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Propositional logic
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Language

Definition 1.1

The language of propositional logic PL consists of:

I a countable set V = {vn | n ∈ N} of variables;

I the logic connectives ¬ (non), → (implies)

I parantheses: ( , ).

• The set Sym of symbols of PL is

Sym := V ∪ {¬,→, (, )}.

• We denote variables by u, v , x , y , z . . .
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Language

Definition 1.2

The set Expr of expressions of PL is the set of all finite sequences
of symbols of PL.

Definition 1.3

Let θ = θ0θ1 . . . θk−1 be an expression, where θi ∈ Sym for all
i = 0, . . . , k − 1.

I If 0 ≤ i ≤ j ≤ k − 1, then the expression θi . . . θj is called the
(i , j)-subexpression of θ.

I We say that an expression ψ appears in θ if there exists
0 ≤ i ≤ j ≤ k − 1 such thatψ is the (i , j)-subexpression of θ.

I We denote by Var(θ) the set of variables appearing in θ.
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Language

The definition of formulas is an example of an inductive definition.

Definition 1.4

The formulas of PL are the expressions of PL defined as follows:

(F0) Any variable is a formula.

(F1) If ϕ is a formula, then (¬ϕ) is a formula.

(F2) If ϕ and ψ are formulas, then (ϕ→ ψ) is a formula.

(F3) Only the expressions obtained by applying rules (F0), (F1),

(F2) are formulas.

Notations

The set of formulas is denoted by Form. Formulas are denoted by
ϕ,ψ, χ, . . ..

Proposition 1.5

The set Form is countable.
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Language

Unique readability

If ϕ is a formula, then exactly one of the following hold:

I ϕ = v , where v ∈ V .

I ϕ = (¬ψ), where ψ is a formula.

I ϕ = (ψ → χ), where ψ, χ are formulas.

Furthermore, ϕ can be written in a unique way in one of these
forms.

Definition 1.6

Let ϕ be a formula. A subformula of ϕ is any formula ψ that
appears in ϕ.
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Language

Proposition 1.7 (Induction principle on formulas)

Let Γ be a set of formulas satisfying the following properties:

I V ⊆ Γ.

I Γ is closed to ¬, that is: ϕ ∈ Γ implies (¬ϕ) ∈ Γ.

I Γ is closed to →, that is: ϕ,ψ ∈ Γ implies (ϕ→ ψ) ∈ Γ.

Then Γ = Form.

It is used to prove that all formulas have a property P: we define Γ
as the set of all formulas satisfying P and apply induction on
formulas to obtain that Γ = Form.
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Language

The derived connectives ∨ (or), ∧ (and), ↔ (if and only if) are
introduced by the following abbreviations:

ϕ ∨ ψ := ((¬ϕ)→ ψ)

ϕ ∧ ψ := ¬(ϕ→ (¬ψ)))

ϕ↔ ψ := ((ϕ→ ψ) ∧ (ψ → ϕ))

Conventions and notations
I The external parantheses are omitted, we put them only when

necessary. We write ¬ϕ, ϕ→ ψ, but we write (ϕ→ ψ)→ χ.
I To reduce the use of parentheses, we assume that

I ¬ has higher precedence than →,∧,∨,↔;
I ∧,∨ have higher precedence than →,↔.

I Hence, the formula (((ϕ→ (ψ ∨ χ)) ∧ ((¬ψ)↔ (ψ ∨ χ))) is
written as (ϕ→ ψ ∨ χ) ∧ (¬ψ ↔ ψ ∨ χ).

8



Semantics

Truth values

We use the following notations for the truth values:

1 for true and 0 for false.

Hence, the set of truth values is {0, 1}.

Define the following operations on {0, 1} using truth tables.

¬¬¬ : {0, 1} → {0, 1},
p ¬¬¬p
0 1
1 0

→→→: {0, 1} × {0, 1} → {0, 1},

p q p→→→ q

0 0 1
0 1 1
1 0 0
1 1 1
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Semantics

∨∨∨ : {0, 1} × {0, 1} → {0, 1},

p q p ∨∨∨ q

0 0 0
0 1 1
1 0 1
1 1 1

∧∧∧ : {0, 1} × {0, 1} → {0, 1},

p q p ∧∧∧ q

0 0 0
0 1 0
1 0 0
1 1 1

↔↔↔: {0, 1} × {0, 1} → {0, 1},

p q p↔↔↔ q

0 0 1
0 1 0
1 0 0
1 1 1
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Semantics

Definition 1.8

An evaluation (or interpretation) is a function e : V → {0, 1}.

