FMI, Computer Science, Master

Advanced Logic for Computer Science

Seminar 2

(S2.1) Let \mathcal{L} be a first-order language. Prove that for any formulas φ, ψ of \mathcal{L} and any variable $x \notin F V(\varphi)$,

$$
\begin{array}{rll}
\forall x(\varphi \wedge \psi) & \text { H } & \varphi \wedge \forall x \psi \\
\exists x(\varphi \vee \psi) & \text { H } & \varphi \vee \exists x \psi \\
\varphi & \text { H } & \exists x \varphi \\
\forall x(\varphi \rightarrow \psi) & \text { H } & \varphi \rightarrow \forall x \psi \\
\exists x(\psi \rightarrow \varphi) & \text { H } & \forall x \psi \rightarrow \varphi . \tag{5}
\end{array}
$$

Proof. Let \mathcal{A} be an \mathcal{L}-structure and $e: V \rightarrow A$.
We prove (1):

$$
\begin{aligned}
\mathcal{A} \vDash(\forall x(\varphi \wedge \psi))[e] & \Longleftrightarrow \text { for all } a \in A, \mathcal{A} \vDash(\varphi \wedge \psi)\left[e_{x \leftarrow a}\right] \\
& \Longleftrightarrow \text { for all } a \in A,\left(\mathcal{A} \vDash \varphi\left[e_{x \leftarrow a}\right] \text { and } \mathcal{A} \vDash \psi\left[e_{x \leftarrow a}\right]\right) \\
& \Longleftrightarrow \text { for all } a \in A,\left(\mathcal{A} \vDash \varphi[e] \text { and } \mathcal{A} \vDash \psi\left[e_{x \leftarrow a}\right]\right) \text { (by P. 1.26.(ii)) } \\
& \Longleftrightarrow \mathcal{A} \vDash \varphi[e] \text { and for all } a \in A, \mathcal{A} \vDash \psi\left[e_{x \leftarrow a}\right] \\
& \Longleftrightarrow \mathcal{A} \vDash \varphi[e] \text { and } \mathcal{A} \vDash \forall x \psi[e] \\
& \Longleftrightarrow \mathcal{A} \vDash(\varphi \wedge \forall x \psi)[e] .
\end{aligned}
$$

We prove (2):

$$
\begin{aligned}
\mathcal{A} \vDash(\exists x(\varphi \vee \psi))[e] & \Longleftrightarrow \text { there exists } a \in A \text { such that } \mathcal{A} \vDash(\varphi \vee \psi)\left[e_{x \leftarrow a}\right] \\
& \Longleftrightarrow \text { there exists } a \in A \text { such that }\left(\mathcal{A} \vDash \varphi\left[e_{x \leftarrow a}\right] \text { or } \mathcal{A} \vDash \psi\left[e_{x \leftarrow a}\right]\right) \\
& \Longleftrightarrow \text { there exists } a \in A \text { such that }\left(\mathcal{A} \vDash \varphi[e] \text { or } \mathcal{A} \vDash \psi\left[e_{x \leftarrow a}\right]\right) \text { (by P. 1.26.(ii)) } \\
& \Longleftrightarrow \mathcal{A} \vDash \varphi[e] \text { or there exists } a \in A \text { such that } \mathcal{A} \vDash \psi\left[e_{x \leftarrow a}\right] \\
& \Longleftrightarrow \mathcal{A} \vDash \varphi[e] \text { or } \mathcal{A} \vDash \exists x \psi[e] \\
& \Longleftrightarrow \mathcal{A} \vDash(\varphi \vee \exists x \psi)[e] .
\end{aligned}
$$

We prove (3):

$$
\begin{aligned}
\mathcal{A} \vDash \exists x \varphi[e] & \Longleftrightarrow \text { there exists } a \in A \text { such that } \mathcal{A} \vDash \varphi\left[e_{x \leftarrow a}\right] \\
& \Longleftrightarrow \text { there exists } a \in A \text { such that } \mathcal{A} \vDash \varphi[e] \text { (by P. 1.26.(ii)) } \\
& \Longleftrightarrow \mathcal{A} \vDash \varphi[e] .
\end{aligned}
$$

