Logic for Multiagent Systems

Master 1st Year, 1st Semester 201/2022

Laurențiu Leuștean

Web page: http://cs.unibuc.ro/~lleustean/

Propositional logic

Definition 1.1

The language of propositional logic PL consists of:

- a countable set $V=\left\{v_{n} \mid n \in \mathbb{N}\right\}$ of variables;
- the logic connectives \neg (non), \rightarrow (implies)
- parantheses: (,).
- The set Sym of symbols of $P L$ is

$$
\text { Sym }:=V \cup\{\neg, \rightarrow,(,)\} .
$$

- We denote variables by $u, v, x, y, z \ldots$

Definition 1.2

The set Expr of expressions of PL is the set of all finite sequences of symbols of PL.

Definition 1.3

Let $\theta=\theta_{0} \theta_{1} \ldots \theta_{k-1}$ be an expression, where $\theta_{i} \in$ Sym for all $i=0, \ldots, k-1$.

- If $0 \leq i \leq j \leq k-1$, then the expression $\theta_{i} \ldots \theta_{j}$ is called the (i, j)-subexpression of θ.
- We say that an expression ψ appears in θ if there exists $0 \leq i \leq j \leq k-1$ such that ψ is the (i, j)-subexpression of θ.
- We denote by $\operatorname{Var}(\theta)$ the set of variables appearing in θ.

The definition of formulas is an example of an inductive definition.
Definition 1.4
The formulas of PL are the expressions of PL defined as follows:
(FO) Any variable is a formula.
(F1) If φ is a formula, then $(\neg \varphi)$ is a formula.
(F2) If φ and ψ are formulas, then $(\varphi \rightarrow \psi)$ is a formula.
(F3) Only the expressions obtained by applying rules (F0), (F1), (F2) are formulas.

Notations

The set of formulas is denoted by Form. Formulas are denoted by $\varphi, \psi, \chi, \ldots$

Proposition 1.5
The set Form is countable.

Unique readability
If φ is a formula, then exactly one of the following hold:

- $\varphi=v$, where $v \in V$.
- $\varphi=(\neg \psi)$, where ψ is a formula.
- $\varphi=(\psi \rightarrow \chi)$, where ψ, χ are formulas.

Furthermore, φ can be written in a unique way in one of these forms.

Definition 1.6
Let φ be a formula. A subformula of φ is any formula ψ that appears in φ.

Proposition 1.7 (Induction principle on formulas)
Let Γ be a set of formulas satisfying the following properties:

- $V \subseteq \Gamma$.
- Γ is closed to \neg, that is: $\varphi \in \Gamma$ implies $(\neg \varphi) \in \Gamma$.
- 「 is closed to \rightarrow, that is: $\varphi, \psi \in \Gamma$ implies $(\varphi \rightarrow \psi) \in \Gamma$.

Then $\Gamma=$ Form .

It is used to prove that all formulas have a property \mathcal{P} : we define Γ as the set of all formulas satisfying \mathcal{P} and apply induction on formulas to obtain that $\Gamma=$ Form .

The derived connectives \vee (or), \wedge (and), \leftrightarrow (if and only if) are introduced by the following abbreviations:

$$
\begin{array}{ll}
\varphi \vee \psi & :=((\neg \varphi) \rightarrow \psi) \\
\varphi \wedge \psi & :=\neg(\varphi \rightarrow(\neg \psi))) \\
\varphi \leftrightarrow \psi & :=((\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi))
\end{array}
$$

Conventions and notations

- The external parantheses are omitted, we put them only when necessary. We write $\neg \varphi, \varphi \rightarrow \psi$, but we write $(\varphi \rightarrow \psi) \rightarrow \chi$.
- To reduce the use of parentheses, we assume that
- \neg has higher precedence than $\rightarrow, \wedge, \vee, \leftrightarrow$;
$-\wedge, \vee$ have higher precedence than $\rightarrow, \leftrightarrow$.
- Hence, the formula $(((\varphi \rightarrow(\psi \vee \chi)) \wedge((\neg \psi) \leftrightarrow(\psi \vee \chi)))$ is written as $(\varphi \rightarrow \psi \vee \chi) \wedge(\neg \psi \leftrightarrow \psi \vee \chi)$.