Theorem 1.9

For any evaluation e : V → {0, 1} there exists a unique function

e+ : Form→ {0, 1}
satisfying the following properties:

I e+(v) = e(v) for all v ∈ V .

I e+(¬ϕ) = ¬¬¬e+(ϕ) for any formula ϕ.

I e+(ϕ→ ψ) = e+(ϕ)→→→ e+(ψ) for any formulas ϕ, ψ.

Proposition 1.10

For any formula ϕ and all evaluations e1, e2 : V → {0, 1},
if e1(v) = e2(v) for all v ∈ Var(ϕ), then e+1 (ϕ) = e+2 (ϕ).
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Semantics

Let ϕ be a formula.

Definition 1.11

I An evaluation e : V → {0, 1} is a model of ϕ if e+(ϕ) = 1.
Notation: e � ϕ.

I ϕ is satisfiable if it has a model.

I If ϕ is not satisfiable, we also say that ϕ is unsatisfiable or
contradictory.

I ϕ is a tautology if every evaluation is a model of ϕ.
Notation: � ϕ.

Notation 1.12

The set of models of ϕ is denoted by Mod(ϕ).
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Semantics

Remark 1.13
I ϕ is a tautology iff ¬ϕ is unsatisfiable.

I ϕ is unsatisfiable iff ¬ϕ is a tautology.

Proposition 1.14

Let e : V → {0, 1} be an evaluation. Then for all formulas ϕ, ψ,

I e � ¬ϕ iff e 6� ϕ.

I e � ϕ→ ψ iff (e � ϕ implies e � ψ) iff (e 6� ϕ or e � ψ).

I e � ϕ ∨ ψ iff (e � ϕ or e � ψ).

I e � ϕ ∧ ψ iff (e � ϕ and e � ψ).

I e � ϕ↔ ψ iff (e � ϕ iff e � ψ).
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Semantics

Definition 1.15

Let ϕ,ψ be formulas. We say that

I ϕ is a semantic consequence of ψ if Mod(ψ) ⊆ Mod(ϕ).
Notation: ψ � ϕ.

I ϕ and ψ are (logically) equivalent if Mod(ψ) = Mod(ϕ).
Notation: ϕ ∼ ψ.

Remark 1.16

Let ϕ,ψ be formulas.

I ψ � ϕ iff � ψ → ϕ.

I ψ ∼ ϕ iff (ψ � ϕ and ϕ � ψ) iff � ψ ↔ ϕ.
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Semantics

For all formulas ϕ,ψ, χ,

� ϕ ∨ ¬ϕ
� ¬(ϕ ∧ ¬ϕ)

� ϕ ∧ ψ → ϕ

� ϕ→ ϕ ∨ ψ
� ϕ→ (ψ → ϕ)

� (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

� (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

� (ϕ→ ψ) ∨ (¬ϕ→ ψ)

� (ϕ→ ψ) ∨ (ϕ→ ¬ψ)

� ¬ϕ→ (¬ψ ↔ (ψ → ϕ))

� (ϕ→ ψ)→ (((ϕ→ χ)→ ψ)→ ψ)

� ¬ψ → (ψ → ϕ)
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Semantics

� ψ → (¬ψ → ϕ)

� (ϕ→ ¬ϕ)→ ¬ϕ
� (¬ϕ→ ϕ)→ ϕ

ψ � ϕ→ ψ

¬ϕ � ϕ→ ψ

¬ψ ∧ (ϕ→ ψ) � ¬ϕ
(ϕ→ ψ) ∧ (ψ → χ) � ϕ→ χ

ϕ ∧ (ϕ→ ψ) � ψ

{ψ,¬ψ} � ϕ

{ψ,¬ϕ} � ¬(ψ → ϕ)
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Semantics

ϕ ∼ ¬¬ϕ
ϕ→ ψ ∼ ¬ψ → ¬ϕ
ϕ ∨ ψ ∼ ¬(¬ϕ ∧ ¬ψ)

