FMI, Computer Science, Master Advanced Logic for Computer Science

Seminar 3

(S3.1) Let \mathcal{L} be a first-order language and φ be a sentence of \mathcal{L} with the property that for all $m \in \mathbb{N}$,

there exists a finite \mathcal{L} -structure \mathcal{A} of cardinality $\geq m$ such that $\mathcal{A} \models \neg \varphi$.

Prove that $\neg \varphi$ has an infinite model.

(S3.2) Let \mathcal{L}_{Graf} be the language of graphs. Decide if the following affirmations are true or false:

- (i) the class of graphs is axiomatizable;
- (ii) the class of graphs is finitely axiomatizable;
- (iii) the class of finite graphs is axiomatizable;
- (iv) the class of finite graphs is finitely axiomatizable;
- (v) the class of infinite graphs is axiomatizable;
- (vi) the class of infinite graphs is finitely axiomatizable.

(S3.3) Let \mathcal{L} be a first-order language, \mathcal{K} be a class of \mathcal{L} -structures and \mathcal{K}^c its complement in the class of all \mathcal{L} -structures. Prove that if both \mathcal{K} and \mathcal{K}^c are axiomatizable, then both of them are finitely axiomatizable.

(S3.4) Let \mathcal{L} be a first-order language and Σ be a set of sentences satisfying

(*) for all $m \in \mathbb{N}$, Σ has a finite model of cardinality $\geq m$.

Prove that the class of finite models of Σ is not axiomatizable.