Semantics

Truth values
We use the following notations for the truth values:
1 for true and 0 for false.
Hence, the set of truth values is $\{0,1\}$.
Define the following operations on $\{0,1\}$ using truth tables.

$\neg:\{0,1\} \rightarrow\{0,1\}$,		p	$\neg p$
	0	1	
	1	0	
	$p\|l\| l$		
	p	q	$p \rightarrow q$
0	0	1	
$:\{0,1\} \times\{0,1\} \rightarrow\{0,1\}$,	0	1	1
	1	0	0
	1	1	1

Semantics

$$
\begin{array}{l|l|l}
p & q & p \vee q \\
\hline 0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
p & q & p \wedge q \\
\hline 0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
p & q & p \leftrightarrow q \\
\hline 0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}
$$

Definition 1.8

An evaluation (or interpretation) is a function $e: V \rightarrow\{0,1\}$.

Theorem 1.9

For any evaluation $e: V \rightarrow\{0,1\}$ there exists a unique function

$$
e^{+}: \text {Form } \rightarrow\{0,1\}
$$

satisfying the following properties:

- $e^{+}(v)=e(v)$ for all $v \in V$.
- $e^{+}(\neg \varphi)=\neg e^{+}(\varphi)$ for any formula φ.
- $e^{+}(\varphi \rightarrow \psi)=e^{+}(\varphi) \rightarrow e^{+}(\psi)$ for any formulas φ, ψ.

Proposition 1.10
For any formula φ and all evaluations $e_{1}, e_{2}: V \rightarrow\{0,1\}$,

$$
\text { if } e_{1}(v)=e_{2}(v) \text { for all } v \in \operatorname{Var}(\varphi) \text {, then } e_{1}^{+}(\varphi)=e_{2}^{+}(\varphi)
$$

Semantics

Let φ be a formula.
Definition 1.11

- An evaluation $e: V \rightarrow\{0,1\}$ is a model of φ if $e^{+}(\varphi)=1$. Notation: $e \vDash \varphi$.
- φ is satisfiable if it has a model.
- If φ is not satisfiable, we also say that φ is unsatisfiable or contradictory.
- φ is a tautology if every evaluation is a model of φ. Notation: $\vDash \varphi$.

Notation 1.12
The set of models of φ is denoted by $\operatorname{Mod}(\varphi)$.

Remark 1.13

- φ is a tautology iff $\neg \varphi$ is unsatisfiable.
- φ is unsatisfiable iff $\neg \varphi$ is a tautology.

Proposition 1.14
Let $e: V \rightarrow\{0,1\}$ be an evaluation. Then for all formulas φ, ψ,

- $e \vDash \neg \varphi$ iff $e \not \forall \varphi$.
- $e \vDash \varphi \rightarrow \psi$ iff $(e \vDash \varphi$ implies $e \vDash \psi)$ iff $(e \not \vDash \varphi$ or $e \vDash \psi)$.
- $e \vDash \varphi \vee \psi$ iff ($e \vDash \varphi$ or $e \vDash \psi$).
- $e \vDash \varphi \wedge \psi$ iff $(e \vDash \varphi$ and $e \vDash \psi)$.
- $e \vDash \varphi \leftrightarrow \psi$ iff $(e \vDash \varphi$ iff $e \vDash \psi)$.

Semantics

Definition 1.15

Let φ, ψ be formulas. We say that

- φ is a semantic consequence of ψ if $\operatorname{Mod}(\psi) \subseteq \operatorname{Mod}(\varphi)$. Notation: $\psi \vDash \varphi$.
- φ and ψ are (logically) equivalent if $\operatorname{Mod}(\psi)=\operatorname{Mod}(\varphi)$. Notation: $\varphi \sim \psi$.