We prove (4):

$$
\begin{aligned}
\mathcal{A} \vDash(\forall x(\varphi \rightarrow \psi))[e] & \Longleftrightarrow \text { for all } a \in A, \mathcal{A} \vDash(\varphi \rightarrow \psi)\left[e_{x \leftarrow a}\right] \\
& \Longleftrightarrow \text { for all } a \in A,\left(\mathcal{A} \not \vDash \varphi\left[e_{x \leftarrow a} \text { or } \mathcal{A} \vDash \psi\left[e_{x \leftarrow a}\right]\right)\right. \\
& \Longleftrightarrow \text { for all } a \in A,\left(\mathcal{A} \not \vDash \varphi[e] \text { or } \mathcal{A} \vDash \psi\left[e_{x \leftarrow a}\right]\right) \text { (by P. 1.26.(ii)) } \\
& \Longleftrightarrow \mathcal{A} \not \vDash \varphi[e] \text { or for all } a \in A, \mathcal{A} \vDash \psi\left[e_{x \leftarrow a}\right] \\
& \Longleftrightarrow \mathcal{A} \not \vDash \varphi[e] \text { or } \mathcal{A} \vDash \forall x \psi[e] \\
& \Longleftrightarrow \mathcal{A} \vDash(\varphi \rightarrow \forall x \psi)[e] .
\end{aligned}
$$

We prove（5）：

$$
\begin{aligned}
\mathcal{A} \vDash \exists x(\psi \rightarrow \varphi)[e] & \Longleftrightarrow \text { there exists } a \in A \text { such that } \mathcal{A} \vDash(\psi \rightarrow \varphi)\left[e_{x \leftarrow a}\right] \\
& \Longleftrightarrow \text { there exists } a \in A \text { such that }\left(\mathcal{A} \not \vDash \psi\left[e_{x \leftarrow a} \text { or } \mathcal{A} \vDash \varphi\left[e_{x \leftarrow a}\right]\right)\right. \\
& \Longleftrightarrow \text { there exists } a \in A \text { such that }\left(\mathcal{A} \not \vDash \psi\left[e_{x \leftarrow a}\right] \text { or } \mathcal{A} \vDash \varphi[e]\right) \\
& \Longleftrightarrow \text { (by P. 1.26.(ii)) } \\
& \left.\Longleftrightarrow \text { (there exists } a \in A \text { such that } \mathcal{A} \not \vDash \psi\left[e_{x \leftarrow a}\right]\right) \text { or } \mathcal{A} \vDash \varphi[e] \\
& \left.\Longleftrightarrow \text { (it is not true that for all } a \in A \text { we have that } \mathcal{A} \vDash \psi\left[e_{x \leftarrow a}\right]\right) \\
& \Longleftrightarrow \text { (it is not true that } \mathcal{A} \vDash \forall x \psi[e]) \text { or } \mathcal{A} \vDash \varphi[e] \\
& \Longleftrightarrow \mathcal{A} \not \vDash \forall x \psi[e] \text { or } \mathcal{A} \vDash \varphi[e] \\
& \Longleftrightarrow \mathcal{A} \vDash(\forall x \psi \rightarrow \varphi)[e] .
\end{aligned}
$$

（S2．2）Let \mathcal{L} be a first－order language that contains
－two unary relation symbols R, S and two binary relation symbols P, Q ；
－a unary function symbol f and a binary function symbol g ；
－two constant symbols c, d ．
Find prenex normal forms for the following formulas of \mathcal{L} ：

$$
\begin{aligned}
\varphi_{1} & =\forall x(f(x)=c) \wedge \neg \forall z(g(y, z)=d) \\
\varphi_{2} & =\forall y(\forall x P(x, y) \rightarrow \exists z Q(x, z)) \\
\varphi_{3} & =\exists x \forall y P(x, y) \vee \neg \exists y(S(y) \rightarrow \forall z R(z)) \\
\varphi_{4} & =\exists z(\exists x Q(x, z) \vee \exists x R(x)) \rightarrow \neg(\neg \exists x R(x) \wedge \forall x \exists z Q(z, x))
\end{aligned}
$$

