
Logic for Multiagent Systems
Master 1st Year, 1st Semester 201/2022

Laurenţiu Leuştean
Web page: http://cs.unibuc.ro/~lleustean/

1

http://cs.unibuc.ro/~lleustean/

Propositional logic

2

Language

Definition 1.1

The language of propositional logic PL consists of:

I a countable set V = {vn | n ∈ N} of variables;

I the logic connectives ¬ (non), → (implies)

I parantheses: (,).

• The set Sym of symbols of PL is

Sym := V ∪ {¬,→, (,)}.

• We denote variables by u, v , x , y , z . . .

3

Language

Definition 1.2

The set Expr of expressions of PL is the set of all finite sequences
of symbols of PL.

Definition 1.3

Let θ = θ0θ1 . . . θk−1 be an expression, where θi ∈ Sym for all
i = 0, . . . , k − 1.

I If 0 ≤ i ≤ j ≤ k − 1, then the expression θi . . . θj is called the
(i , j)-subexpression of θ.

I We say that an expression ψ appears in θ if there exists
0 ≤ i ≤ j ≤ k − 1 such thatψ is the (i , j)-subexpression of θ.

I We denote by Var(θ) the set of variables appearing in θ.

4

Language

The definition of formulas is an example of an inductive definition.

Definition 1.4

The formulas of PL are the expressions of PL defined as follows:

(F0) Any variable is a formula.

(F1) If ϕ is a formula, then (¬ϕ) is a formula.

(F2) If ϕ and ψ are formulas, then (ϕ→ ψ) is a formula.

(F3) Only the expressions obtained by applying rules (F0), (F1),

(F2) are formulas.

Notations

The set of formulas is denoted by Form. Formulas are denoted by
ϕ,ψ, χ,

Proposition 1.5

The set Form is countable.
5

Language

Unique readability

If ϕ is a formula, then exactly one of the following hold:

I ϕ = v , where v ∈ V .

I ϕ = (¬ψ), where ψ is a formula.

I ϕ = (ψ → χ), where ψ, χ are formulas.

Furthermore, ϕ can be written in a unique way in one of these
forms.

Definition 1.6

Let ϕ be a formula. A subformula of ϕ is any formula ψ that
appears in ϕ.

6

Language

Proposition 1.7 (Induction principle on formulas)

Let Γ be a set of formulas satisfying the following properties:

I V ⊆ Γ.

I Γ is closed to ¬, that is: ϕ ∈ Γ implies (¬ϕ) ∈ Γ.

I Γ is closed to →, that is: ϕ,ψ ∈ Γ implies (ϕ→ ψ) ∈ Γ.

Then Γ = Form.

It is used to prove that all formulas have a property P: we define Γ
as the set of all formulas satisfying P and apply induction on
formulas to obtain that Γ = Form.

7

Language

The derived connectives ∨ (or), ∧ (and), ↔ (if and only if) are
introduced by the following abbreviations:

ϕ ∨ ψ := ((¬ϕ)→ ψ)

ϕ ∧ ψ := ¬(ϕ→ (¬ψ)))

ϕ↔ ψ := ((ϕ→ ψ) ∧ (ψ → ϕ))

Conventions and notations
I The external parantheses are omitted, we put them only when

necessary. We write ¬ϕ, ϕ→ ψ, but we write (ϕ→ ψ)→ χ.
I To reduce the use of parentheses, we assume that

I ¬ has higher precedence than →,∧,∨,↔;
I ∧,∨ have higher precedence than →,↔.

I Hence, the formula (((ϕ→ (ψ ∨ χ)) ∧ ((¬ψ)↔ (ψ ∨ χ))) is
written as (ϕ→ ψ ∨ χ) ∧ (¬ψ ↔ ψ ∨ χ).

8

Semantics

Truth values

We use the following notations for the truth values:

1 for true and 0 for false.

Hence, the set of truth values is {0, 1}.

Define the following operations on {0, 1} using truth tables.