Remark 1.16
Let φ, ψ be formulas.

- $\psi \vDash \varphi$ iff $\vDash \psi \rightarrow \varphi$.
- $\psi \sim \varphi$ iff $(\psi \vDash \varphi$ and $\varphi \vDash \psi)$ iff $\vDash \psi \leftrightarrow \varphi$.

Semantics

For all formulas φ, ψ, χ,

$$
\begin{aligned}
& \vDash \varphi \vee \neg \varphi \\
& \vDash \neg(\varphi \wedge \neg \varphi) \\
& \vDash \varphi \wedge \psi \rightarrow \varphi \\
& \vDash \varphi \rightarrow \varphi \vee \psi \\
& \vDash \varphi \rightarrow(\psi \rightarrow \varphi) \\
& \vDash(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow((\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \chi)) \\
& \vDash(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi)) \\
& \vDash(\varphi \rightarrow \psi) \vee(\neg \varphi \rightarrow \psi) \\
& \vDash(\varphi \rightarrow \psi) \vee(\varphi \rightarrow \neg \psi) \\
& \vDash \neg \varphi \rightarrow(\neg \psi \leftrightarrow(\psi \rightarrow \varphi)) \\
& \vDash(\varphi \rightarrow \psi) \rightarrow(((\varphi \rightarrow \chi) \rightarrow \psi) \rightarrow \psi) \\
& \vDash \neg \psi \rightarrow(\psi \rightarrow \varphi)
\end{aligned}
$$

$$
\begin{aligned}
& \vDash \psi \rightarrow(\neg \psi \rightarrow \varphi) \\
& \vDash(\varphi \rightarrow \neg \varphi) \rightarrow \neg \varphi \\
& \vDash(\neg \varphi \rightarrow \varphi) \rightarrow \varphi \\
\psi & \vDash \varphi \rightarrow \psi \\
\neg \varphi & \vDash \varphi \rightarrow \psi \\
\neg \psi \wedge(\varphi \rightarrow \psi) & \vDash \neg \varphi \\
(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \chi) & \vDash \varphi \rightarrow \chi \\
\varphi \wedge(\varphi \rightarrow \psi) & \vDash \psi \\
\{\psi, \neg \psi\} & \vDash \varphi \\
\{\psi, \neg \varphi\} & \vDash \neg(\psi \rightarrow \varphi)
\end{aligned}
$$

$$
\begin{aligned}
\varphi & \sim \neg \neg \varphi \\
\varphi \rightarrow \psi & \sim \neg \psi \rightarrow \neg \varphi \\
\varphi \vee \psi & \sim \neg(\neg \varphi \wedge \neg \psi) \\
\varphi \wedge \psi & \sim \neg(\neg \varphi \vee \neg \psi) \\
\varphi \rightarrow(\psi \rightarrow \chi) & \sim \varphi \wedge \psi \rightarrow \chi \\
\varphi \sim \varphi \wedge \varphi & \sim \varphi \vee \varphi \\
\varphi \wedge \psi & \sim \psi \wedge \varphi \\
\varphi \vee \psi & \sim \psi \vee \varphi \\
\varphi \wedge(\psi \wedge \chi) & \sim(\varphi \wedge \psi) \wedge \chi \\
\varphi \vee(\psi \vee \chi) & \sim(\varphi \vee \psi) \vee \chi \\
\varphi \vee(\varphi \wedge \psi) & \sim \varphi \\
\varphi \wedge(\varphi \vee \psi) & \sim \varphi
\end{aligned}
$$

