FMI, Computer Science, Master
 Advanced Logic for Computer Science

Seminar 1

(S1.1) Consider the first-order language $\mathcal{L}_{a r}=(\dot{<} ; \dot{+}, \dot{\times}, \dot{S} ; \dot{0})$ (the language of arithmetics) and the $\mathcal{L}_{a r}$-structure $\mathcal{N}=(\mathbb{N},<,+, \cdot, S, 0)$.
(i) Let $x, y \in V$ with $x \neq y$ and $t=\dot{S} x \dot{\times} \dot{S} \dot{S} y=\dot{\times}(\dot{S} x, \dot{S} \dot{S} y)$. Evaluate $t^{\mathcal{N}}(e)$, where $e: V \rightarrow \mathbb{N}$ is an assignment verifying $e(x)=3$ and $e(y)=7$.
(ii) Let $\varphi=x \dot{<} \dot{S} y \rightarrow(x \dot{<} y \vee x=y)=\dot{<}(x, \dot{S} y) \rightarrow(\dot{<}(x, y) \vee x=y)$. Prove that $\mathcal{N} \vDash \varphi[e]$ for all $e: V \rightarrow \mathbb{N}$.

Notation. Let \mathcal{L} be a first-order language. For any variables x, y with $x \neq y, \mathcal{L}$-structure $\mathcal{A}, e: V \rightarrow A$ and $a, b \in A$, we have that:

$$
\left(e_{y \hookleftarrow b}\right)_{x \leftarrow a}=\left(e_{x \leftarrow a}\right)_{y \leftarrow b} .
$$

In this case, we denote their common value withe ${ }_{x \leftarrow a, y \leftarrow b}$. Thus,

$$
e_{x \leftarrow a, y \leftarrow b}: V \rightarrow A, \quad e_{x \leftarrow a, y \leftarrow b}(v)= \begin{cases}e(v) & d a c a ̆ v \neq x a n d v \neq y \\ a & d a c a ̆ v=x \\ b & d a c a ̆ v=y .\end{cases}
$$

(S1.2) Let \mathcal{L} be a first-order language. Prove that for any formulas φ, ψ and any distinct variables x, y,
(i) $\neg \exists x \varphi \nRightarrow \forall \neg \varphi$;
(ii) $\forall x(\varphi \wedge \psi) \vDash \forall x \varphi \wedge \forall x \psi$;
(iii) $\exists y \forall x \varphi \vDash \forall x \exists y \varphi$;
(iv) $\forall x(\varphi \rightarrow \psi) \vDash \forall x \varphi \rightarrow \forall x \psi$.
(S1.3) Let x, y be distinct variables. Give examples of first-order languages \mathcal{L} and formulas φ, ψ of \mathcal{L} such that:
(i) $\forall x(\varphi \vee \psi) \not \forall \forall x \varphi \vee \forall x \psi$;
(ii) $\exists x \varphi \wedge \exists x \psi \not \models \exists x(\varphi \wedge \psi)$;
(iii) $\forall x \exists y \varphi \not \forall \exists y \forall x \varphi$.