¬¬¬ : {0, 1} → {0, 1},
p ¬¬¬p
0 1
1 0

→→→: {0, 1} × {0, 1} → {0, 1},

p q p→→→ q

0 0 1
0 1 1
1 0 0
1 1 1

9

Semantics

∨∨∨ : {0, 1} × {0, 1} → {0, 1},

p q p ∨∨∨ q

0 0 0
0 1 1
1 0 1
1 1 1

∧∧∧ : {0, 1} × {0, 1} → {0, 1},

p q p ∧∧∧ q

0 0 0
0 1 0
1 0 0
1 1 1

↔↔↔: {0, 1} × {0, 1} → {0, 1},

p q p↔↔↔ q

0 0 1
0 1 0
1 0 0
1 1 1

10

Semantics

Definition 1.8

An evaluation (or interpretation) is a function e : V → {0, 1}.

Theorem 1.9

For any evaluation e : V → {0, 1} there exists a unique function

e+ : Form→ {0, 1}
satisfying the following properties:

I e+(v) = e(v) for all v ∈ V .

I e+(¬ϕ) = ¬¬¬e+(ϕ) for any formula ϕ.

I e+(ϕ→ ψ) = e+(ϕ)→→→ e+(ψ) for any formulas ϕ, ψ.

Proposition 1.10

For any formula ϕ and all evaluations e1, e2 : V → {0, 1},
if e1(v) = e2(v) for all v ∈ Var(ϕ), then e+1 (ϕ) = e+2 (ϕ).

11

Semantics

Let ϕ be a formula.

Definition 1.11

I An evaluation e : V → {0, 1} is a model of ϕ if e+(ϕ) = 1.
Notation: e � ϕ.

I ϕ is satisfiable if it has a model.

I If ϕ is not satisfiable, we also say that ϕ is unsatisfiable or
contradictory.

I ϕ is a tautology if every evaluation is a model of ϕ.
Notation: � ϕ.

Notation 1.12

The set of models of ϕ is denoted by Mod(ϕ).

12

Semantics

Remark 1.13
I ϕ is a tautology iff ¬ϕ is unsatisfiable.

I ϕ is unsatisfiable iff ¬ϕ is a tautology.

Proposition 1.14

Let e : V → {0, 1} be an evaluation. Then for all formulas ϕ, ψ,

I e � ¬ϕ iff e 6� ϕ.

I e � ϕ→ ψ iff (e � ϕ implies e � ψ) iff (e 6� ϕ or e � ψ).

I e � ϕ ∨ ψ iff (e � ϕ or e � ψ).

I e � ϕ ∧ ψ iff (e � ϕ and e � ψ).

I e � ϕ↔ ψ iff (e � ϕ iff e � ψ).

13

Semantics

Definition 1.15

Let ϕ,ψ be formulas. We say that

I ϕ is a semantic consequence of ψ if Mod(ψ) ⊆ Mod(ϕ).
Notation: ψ � ϕ.

I ϕ and ψ are (logically) equivalent if Mod(ψ) = Mod(ϕ).
Notation: ϕ ∼ ψ.

Remark 1.16

Let ϕ,ψ be formulas.

I ψ � ϕ iff � ψ → ϕ.

I ψ ∼ ϕ iff (ψ � ϕ and ϕ � ψ) iff � ψ ↔ ϕ.

14

Semantics

For all formulas ϕ,ψ, χ,

� ϕ ∨ ¬ϕ
� ¬(ϕ ∧ ¬ϕ)

� ϕ ∧ ψ → ϕ

� ϕ→ ϕ ∨ ψ
� ϕ→ (ψ → ϕ)

� (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

� (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

� (ϕ→ ψ) ∨ (¬ϕ→ ψ)

� (ϕ→ ψ) ∨ (ϕ→ ¬ψ)

� ¬ϕ→ (¬ψ ↔ (ψ → ϕ))

� (ϕ→ ψ)→ (((ϕ→ χ)→ ψ)→ ψ)

� ¬ψ → (ψ → ϕ)
15

Semantics

� ψ → (¬ψ → ϕ)

� (ϕ→ ¬ϕ)→ ¬ϕ
� (¬ϕ→ ϕ)→ ϕ

ψ � ϕ→ ψ

¬ϕ � ϕ→ ψ

¬ψ ∧ (ϕ→ ψ) � ¬ϕ
(ϕ→ ψ) ∧ (ψ → χ) � ϕ→ χ

ϕ ∧ (ϕ→ ψ) � ψ

{ψ,¬ψ} � ϕ

{ψ,¬ϕ} � ¬(ψ → ϕ)