Semantics

$$
\begin{aligned}
\varphi \wedge(\psi \vee \chi) & \sim(\varphi \wedge \psi) \vee(\varphi \wedge \chi) \\
\varphi \vee(\psi \wedge \chi) & \sim(\varphi \vee \psi) \wedge(\varphi \vee \chi) \\
\varphi \rightarrow \psi \wedge \chi & \sim(\varphi \rightarrow \psi) \wedge(\varphi \rightarrow \chi) \\
\varphi \rightarrow \psi \vee \chi & \sim(\varphi \rightarrow \psi) \vee(\varphi \rightarrow \chi) \\
\varphi \wedge \psi \rightarrow \chi & \sim(\varphi \rightarrow \chi) \vee(\psi \rightarrow \chi) \\
\varphi \vee \psi \rightarrow \chi & \sim(\varphi \rightarrow \chi) \wedge(\psi \rightarrow \chi) \\
\varphi \rightarrow(\psi \rightarrow \chi) & \sim \psi \rightarrow(\varphi \rightarrow \chi) \\
& \sim(\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \chi) \\
\neg \varphi \sim \varphi \rightarrow \neg \varphi & \sim(\varphi \rightarrow \psi) \wedge(\varphi \rightarrow \neg \psi) \\
\varphi \rightarrow \psi \sim \neg \varphi \vee \psi & \sim \neg(\varphi \wedge \neg \psi) \\
\varphi \vee \psi \sim \varphi \vee(\neg \varphi \wedge \psi) & \sim(\varphi \rightarrow \psi) \rightarrow \psi \\
\varphi \leftrightarrow(\psi \leftrightarrow \chi) & \sim(\varphi \leftrightarrow \psi) \leftrightarrow \chi
\end{aligned}
$$

Semantics

It is often useful to have a canonical tautology and a canonical unsatisfiable formula.

Remark 1.17
$v_{0} \rightarrow v_{0}$ is a tautology and $\neg\left(v_{0} \rightarrow v_{0}\right)$ is unsatisfiable.
Notation 1.18
Denote $v_{0} \rightarrow v_{0}$ by \top and call it the truth.
Denote $\neg\left(v_{0} \rightarrow v_{0}\right)$ by \perp and call it the false.
Remark 1.19

- φ is a tautology iff $\varphi \sim \top$.
- φ is unsatisfiable iff $\varphi \sim \perp$.

Semantics

Let Γ be a set of formulas.
Definition 1.20
An evaluation $e: V \rightarrow\{0,1\}$ is a model of Γ if it is a model of every formula from Γ.
Notation: $e \vDash \Gamma$.
Notation 1.21
The set of models of Γ is denoted by $\operatorname{Mod}(\Gamma)$.
Definition 1.22
A formula φ is a semantic consequence of Γ if $\operatorname{Mod}(\Gamma) \subseteq \operatorname{Mod}(\varphi)$. Notation: $\Gamma \vDash \varphi$.

Semantics

Definition 1.23
－「 is satisfiable if it has a model．
－Γ is finitely satisfiable if every finite subset of Γ is satisfiable．
－If Γ is not satisfiable，we say also that Γ is unsatisfiable or contradictory．

Proposition 1.24
The following are equivalent：

- 「 is unsatisfiable．
- 「ト \perp ．

Theorem 1.25 （Compactness Theorem）
Γ is satisfiable iff Γ is finitely satisfiable．

Syntax

We use a deductive system of Hilbert type for $L P$.
Logical axioms
The set $A x m$ of (logical) axioms of $L P$ consists of:
$(A 1) \quad \varphi \rightarrow(\psi \rightarrow \varphi)$
(A2) $\quad(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow((\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \chi))$
(A3) $\quad(\neg \psi \rightarrow \neg \varphi) \rightarrow(\varphi \rightarrow \psi)$,
where φ, ψ and χ are formulas.
The deduction rule
For any formulas φ, ψ, from φ and $\varphi \rightarrow \psi$ infer ψ (modus ponens or (MP)):

$$
\frac{\varphi, \varphi \rightarrow \psi}{\psi}
$$

Syntax

Let Γ be a set of formulas. The definition of Γ-theorems is another example of an inductive definition.

