proposition 1.34
Let T U{p, 1, x} be a set of formulas.
lN~p—=vandl-y—=-x = ITFp—x
Fru{-y}r-(p—=¢) = TEY
Fry{vttpandTu{-yv}kte = Tk

26



Consistent sets

Let set of formulas.

Definition 1.35

I is called consistent if there exists a formula ¢ such that T t/ .
I" is said to be inconsistent if it is not consistent, that is T F ¢ for
any formula .

Proposition 1.36
» () is consistent.

» The set of theorems is consistent.
Proposition 1.37

The following are equivalent:
» [ is inconsistent.
> M- L.

27



Completeness Theorem

Theorem 1.38 (Completeness Theorem (version 1))

Let I be a set of formulas. Then

[ is consistent <= [ s satisfiable.

Theorem 1.39 (Completeness Theorem (version 2))

Let T’ be a set of formulas. For any formula o,

Nl <= TFe

28



First-order logic



First-order languages

Definition 2.1
A first-order language L consists of:
» a countable set V = {v, | n € N} of variables;

the connectives — and —;
parantheses ( , );
the equality symbol =;
the universal quantifier V;
a set R of relation symbols;

a set C of constant symbols;
an arity function ari : F U R — N*.

L is uniquely determined by the quadruple 7 := (R, F,C, ari).

>
>
>
>
>
» a set F of function symbols;
>
>
| 2
» 7 is called the signature of £ or the similaritaty type of L.

30



First-order languages

Let a first-order language.

e The set Sym, of symbols of L is
Symg =V U{~,—,(),=VIURUFUC

e The elements of R U F UC are called non-logical symbols.
e The elements of VU{—,—,(,),=,V} are called logical symbols.

e We denote variables by x, y, z, v, ..., relation symbols by
P,Q,R..., function symbols by f, g, h,... and constant symbols
by ¢c,d,e,....

e For every m € N* we denote:

Fm = the set of function symbols of arity m;

Rm := the set of relation symbols of arity m.

31



First-order languages

Definition 2.2

The set Expry of expressions of L is the set of all finite sequences
of symbols of L.

Definition 2.3
Let 0 = 0907 ...0,_1 be an expression of L, where 0; € Sym for
alli=0,...,k—1.
» If0 <i<j< k—1, then the expression 0; ...0; is called the
(i,j)-subexpression of 6.

> We say that an expression 1) appears in 60 if there exists
0 <i<j<k—1such thaty is the (i,j)-subexpression of 0.

» We denote by Var(0) the set of variables appearing in 0.

32



First-order languages

Definition 2.4
The terms of L are the expressions defined as follows:
(TO) Every variable is a term.
(T1) Every constant symbol is a term.
(T2) Ifm>1, f € F, and t1,...,ty are terms, then fty ...ty is a
term.
(T3) Only the expressions obtained by applying rules (T0), (T1),
(T2) are terms.

Notations:
> The set of terms is denoted by Term,.
P> Terms are denoted by t,s, t1, to, 51,52, - - .
» Var(t) is the set of variables that appear in the term t.

Definition 2.5
A term t is called closed if Var(t) = ().

33



First-order languages

Proposition 2.6 (Induction on terms)
Let I be a set of terms satisfying the following properties:

» [ contains the variables and the constant symbols.

> Ifm>1,feFnpandty,....tm€T, thenfty... t, €T.
Then I = Termg.

It is used to prove that all terms have a property P: we define I as
the set of all terms satisfying P and apply induction on terms to
obtain that I = Term,.

34



First-order languages

Definition 2.7

The atomic formulas of L are the expressions having one of the
following forms:

» (s =t), where s, t are terms;
» (Rty...tm), where R € Ry, and ty,. .., tm are terms.

Definition 2.8

The formulas of L are the expressions defined as follows:

(FO) Every atomic formula is a formula.

(F1) If ¢ is a formula, then (—p) is a formula.

(F2) If ¢ and v are formulas, then (¢ — 1) is a formula.

(F3) If ¢ is a formula, then (Vxy) is a formula for every variable x.

(F4) Only the expressions obtained by applying rules (F0), (F1),
(F2), (F3) are formulas.

35



First-order languages

Notations
» The set of formulas is denoted by Form,.
» Formulas are denoted by ¢, ¥, x, .. ..
» Var(y) is the set of variables that appear in the formula .

Unique readability
If ¢ is a formula, then exactly one of the following hold:
» o =(s=t1), where s, t are terms.
» o =(Rt1...tm), where R € R, and ty,. .., ty, are terms.
» o = (), where ¢ is a formula.
> ¢ = (v = Xx), where 1, x are formulas.
» o = (Vx1), where x is a variable and 1 is a formula.
Furthermore, ¢ can be written in a unique way in one of these

forms.

36



First-order languages

Proposition 2.9 (Induction principle on formulas)
Let T be a set of formulas satisfying the following properties:
» [ contains all atomic formulas.
» [ is closed to -, — and Vx (for any variable x), that is:
if o, €T, then (—¢), (¢ — V), (Vxp) €T.
Then I = Formg.

It is used to prove that all formulas have a property P: we define I
as the set of all formulas satisfying P and apply induction on
formulas to obtain that ' = Formy.

37



First-order languages

Derived connectives

Connectives V, A, <+ and the existential quantifier 3 are
introduced by the following abbreviations:

vy = ((mp) =)

©AY —(¢ = (=¢)))
ey = (p—=P)AR =)
Ixp = (2x(—p))
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