16

Semantics

ϕ ∼ ¬¬ϕ
ϕ→ ψ ∼ ¬ψ → ¬ϕ
ϕ ∨ ψ ∼ ¬(¬ϕ ∧ ¬ψ)

ϕ ∧ ψ ∼ ¬(¬ϕ ∨ ¬ψ)

ϕ→ (ψ → χ) ∼ ϕ ∧ ψ → χ

ϕ ∼ ϕ ∧ ϕ ∼ ϕ ∨ ϕ
ϕ ∧ ψ ∼ ψ ∧ ϕ
ϕ ∨ ψ ∼ ψ ∨ ϕ

ϕ ∧ (ψ ∧ χ) ∼ (ϕ ∧ ψ) ∧ χ
ϕ ∨ (ψ ∨ χ) ∼ (ϕ ∨ ψ) ∨ χ

ϕ ∨ (ϕ ∧ ψ) ∼ ϕ

ϕ ∧ (ϕ ∨ ψ) ∼ ϕ

17

Semantics

ϕ ∧ (ψ ∨ χ) ∼ (ϕ ∧ ψ) ∨ (ϕ ∧ χ)

ϕ ∨ (ψ ∧ χ) ∼ (ϕ ∨ ψ) ∧ (ϕ ∨ χ)

ϕ→ ψ ∧ χ ∼ (ϕ→ ψ) ∧ (ϕ→ χ)

ϕ→ ψ ∨ χ ∼ (ϕ→ ψ) ∨ (ϕ→ χ)

ϕ ∧ ψ → χ ∼ (ϕ→ χ) ∨ (ψ → χ)

ϕ ∨ ψ → χ ∼ (ϕ→ χ) ∧ (ψ → χ)

ϕ→ (ψ → χ) ∼ ψ → (ϕ→ χ)

∼ (ϕ→ ψ)→ (ϕ→ χ)

¬ϕ ∼ ϕ→ ¬ϕ ∼ (ϕ→ ψ) ∧ (ϕ→ ¬ψ)

ϕ→ ψ ∼ ¬ϕ ∨ ψ ∼ ¬(ϕ ∧ ¬ψ)

ϕ ∨ ψ ∼ ϕ ∨ (¬ϕ ∧ ψ) ∼ (ϕ→ ψ)→ ψ

ϕ↔ (ψ ↔ χ) ∼ (ϕ↔ ψ)↔ χ

18

Semantics

It is often useful to have a canonical tautology and a canonical
unsatisfiable formula.

Remark 1.17

v0 → v0 is a tautology and ¬(v0 → v0) is unsatisfiable.

Notation 1.18

Denote v0 → v0 by > and call it the truth.
Denote ¬(v0 → v0) by ⊥ and call it the false.

Remark 1.19
I ϕ is a tautology iff ϕ ∼ >.

I ϕ is unsatisfiable iff ϕ ∼ ⊥.

19

Semantics

Let Γ be a set of formulas.

Definition 1.20

An evaluation e : V → {0, 1} is a model of Γ if it is a model of
every formula from Γ.
Notation: e � Γ.

Notation 1.21

The set of models of Γ is denoted by Mod(Γ).

Definition 1.22

A formula ϕ is a semantic consequence of Γ if Mod(Γ) ⊆ Mod(ϕ).
Notation: Γ � ϕ.

20

Semantics

Definition 1.23
I Γ is satisfiable if it has a model.

I Γ is finitely satisfiable if every finite subset of Γ is satisfiable.

I If Γ is not satisfiable, we say also that Γ is unsatisfiable or
contradictory.

Proposition 1.24

The following are equivalent:

I Γ is unsatisfiable.

I Γ � ⊥.

Theorem 1.25 (Compactness Theorem)

Γ is satisfiable iff Γ is finitely satisfiable.

21

Syntax

We use a deductive system of Hilbert type for LP.

Logical axioms

The set Axm of (logical) axioms of LP consists of:

(A1) ϕ→ (ψ → ϕ)

(A2) (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

(A3) (¬ψ → ¬ϕ)→ (ϕ→ ψ),

where ϕ, ψ and χ are formulas.

The deduction rule

For any formulas ϕ, ψ, from ϕ and ϕ→ ψ infer ψ (modus ponens
or (MP)):

ϕ, ϕ→ ψ

ψ

22

Syntax

Let Γ be a set of formulas. The definition of Γ-theorems is another
example of an inductive definition.