Definition 1.26

The 「-theorems of PL are the formulas defined as follows:
(TO) Every logical axiom is a Γ-theorem.
(T1) Every formula of Γ is a Γ-theorem.
(T2) If φ and $\varphi \rightarrow \psi$ are Γ-theorems, then ψ is a Γ-theorem.
(T3) Only the formulas obtained by applying rules (T0), (T1), (T2) are Г-theorems.

If φ is a Γ-theorem, then we also say that φ is deduced from the hypotheses Γ.

Syntax

Notations

$$
\begin{array}{ll}
\Gamma \vdash \varphi & : \Leftrightarrow \varphi \text { is a } \Gamma \text {-theorem } \\
\vdash \varphi & : \Leftrightarrow \emptyset \vdash \varphi .
\end{array}
$$

Definition 1.27
A formula φ is called a theorem of $L P$ if $\vdash \varphi$.
By a reformulation of the conditions (T0), (T1), (T2) using the notation \vdash, we get

Remark 1.28

- If φ is an axiom, then $\Gamma \vdash \varphi$.
- If $\varphi \in \Gamma$, then $\Gamma \vdash \varphi$.
- If $\Gamma \vdash \varphi$ and $\Gamma \vdash \varphi \rightarrow \psi$, then $\Gamma \vdash \psi$.

Syntax

Definition 1.29
A 「-proof (or proof from the hypotheses Γ) is a sequence of formulas $\theta_{1}, \ldots, \theta_{n}$ such that for all $i \in\{1, \ldots, n\}$, one of the following holds:

- θ_{i} is an axiom.
- $\theta_{i} \in \Gamma$.
- there exist $k, j<i$ such that $\theta_{k}=\theta_{j} \rightarrow \theta_{i}$.

Definition 1.30
Let φ be a formula. A Г-proof of φ or a proof of φ from the hypotheses Γ is a Γ-proof $\theta_{1}, \ldots, \theta_{n}$ such that $\theta_{n}=\varphi$.

Proposition 1.31
For any formula φ,

$$
\Gamma \vdash \varphi \quad \text { iff } \quad \text { there exists a } \Gamma \text {-proof of } \varphi \text {. }
$$

Syntax

Theorem 1.32 (Deduction Theorem)
Let $\Gamma \cup\{\varphi, \psi\}$ be a set of formulas. Then

$$
\ulcorner\cup\{\varphi\} \vdash \psi \quad \text { iff } \quad \Gamma \vdash \varphi \rightarrow \psi
$$

Proposition 1.33
For any formulas φ, ψ, χ,

$$
\begin{aligned}
& \vdash(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi)) \\
& \vdash(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow(\psi \rightarrow(\varphi \rightarrow \chi))
\end{aligned}
$$

Proposition 1.34
Let $\Gamma \cup\{\varphi, \psi, \chi\}$ be a set of formulas.

$$
\begin{aligned}
\Gamma \vdash \varphi \rightarrow \psi \text { and } \Gamma \vdash \psi \rightarrow \chi & \Rightarrow \Gamma \vdash \varphi \rightarrow \chi \\
\Gamma \cup\{\neg \psi\} \vdash \neg(\varphi \rightarrow \varphi) & \Rightarrow \Gamma \vdash \psi \\
\Gamma \cup\{\psi\} \vdash \varphi \text { and } \Gamma \cup\{\neg \psi\} \vdash \varphi & \Rightarrow \Gamma \vdash \varphi .
\end{aligned}
$$

Consistent sets

Let Γ be a set of formulas.
Definition 1.35
Γ is called consistent if there exists a formula φ such that $\Gamma \forall \varphi$. Γ is said to be inconsistent if it is not consistent, that is $\Gamma \vdash \varphi$ for any formula φ.

