FMI, Computer Science, Master
 Advanced Logic for Computer Science

Seminar 4

(S4.1) Let \mathcal{L} be a first-order language that contains two unary relation symbols S, T and one binary relation symbol R. Find Skolem normal forms for the following formulas of \mathcal{L} :

$$
\begin{aligned}
\chi & :=\exists y \forall x \exists v((S(y) \vee R(x, v)) \rightarrow(T(v) \rightarrow S(y))) \\
\delta & :=\forall x \exists u \forall y \exists v((S(u) \rightarrow R(v, y)) \vee(S(v) \rightarrow T(x))) .
\end{aligned}
$$

(S4.2) Let $\mathcal{M}=(W, R, V)$ be a model for $M L_{0}$ and w a state in \mathcal{M}. Prove that for every formula φ,

$$
\mathcal{M}, w \Vdash \square \varphi \quad \text { iff for every } v \in W, R w v \text { implies } \mathcal{M}, v \Vdash \varphi \text {. }
$$

(S4.3) Consider the frame $\mathcal{F}=\left(W=\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right\}, R\right)$, where $R w_{i} w_{j}$ iff $j=i+1$:

Let us choose a valuation V such that $V(p)=\left\{w_{2}, w_{3}\right\}, V(q)=\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right\}$ and $V(r)=\emptyset$. Consider the model $\mathcal{M}=(\mathcal{F}, V)$. Prove the following:
(i) $\mathcal{M}, w_{1} \Vdash \diamond \square p$;
(ii) $\mathcal{M}, w_{1} \Vdash \forall \square p \rightarrow p$;
(iii) $\mathcal{M}, w_{2} \Vdash \diamond(p \wedge \neg r)$;
(iv) $\mathcal{M}, w_{1} \Vdash q \wedge \diamond(q \wedge \diamond(q \wedge \diamond(q \wedge \diamond q)))$;
(v) $\mathcal{M} \Vdash \square q$.
(S4.4) Verify if the following formulas of $M L_{0}$ are satisfiable:
(i) $\diamond p \wedge \square \neg p$;
(ii) $\diamond p \wedge \diamond \neg p$.