Definition 1.26

The Γ-theorems of PL are the formulas defined as follows:

(T0) Every logical axiom is a Γ-theorem.

(T1) Every formula of Γ is a Γ-theorem.

(T2) If ϕ and ϕ→ ψ are Γ-theorems, then ψ is a Γ-theorem.

(T3) Only the formulas obtained by applying rules (T0), (T1),

(T2) are Γ-theorems.

If ϕ is a Γ-theorem, then we also say that ϕ is deduced from the
hypotheses Γ.

23

Syntax

Notations

Γ ` ϕ :⇔ ϕ is a Γ-theorem

` ϕ :⇔ ∅ ` ϕ.

Definition 1.27

A formula ϕ is called a theorem of LP if ` ϕ.

By a reformulation of the conditions (T0), (T1), (T2) using the
notation `, we get

Remark 1.28
I If ϕ is an axiom, then Γ ` ϕ.

I If ϕ ∈ Γ, then Γ ` ϕ.

I If Γ ` ϕ and Γ ` ϕ→ ψ, then Γ ` ψ.

24

Syntax

Definition 1.29
A Γ-proof (or proof from the hypotheses Γ) is a sequence of
formulas θ1, . . ., θn such that for all i ∈ {1, . . . , n}, one of the
following holds:

I θi is an axiom.

I θi ∈ Γ.

I there exist k , j < i such that θk = θj → θi .

Definition 1.30
Let ϕ be a formula. A Γ-proof of ϕ or a proof of ϕ from the
hypotheses Γ is a Γ-proof θ1, . . ., θn such that θn = ϕ.

Proposition 1.31
For any formula ϕ,

Γ ` ϕ iff there exists a Γ-proof of ϕ.

25

Syntax

Theorem 1.32 (Deduction Theorem)

Let Γ ∪ {ϕ,ψ} be a set of formulas. Then

Γ ∪ {ϕ} ` ψ iff Γ ` ϕ→ ψ.

Proposition 1.33
For any formulas ϕ,ψ, χ,

` (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

` (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))

Proposition 1.34

Let Γ ∪ {ϕ,ψ, χ} be a set of formulas.

Γ ` ϕ→ ψ and Γ ` ψ → χ ⇒ Γ ` ϕ→ χ

Γ ∪ {¬ψ} ` ¬(ϕ→ ϕ) ⇒ Γ ` ψ
Γ ∪ {ψ} ` ϕ and Γ ∪ {¬ψ} ` ϕ ⇒ Γ ` ϕ.

26

Consistent sets

Let Γ be a set of formulas.

Definition 1.35

Γ is called consistent if there exists a formula ϕ such that Γ 6` ϕ.
Γ is said to be inconsistent if it is not consistent, that is Γ ` ϕ for
any formula ϕ.

Proposition 1.36

I ∅ is consistent.

I The set of theorems is consistent.

Proposition 1.37

The following are equivalent:

I Γ is inconsistent.

I Γ ` ⊥.

27

Completeness Theorem

Theorem 1.38 (Completeness Theorem (version 1))

Let Γ be a set of formulas. Then

Γ is consistent ⇐⇒ Γ is satisfiable.

Theorem 1.39 (Completeness Theorem (version 2))

Let Γ be a set of formulas. For any formula ϕ,

Γ ` ϕ ⇐⇒ Γ � ϕ.

28

First-order logic

29

First-order languages

Definition 2.1

A first-order language L consists of:

I a countable set V = {vn | n ∈ N} of variables;

I the connectives ¬ and →;

I parantheses (,);

I the equality symbol =;

I the universal quantifier ∀;

I a set R of relation symbols;

I a set F of function symbols;

I a set C of constant symbols;

I an arity function ari : F ∪R → N∗.

I L is uniquely determined by the quadruple τ := (R,F , C, ari).
I τ is called the signature of L or the similaritaty type of L.

30

First-order languages

Let L be a first-order language.

• The set SymL of symbols of L is

SymL := V ∪ {¬,→, (,),=,∀} ∪ R ∪ F ∪ C

• The elements of R∪ F ∪ C are called non-logical symbols.
• The elements of V ∪{¬,→, (,),=,∀} are called logical symbols.