Proposition 1.36

- \emptyset is consistent.
- The set of theorems is consistent.

Proposition 1.37
The following are equivalent:

- 「 is inconsistent.- 「 $\vdash \perp$.

Theorem 1.38 (Completeness Theorem (version 1))
Let Γ be a set of formulas. Then

$$
\Gamma \text { is consistent } \Longleftrightarrow \Gamma \text { is satisfiable. }
$$

Theorem 1.39 (Completeness Theorem (version 2))
Let Γ be a set of formulas. For any formula φ,

$$
\Gamma \vdash \varphi \quad \Longleftrightarrow \quad \Gamma \vDash \varphi .
$$

First-order logic

First-order languages

Definition 2.1
A first-order language \mathcal{L} consists of:

- a countable set $V=\left\{v_{n} \mid n \in \mathbb{N}\right\}$ of variables;
- the connectives \neg and \rightarrow;
- parantheses (,);
- the equality symbol =;
- the universal quantifier \forall;
- a set \mathcal{R} of relation symbols;
- a set \mathcal{F} of function symbols;
- a set \mathcal{C} of constant symbols;
- an arity function ari : $\mathcal{F} \cup \mathcal{R} \rightarrow \mathbb{N}^{*}$.
- \mathcal{L} is uniquely determined by the quadruple $\tau:=(\mathcal{R}, \mathcal{F}, \mathcal{C}$, ari $)$.
- τ is called the signature of \mathcal{L} or the similaritaty type of \mathcal{L}.

First-order languages

Let \mathcal{L} be a first-order language.

- The set $\operatorname{Sym}_{\mathcal{L}}$ of symbols of \mathcal{L} is

$$
\operatorname{Sym}_{\mathcal{L}}:=V \cup\{\neg, \rightarrow,(,),=, \forall\} \cup \mathcal{R} \cup \mathcal{F} \cup \mathcal{C}
$$

- The elements of $\mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$ are called non-logical symbols.
- The elements of $V \cup\{\neg, \rightarrow,(),,=, \forall\}$ are called logical symbols.
- We denote variables by x, y, z, v, \ldots, relation symbols by
$P, Q, R \ldots$, function symbols by f, g, h, \ldots and constant symbols by c, d, e, \ldots.
- For every $m \in \mathbb{N}^{*}$ we denote:
$\mathcal{F}_{m}:=$ the set of function symbols of arity m;
$\mathcal{R}_{m}:=\quad$ the set of relation symbols of arity m.

First-order languages

Definition 2.2

The set $\operatorname{Expr}_{\mathcal{L}}$ of expressions of \mathcal{L} is the set of all finite sequences of symbols of \mathcal{L}.

Definition 2.3

Let $\theta=\theta_{0} \theta_{1} \ldots \theta_{k-1}$ be an expression of \mathcal{L}, where $\theta_{i} \in \operatorname{Sym}_{\mathcal{L}}$ for all $i=0, \ldots, k-1$.

- If $0 \leq i \leq j \leq k-1$, then the expression $\theta_{i} \ldots \theta_{j}$ is called the (i, j)-subexpression of θ.
- We say that an expression ψ appears in θ if there exists $0 \leq i \leq j \leq k-1$ such that ψ is the (i, j)-subexpression of θ.
- We denote by $\operatorname{Var}(\theta)$ the set of variables appearing in θ.

First-order languages

Definition 2.4

The terms of \mathcal{L} are the expressions defined as follows:
(TO) Every variable is a term.
(T1) Every constant symbol is a term.
(T2) If $m \geq 1, f \in \mathcal{F}_{m}$ and t_{1}, \ldots, t_{m} are terms, then $f t_{1} \ldots t_{m}$ is a term.
(T3) Only the expressions obtained by applying rules (T0), (T1), (T2) are terms.