ϕ ∧ ψ ∼ ¬(¬ϕ ∨ ¬ψ)

ϕ→ (ψ → χ) ∼ ϕ ∧ ψ → χ

ϕ ∼ ϕ ∧ ϕ ∼ ϕ ∨ ϕ
ϕ ∧ ψ ∼ ψ ∧ ϕ
ϕ ∨ ψ ∼ ψ ∨ ϕ

ϕ ∧ (ψ ∧ χ) ∼ (ϕ ∧ ψ) ∧ χ
ϕ ∨ (ψ ∨ χ) ∼ (ϕ ∨ ψ) ∨ χ

ϕ ∨ (ϕ ∧ ψ) ∼ ϕ

ϕ ∧ (ϕ ∨ ψ) ∼ ϕ
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Semantics

ϕ ∧ (ψ ∨ χ) ∼ (ϕ ∧ ψ) ∨ (ϕ ∧ χ)

ϕ ∨ (ψ ∧ χ) ∼ (ϕ ∨ ψ) ∧ (ϕ ∨ χ)

ϕ→ ψ ∧ χ ∼ (ϕ→ ψ) ∧ (ϕ→ χ)

ϕ→ ψ ∨ χ ∼ (ϕ→ ψ) ∨ (ϕ→ χ)

ϕ ∧ ψ → χ ∼ (ϕ→ χ) ∨ (ψ → χ)

ϕ ∨ ψ → χ ∼ (ϕ→ χ) ∧ (ψ → χ)

ϕ→ (ψ → χ) ∼ ψ → (ϕ→ χ)

∼ (ϕ→ ψ)→ (ϕ→ χ)

¬ϕ ∼ ϕ→ ¬ϕ ∼ (ϕ→ ψ) ∧ (ϕ→ ¬ψ)

ϕ→ ψ ∼ ¬ϕ ∨ ψ ∼ ¬(ϕ ∧ ¬ψ)

ϕ ∨ ψ ∼ ϕ ∨ (¬ϕ ∧ ψ) ∼ (ϕ→ ψ)→ ψ

ϕ↔ (ψ ↔ χ) ∼ (ϕ↔ ψ)↔ χ
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Semantics

It is often useful to have a canonical tautology and a canonical
unsatisfiable formula.

Remark 1.17

v0 → v0 is a tautology and ¬(v0 → v0) is unsatisfiable.

Notation 1.18

Denote v0 → v0 by > and call it the truth.
Denote ¬(v0 → v0) by ⊥ and call it the false.

Remark 1.19
I ϕ is a tautology iff ϕ ∼ >.

I ϕ is unsatisfiable iff ϕ ∼ ⊥.
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Semantics

Let Γ be a set of formulas.

Definition 1.20

An evaluation e : V → {0, 1} is a model of Γ if it is a model of
every formula from Γ.
Notation: e � Γ.

Notation 1.21

The set of models of Γ is denoted by Mod(Γ).

Definition 1.22

A formula ϕ is a semantic consequence of Γ if Mod(Γ) ⊆ Mod(ϕ).
Notation: Γ � ϕ.
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Semantics

Definition 1.23
I Γ is satisfiable if it has a model.

I Γ is finitely satisfiable if every finite subset of Γ is satisfiable.

I If Γ is not satisfiable, we say also that Γ is unsatisfiable or
contradictory.

Proposition 1.24

The following are equivalent:

I Γ is unsatisfiable.

I Γ � ⊥.

Theorem 1.25 (Compactness Theorem)

Γ is satisfiable iff Γ is finitely satisfiable.
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Syntax

We use a deductive system of Hilbert type for LP.

Logical axioms

The set Axm of (logical) axioms of LP consists of:

(A1) ϕ→ (ψ → ϕ)

(A2) (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

(A3) (¬ψ → ¬ϕ)→ (ϕ→ ψ),

where ϕ, ψ and χ are formulas.

The deduction rule

For any formulas ϕ, ψ, from ϕ and ϕ→ ψ infer ψ (modus ponens
or (MP)):

ϕ, ϕ→ ψ

ψ
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Syntax

Let Γ be a set of formulas. The definition of Γ-theorems is another
example of an inductive definition.

Definition 1.26

The Γ-theorems of PL are the formulas defined as follows:

(T0) Every logical axiom is a Γ-theorem.