Proof．

$$
\begin{aligned}
\forall x(f(x)=c) \wedge \neg \forall z(g(y, z)=d) & \text { 月 } \forall x(f(x)=c \wedge \exists z \neg(g(y, z)=d)) \\
& \text { 月 } \forall x \exists z(f(x)=c \wedge \neg(g(y, z)=d)) \\
\forall y(\forall x P(x, y) \rightarrow \exists z Q(x, z)) & \text { 月 } \forall y \exists z(\forall x P(x, y) \rightarrow Q(x, z)) \\
& \text { 月 } \forall y \exists z(\forall u P(u, y) \rightarrow Q(x, z)) \\
& \text { 月 } \forall y \exists z \exists u(P(u, y) \rightarrow Q(x, z)) .
\end{aligned}
$$

$$
\begin{aligned}
& \exists x \forall y P(x, y) \vee \neg \exists y(S(y) \rightarrow \forall z R(z)) \quad \text { н } \quad \exists x(\forall y P(x, y) \vee \neg \exists y \forall z(S(y) \rightarrow R(z))) \\
& \text { 月 } \exists x(\forall y P(x, y) \vee \forall y \exists z \neg(S(y) \rightarrow R(z))) \\
& \text { \# } \exists x(\forall u P(x, u) \vee \forall y \exists z \neg(S(y) \rightarrow R(z))) \\
& \text { Н } \exists x \forall u \forall y \exists z(P(x, u) \vee \neg(S(y) \rightarrow R(z))) \\
& \exists z(\exists x Q(x, z) \vee \exists x R(x)) \rightarrow \neg(\neg \exists x R(x) \wedge \forall x \exists z Q(z, x)) \quad \text { н } \\
& \exists z \exists x(Q(x, z) \vee R(x)) \rightarrow(\neg \neg \exists x R(x) \vee \neg \forall x \exists z Q(z, x)) \quad \text { н } \\
& \exists z \exists x(Q(x, z) \vee R(x)) \rightarrow(\exists x R(x) \vee \exists x \forall z \neg Q(z, x)) \quad \text { н } \\
& \exists z \exists x(Q(x, z) \vee R(x)) \rightarrow \exists x(R(x) \vee \forall z \neg Q(z, x)) \quad \text { н } \\
& \exists z \exists x(Q(x, z) \vee R(x)) \rightarrow \exists x \forall z(R(x) \vee \neg Q(z, x)) \quad \text { н } \\
& \exists z \exists x(Q(x, z) \vee R(x)) \rightarrow \exists u \forall v(R(u) \vee \neg Q(v, u)) \quad \text { н } \\
& \forall z \forall x \exists u \forall v((Q(x, z) \vee R(x)) \rightarrow(R(u) \vee \neg Q(v, u)))
\end{aligned}
$$

(S2.3) Axiomatize the following classes of graphs:
(i) complete graphs;
(ii) graphs with at least one path of length 3 ;
(iii) graphs with at least one cycle of length 3;
(iv) graphs with the property that any vertex has exactly one incident edge.

Proof. We use the notations from the lectures. We take $\mathcal{L}_{\text {Graf }}=(\dot{E})$. Graph theory is $T h((I R E F L),(S I M))$. We denote by \mathcal{K} the class of graphs that will be axiomatized.
(i) We add the sentence

$$
\varphi_{1}:=\forall x \forall y(\neg(x=y) \rightarrow \dot{E}(x, y)) .
$$

Then $\mathcal{K}=\operatorname{Mod}\left(\operatorname{Th}\left((\operatorname{IREFL}),(S I M), \varphi_{1}\right)\right)$.
(ii) We add the sentence

$$
\varphi_{2}:=\exists v_{1} \exists v_{2} \exists v_{3} \exists v_{4}\left(\bigwedge_{1 \leq i<j \leq 4} \neg\left(v_{i}=v_{j}\right) \wedge \dot{E}\left(v_{1}, v_{2}\right) \wedge \dot{E}\left(v_{2}, v_{3}\right) \wedge \dot{E}\left(v_{3}, v_{4}\right)\right)
$$