Notations:

- The set of terms is denoted by $\operatorname{Term}_{\mathcal{L}}$.
- Terms are denoted by $t, s, t_{1}, t_{2}, s_{1}, s_{2}, \ldots$.
- $\operatorname{Var}(t)$ is the set of variables that appear in the term t.

Definition 2.5
A term t is called closed if $\operatorname{Var}(t)=\emptyset$.

First-order languages

Proposition 2.6 (Induction on terms)
Let Γ be a set of terms satisfying the following properties:

- 「 contains the variables and the constant symbols.
- If $m \geq 1, f \in \mathcal{F}_{m}$ and $t_{1}, \ldots, t_{m} \in \Gamma$, then $f t_{1} \ldots t_{m} \in \Gamma$.

Then $\Gamma=$ Term $_{\mathcal{L}}$.

It is used to prove that all terms have a property \mathcal{P} : we define Γ as the set of all terms satisfying \mathcal{P} and apply induction on terms to obtain that $\Gamma=\operatorname{Term}_{\mathcal{L}}$.

First-order languages

Definition 2.7

The atomic formulas of \mathcal{L} are the expressions having one of the following forms:

- $(s=t)$, where s, t are terms;
- $\left(R t_{1} \ldots t_{m}\right)$, where $R \in \mathcal{R}_{m}$ and t_{1}, \ldots, t_{m} are terms.

Definition 2.8

The formulas of \mathcal{L} are the expressions defined as follows:
(FO) Every atomic formula is a formula.
(F1) If φ is a formula, then $(\neg \varphi)$ is a formula.
(F2) If φ and ψ are formulas, then $(\varphi \rightarrow \psi)$ is a formula.
(F3) If φ is a formula, then $(\forall x \varphi)$ is a formula for every variable x.
(F4) Only the expressions obtained by applying rules (F0), (F1), (F2), (F3) are formulas.

First-order languages

Notations

- The set of formulas is denoted by Form $_{\mathcal{L}}$.
- Formulas are denoted by $\varphi, \psi, \chi, \ldots$.
- $\operatorname{Var}(\varphi)$ is the set of variables that appear in the formula φ.

Unique readability

If φ is a formula, then exactly one of the following hold:

- $\varphi=(s=t)$, where s, t are terms.
- $\varphi=\left(R t_{1} \ldots t_{m}\right)$, where $R \in \mathcal{R}_{m}$ and t_{1}, \ldots, t_{m} are terms.
- $\varphi=(\neg \psi)$, where ψ is a formula.
- $\varphi=(\psi \rightarrow \chi)$, where ψ, χ are formulas.
- $\varphi=(\forall x \psi)$, where x is a variable and ψ is a formula.

Furthermore, φ can be written in a unique way in one of these forms.

First-order languages

Proposition 2.9 (Induction principle on formulas)

Let Γ be a set of formulas satisfying the following properties:

- 「 contains all atomic formulas.
- Γ is closed to \neg, \rightarrow and $\forall x$ (for any variable x), that is:

$$
\text { if } \varphi, \psi \in \Gamma \text {, then }(\neg \varphi),(\varphi \rightarrow \psi),(\forall x \varphi) \in \Gamma \text {. }
$$

Then $\Gamma=$ Form $_{\mathcal{L}}$.

It is used to prove that all formulas have a property \mathcal{P} : we define Γ as the set of all formulas satisfying \mathcal{P} and apply induction on formulas to obtain that $\Gamma=$ Form $_{\mathcal{L}}$.

Derived connectives
Connectives \vee, \wedge, \leftrightarrow and the existential quantifier \exists are introduced by the following abbreviations:

$$
\begin{array}{ll}
\varphi \vee \psi & :=((\neg \varphi) \rightarrow \psi) \\
\varphi \wedge \psi & :=\neg(\varphi \rightarrow(\neg \psi))) \\
\varphi \leftrightarrow \psi & :=((\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)) \\
\exists x \varphi & :=(\neg \forall x(\neg \varphi))
\end{array}
$$

