FMI, Computer Science, Master Advanced Logic for Computer Science

Seminar 4

(S4.1) Let \mathcal{L} be a first-order language that contains two unary relation symbols S, T and one binary relation symbol R. Find Skolem normal forms for the following formulas of \mathcal{L} :

$$\chi := \exists y \forall x \exists v ((S(y) \lor R(x, v)) \to (T(v) \to S(y)))$$

$$\delta := \forall x \exists u \forall y \exists v ((S(u) \to R(v, y)) \lor (S(v) \to T(x))).$$

(S4.2) Let $\mathcal{M} = (W, R, V)$ be a model for ML_0 and w a state in \mathcal{M} . Prove that for every formula φ ,

 $\mathcal{M}, w \Vdash \Box \varphi$ iff for every $v \in W, Rwv$ implies $\mathcal{M}, v \Vdash \varphi$.

(S4.3) Consider the frame $\mathcal{F} = (W = \{w_1, w_2, w_3, w_4, w_5\}, R)$, where Rw_iw_j iff j = i + 1: w_1 w_2 w_3 w_4 w_5

Let us choose a valuation V such that $V(p) = \{w_2, w_3\}, V(q) = \{w_1, w_2, w_3, w_4, w_5\}$ and $V(r) = \emptyset$. Consider the model $\mathcal{M} = (\mathcal{F}, V)$. Prove the following:

- (i) $\mathcal{M}, w_1 \Vdash \Diamond \Box p;$
- (ii) $\mathcal{M}, w_1 \not\Vdash \Diamond \Box p \to p;$
- (iii) $\mathcal{M}, w_2 \Vdash \Diamond (p \land \neg r);$
- (iv) $\mathcal{M}, w_1 \Vdash q \land \Diamond (q \land \Diamond (q \land \Diamond (q \land \Diamond q)));$
- (v) $\mathcal{M} \Vdash \Box q$.

(S4.4) Verify if the following formulas of ML_0 are satisfiable:

- (i) $\Diamond p \land \Box \neg p;$
- (ii) $\Diamond p \land \Diamond \neg p$.