Then $\mathcal{K}=\operatorname{Mod}\left(\operatorname{Th}\left((\operatorname{IREFL}),(S I M), \varphi_{2}\right)\right)$.
(iii) We add the sentence

$$
\varphi_{3}:=\exists v_{1} \exists v_{2} \exists v_{3}\left(\bigwedge_{1 \leq i<j \leq 3} \neg\left(v_{i}=v_{j}\right) \wedge \dot{E}\left(v_{1}, v_{2}\right) \wedge \dot{E}\left(v_{2}, v_{3}\right) \wedge \dot{E}\left(v_{3}, v_{1}\right)\right) .
$$

Then $\mathcal{K}=\operatorname{Mod}\left(\operatorname{Th}\left((\operatorname{IREFL}),(S I M), \varphi_{3}\right)\right)$.
(iv) We add the sentence

$$
\varphi_{4}:=\forall x \exists y \dot{E}(x, y) \wedge \forall x \forall y \forall z(\dot{E}(x, y) \wedge \dot{E}(x, z) \rightarrow y=z) .
$$

Then $\mathcal{K}=\operatorname{Mod}\left(\operatorname{Th}\left((\operatorname{IREFL}),(S I M), \varphi_{4}\right)\right)$.
(S2.4) Let \mathcal{L} be a first-order language, φ, ψ be formulas and x be a variable. Prove that:
(i) $\vDash \varphi$ implies $\vDash \forall x \varphi$;
(ii) $\vDash \forall x(\varphi \rightarrow \psi) \rightarrow(\forall x \varphi \rightarrow \forall x \psi)$.

Proof. (i) Assume that $\vDash \varphi$. We have to prove that $\vDash \forall x \varphi$, that is, for any \mathcal{L}-structure \mathcal{A} and any \mathcal{A}-assignment $e: V \rightarrow A$, we have that $\mathcal{A} \vDash(\forall x \varphi)[e]$.
Let \mathcal{A} be an \mathcal{L}-structure and $e: V \rightarrow A$. We get that $\mathcal{A} \vDash(\forall x \varphi)[e]$ iff for all $a \in A$, $\mathcal{A} \vDash \varphi\left[e_{x \leftarrow a}\right]$. But this is true, taking into account the fact that $\vDash \varphi$, hence $\mathcal{A} \vDash \varphi\left[e^{\prime}\right]$, with $e^{\prime}:=e_{x \leftarrow a}$.
(ii) Let \mathcal{A} be an \mathcal{L}-structure and $e: V \rightarrow A$ be an \mathcal{A}-assignment. We have to prove that

$$
\mathcal{A} \vDash(\forall x(\varphi \rightarrow \psi) \rightarrow(\forall x \varphi \rightarrow \forall x \psi))[e] .
$$

We assume that

$$
(*) \quad \mathcal{A} \vDash(\forall x(\varphi \rightarrow \psi))[e]
$$

and we wish to get that

$$
\mathcal{A} \vDash(\forall x \varphi \rightarrow \forall x \psi))[e] .
$$

Suppose that

$$
(* *) \quad \mathcal{A} \vDash(\forall x \varphi)[e] .
$$

We have to prove that $\mathcal{A} \vDash(\forall x \psi))[e]$.
Let $a \in A$. Applying $\left(^{*}\right)$, we get that $\mathcal{A} \vDash(\varphi \rightarrow \psi)\left[e_{x \leftarrow a}\right]$, and, by $\left({ }^{* *}\right)$, we have that $\mathcal{A} \vDash \varphi\left[e_{x \leftarrow a}\right]$. From $\mathcal{A} \vDash(\varphi \rightarrow \psi)\left[e_{x \leftarrow a}\right]$ and $\mathcal{A} \vDash \varphi\left[e_{x \leftarrow a}\right]$, it follows that $\mathcal{A} \vDash \psi\left[e_{x \leftarrow a}\right]$. Thus, $\mathcal{A} \vDash(\forall x \psi))[e]$.