• We denote variables by x , y , z , v , . . ., relation symbols by
P,Q,R . . ., function symbols by f , g , h, . . . and constant symbols
by c, d , e,

• For every m ∈ N∗ we denote:

Fm := the set of function symbols of arity m;

Rm := the set of relation symbols of arity m.
31

First-order languages

Definition 2.2

The set ExprL of expressions of L is the set of all finite sequences
of symbols of L.

Definition 2.3

Let θ = θ0θ1 . . . θk−1 be an expression of L, where θi ∈ SymL for
all i = 0, . . . , k − 1.

I If 0 ≤ i ≤ j ≤ k − 1, then the expression θi . . . θj is called the
(i , j)-subexpression of θ.

I We say that an expression ψ appears in θ if there exists
0 ≤ i ≤ j ≤ k − 1 such thatψ is the (i , j)-subexpression of θ.

I We denote by Var(θ) the set of variables appearing in θ.

32

First-order languages

Definition 2.4

The terms of L are the expressions defined as follows:

(T0) Every variable is a term.

(T1) Every constant symbol is a term.

(T2) If m ≥ 1, f ∈ Fm and t1, . . . , tm are terms, then ft1 . . . tm is a
term.

(T3) Only the expressions obtained by applying rules (T0), (T1),
(T2) are terms.

Notations:
I The set of terms is denoted by TermL.
I Terms are denoted by t, s, t1, t2, s1, s2,
I Var(t) is the set of variables that appear in the term t.

Definition 2.5

A term t is called closed if Var(t) = ∅.
33

First-order languages

Proposition 2.6 (Induction on terms)

Let Γ be a set of terms satisfying the following properties:

I Γ contains the variables and the constant symbols.

I If m ≥ 1, f ∈ Fm and t1, . . . , tm ∈ Γ, then ft1 . . . tm ∈ Γ.

Then Γ = TermL.

It is used to prove that all terms have a property P: we define Γ as
the set of all terms satisfying P and apply induction on terms to
obtain that Γ = TermL.

34

First-order languages

Definition 2.7

The atomic formulas of L are the expressions having one of the
following forms:

I (s = t), where s, t are terms;

I (Rt1 . . . tm), where R ∈ Rm and t1, . . . , tm are terms.

Definition 2.8

The formulas of L are the expressions defined as follows:

(F0) Every atomic formula is a formula.

(F1) If ϕ is a formula, then (¬ϕ) is a formula.

(F2) If ϕ and ψ are formulas, then (ϕ→ ψ) is a formula.

(F3) If ϕ is a formula, then (∀xϕ) is a formula for every variable x .

(F4) Only the expressions obtained by applying rules (F0), (F1),
(F2), (F3) are formulas.

35

First-order languages

Notations
I The set of formulas is denoted by FormL.

I Formulas are denoted by ϕ,ψ, χ,

I Var(ϕ) is the set of variables that appear in the formula ϕ.

Unique readability

If ϕ is a formula, then exactly one of the following hold:

I ϕ = (s = t), where s, t are terms.

I ϕ = (Rt1 . . . tm), where R ∈ Rm and t1, . . . , tm are terms.

I ϕ = (¬ψ), where ψ is a formula.

I ϕ = (ψ → χ), where ψ, χ are formulas.

I ϕ = (∀xψ), where x is a variable and ψ is a formula.

Furthermore, ϕ can be written in a unique way in one of these
forms.

36

First-order languages

Proposition 2.9 (Induction principle on formulas)

Let Γ be a set of formulas satisfying the following properties:

I Γ contains all atomic formulas.

I Γ is closed to ¬,→ and ∀x (for any variable x), that is:

if ϕ,ψ ∈ Γ, then (¬ϕ), (ϕ→ ψ), (∀xϕ) ∈ Γ.

Then Γ = FormL.

It is used to prove that all formulas have a property P: we define Γ
as the set of all formulas satisfying P and apply induction on
formulas to obtain that Γ = FormL.

37

First-order languages

Derived connectives

Connectives ∨, ∧, ↔ and the existential quantifier ∃ are
introduced by the following abbreviations:

ϕ ∨ ψ := ((¬ϕ)→ ψ)

ϕ ∧ ψ := ¬(ϕ→ (¬ψ)))

ϕ↔ ψ := ((ϕ→ ψ) ∧ (ψ → ϕ))

∃xϕ := (¬∀x(¬ϕ))

38

	Classical propositional logic
	Classical first-order logic