(T1) Every formula of Γ is a Γ-theorem.

(T2) If ϕ and ϕ→ ψ are Γ-theorems, then ψ is a Γ-theorem.

(T3) Only the formulas obtained by applying rules (T0), (T1),

(T2) are Γ-theorems.

If ϕ is a Γ-theorem, then we also say that ϕ is deduced from the
hypotheses Γ.
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Syntax

Notations

Γ ` ϕ :⇔ ϕ is a Γ-theorem

` ϕ :⇔ ∅ ` ϕ.

Definition 1.27

A formula ϕ is called a theorem of LP if ` ϕ.

By a reformulation of the conditions (T0), (T1), (T2) using the
notation `, we get

Remark 1.28
I If ϕ is an axiom, then Γ ` ϕ.

I If ϕ ∈ Γ, then Γ ` ϕ.

I If Γ ` ϕ and Γ ` ϕ→ ψ, then Γ ` ψ.
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Syntax

Definition 1.29
A Γ-proof (or proof from the hypotheses Γ) is a sequence of
formulas θ1, . . ., θn such that for all i ∈ {1, . . . , n}, one of the
following holds:

I θi is an axiom.

I θi ∈ Γ.

I there exist k , j < i such that θk = θj → θi .

Definition 1.30
Let ϕ be a formula. A Γ-proof of ϕ or a proof of ϕ from the
hypotheses Γ is a Γ-proof θ1, . . ., θn such that θn = ϕ.

Proposition 1.31
For any formula ϕ,

Γ ` ϕ iff there exists a Γ-proof of ϕ.
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Syntax

Theorem 1.32 (Deduction Theorem)

Let Γ ∪ {ϕ,ψ} be a set of formulas. Then

Γ ∪ {ϕ} ` ψ iff Γ ` ϕ→ ψ.

Proposition 1.33
For any formulas ϕ,ψ, χ,

` (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

` (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))

Proposition 1.34

Let Γ ∪ {ϕ,ψ, χ} be a set of formulas.

Γ ` ϕ→ ψ and Γ ` ψ → χ ⇒ Γ ` ϕ→ χ

Γ ∪ {¬ψ} ` ¬(ϕ→ ϕ) ⇒ Γ ` ψ
Γ ∪ {ψ} ` ϕ and Γ ∪ {¬ψ} ` ϕ ⇒ Γ ` ϕ.
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Consistent sets

Let Γ be a set of formulas.

Definition 1.35

Γ is called consistent if there exists a formula ϕ such that Γ 6` ϕ.
Γ is said to be inconsistent if it is not consistent, that is Γ ` ϕ for
any formula ϕ.

Proposition 1.36

I ∅ is consistent.

I The set of theorems is consistent.

Proposition 1.37

The following are equivalent:

I Γ is inconsistent.

I Γ ` ⊥.
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Completeness Theorem

Theorem 1.38 (Completeness Theorem (version 1))

Let Γ be a set of formulas. Then

Γ is consistent ⇐⇒ Γ is satisfiable.

Theorem 1.39 (Completeness Theorem (version 2))

Let Γ be a set of formulas. For any formula ϕ,

Γ ` ϕ ⇐⇒ Γ � ϕ.
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First-order logic
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First-order languages

Definition 2.1

A first-order language L consists of:

I a countable set V = {vn | n ∈ N} of variables;

I the connectives ¬ and →;

I parantheses ( , );

I the equality symbol =;

I the universal quantifier ∀;

I a set R of relation symbols;

I a set F of function symbols;

I a set C of constant symbols;

I an arity function ari : F ∪R → N∗.

I L is uniquely determined by the quadruple τ := (R,F , C, ari).
I τ is called the signature of L or the similaritaty type of L.
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First-order languages

Let L be a first-order language.

• The set SymL of symbols of L is

SymL := V ∪ {¬,→, (, ),=,∀} ∪ R ∪ F ∪ C

• The elements of R∪ F ∪ C are called non-logical symbols.
• The elements of V ∪{¬,→, (, ),=,∀} are called logical symbols.

• We denote variables by x , y , z , v , . . ., relation symbols by
P,Q,R . . ., function symbols by f , g , h, . . . and constant symbols
by c, d , e, . . ..

• For every m ∈ N∗ we denote:

Fm := the set of function symbols of arity m;

Rm := the set of relation symbols of arity m.
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First-order languages

Definition 2.2

The set ExprL of expressions of L is the set of all finite sequences
of symbols of L.

Definition 2.3

Let θ = θ0θ1 . . . θk−1 be an expression of L, where θi ∈ SymL for
all i = 0, . . . , k − 1.

I If 0 ≤ i ≤ j ≤ k − 1, then the expression θi . . . θj is called the
(i , j)-subexpression of θ.

I We say that an expression ψ appears in θ if there exists
0 ≤ i ≤ j ≤ k − 1 such thatψ is the (i , j)-subexpression of θ.

I We denote by Var(θ) the set of variables appearing in θ.
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First-order languages

Definition 2.4

The terms of L are the expressions defined as follows:

(T0) Every variable is a term.

(T1) Every constant symbol is a term.

(T2) If m ≥ 1, f ∈ Fm and t1, . . . , tm are terms, then ft1 . . . tm is a
term.

(T3) Only the expressions obtained by applying rules (T0), (T1),
(T2) are terms.

Notations:
I The set of terms is denoted by TermL.
I Terms are denoted by t, s, t1, t2, s1, s2, . . ..
I Var(t) is the set of variables that appear in the term t.

Definition 2.5

A term t is called closed if Var(t) = ∅.
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First-order languages

Proposition 2.6 (Induction on terms)

Let Γ be a set of terms satisfying the following properties:

I Γ contains the variables and the constant symbols.

I If m ≥ 1, f ∈ Fm and t1, . . . , tm ∈ Γ, then ft1 . . . tm ∈ Γ.

Then Γ = TermL.

It is used to prove that all terms have a property P: we define Γ as
the set of all terms satisfying P and apply induction on terms to
obtain that Γ = TermL.
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First-order languages

Definition 2.7

The atomic formulas of L are the expressions having one of the
following forms:

I (s = t), where s, t are terms;

I (Rt1 . . . tm), where R ∈ Rm and t1, . . . , tm are terms.

Definition 2.8

The formulas of L are the expressions defined as follows:

(F0) Every atomic formula is a formula.

(F1) If ϕ is a formula, then (¬ϕ) is a formula.

(F2) If ϕ and ψ are formulas, then (ϕ→ ψ) is a formula.

(F3) If ϕ is a formula, then (∀xϕ) is a formula for every variable x.

(F4) Only the expressions obtained by applying rules (F0), (F1),
(F2), (F3) are formulas.
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First-order languages

Notations
I The set of formulas is denoted by FormL.

I Formulas are denoted by ϕ,ψ, χ, . . ..

I Var(ϕ) is the set of variables that appear in the formula ϕ.

Unique readability

If ϕ is a formula, then exactly one of the following hold:

I ϕ = (s = t), where s, t are terms.

I ϕ = (Rt1 . . . tm), where R ∈ Rm and t1, . . . , tm are terms.

I ϕ = (¬ψ), where ψ is a formula.

I ϕ = (ψ → χ), where ψ, χ are formulas.

I ϕ = (∀xψ), where x is a variable and ψ is a formula.

Furthermore, ϕ can be written in a unique way in one of these
forms.
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First-order languages

Proposition 2.9 (Induction principle on formulas)

Let Γ be a set of formulas satisfying the following properties:

I Γ contains all atomic formulas.

I Γ is closed to ¬,→ and ∀x (for any variable x), that is:

if ϕ,ψ ∈ Γ, then (¬ϕ), (ϕ→ ψ), (∀xϕ) ∈ Γ.

Then Γ = FormL.

It is used to prove that all formulas have a property P: we define Γ
as the set of all formulas satisfying P and apply induction on
formulas to obtain that Γ = FormL.

37



First-order languages

Derived connectives

Connectives ∨, ∧, ↔ and the existential quantifier ∃ are
introduced by the following abbreviations:

ϕ ∨ ψ := ((¬ϕ)→ ψ)

ϕ ∧ ψ := ¬(ϕ→ (¬ψ)))

ϕ↔ ψ := ((ϕ→ ψ) ∧ (ψ → ϕ))

∃xϕ := (¬∀x(¬ϕ))
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