FMI, Computer Science, Master Advanced Logic for Computer Science

Seminar 5

(S5.1) Let $\mathcal{M} = (W, R, V)$ be a model for ML_0 and w a state in \mathcal{M} . Prove that for every formula φ and any $n \ge 1$,

- (1) $\mathcal{M}, w \Vdash \Diamond^n \varphi \iff$ there exists $v \in W$ such that $R^n wv$ and $\mathcal{M}, v \Vdash \varphi$
- (2) $\mathcal{M}, w \Vdash \Box^n \varphi \iff$ for every $v \in W, R^n w v$ implies $\mathcal{M}, v \Vdash \varphi$.

Proof. We prove (1) by induction on n. n = 1: Apply Definition 2.13. $n \Rightarrow n + 1$: We have that

$$\mathcal{M}, w \Vdash \Diamond^{n+1} \varphi \quad \text{iff} \quad \mathcal{M}, w \Vdash \Diamond^n \Diamond \varphi$$

iff there exists $u \in W$ such that $R^n w u$ and $\mathcal{M}, u \Vdash \Diamond \varphi$
by the induction hypothesis
iff there exist $u, v \in W$ such that $R^n w u$, Ruv and $\mathcal{M}, v \Vdash \varphi$

iff there exists $v \in W$ such that $R^{n+1}wv$ and $\mathcal{M}, v \Vdash \varphi$.

(2) is proved similarly.

(S5.2) Prove that for every $p, q \in PROP$ the formula

$$\Box(p \to q) \to (\Box p \to \Box q)$$

is valid in the class of all frames for ML_0 .

Proof. Let $\mathcal{F} = (W, R)$ be an arbitrary frame, w a state in \mathcal{F} and $\mathcal{M} = (\mathcal{F}, V)$ be a model based on \mathcal{F} . We have to show that

$$\mathcal{M}, w \Vdash \Box(p \to q) \to (\Box p \to \Box q).$$

Suppose that

$$(*) \quad \mathcal{M}, w \Vdash \Box (p \to q).$$

We have to show that $\mathcal{M}, w \Vdash \Box p \to \Box q$. Assume, furthermore, that

(**) $\mathcal{M}, w \Vdash \Box p.$

It remains to prove that $\mathcal{M}, w \Vdash \Box q$. Let $v \in W$ be such that Rwv. Applying (*) and (**) we obtain that $\mathcal{M}, v \Vdash p \to q$ and $\mathcal{M}, v \Vdash p$. It follows immediately that $\mathcal{M}, v \Vdash q$. Thus, $\mathcal{M}, w \Vdash \Box q$. (S5.3) Prove that for any formula φ ,

$$\Diamond \varphi \leftrightarrow \neg \Box \neg \varphi$$

is valid in the class of all frames for ML_0 .

Proof. Let $\mathcal{F} = (W, R)$ be an arbitrary frame, w a state in \mathcal{F} and $\mathcal{M} = (\mathcal{F}, V)$ be a model based on \mathcal{F} . We have that

Hence, $\mathcal{M}, w \Vdash \Diamond \varphi \leftrightarrow \neg \Box \neg \varphi$.

(S5.4) Let $p \in PROP$. Prove that the formula

$$\Box p \to \Diamond p$$

is not valid in the class of all frames for ML_0 .

Proof. Let $\mathcal{F} = (W, R)$, where $W = \{1, 2\}, R = \{(1, 1), (1, 2)\}$ and $\mathcal{M} = (\mathcal{F}, V)$ be an arbitrary model based on \mathcal{F} .

We have that

 $\mathcal{M}, 2 \Vdash \Box p$ for every $n \in W$, R2n implies $\mathcal{M}, n \Vdash p$, \iff $\mathcal{M}, 2 \Vdash \Diamond p$ there exists $n \in W$ such that R2n and $\mathcal{M}, n \Vdash p$. \iff

Since there exists no $n \in W$ such that R2n, we have that $\mathcal{M}, 2 \Vdash \Box p$ and $\mathcal{M}, 2 \nvDash \Diamond p$, so $\mathcal{M}, 2 \not\models \Box p \to \Diamond p$. It follows that $\mathcal{F}, 2 \not\models \Box p \to \Diamond p$, hence $\Box p \to \Diamond p$ is not valid in \mathcal{F} . \Box

(S5.5) Let $p,q \in PROP$. Verify if the following formulas are valid in the class of all frames for ML_0 :

- (i) $p \to \Diamond p$.
- (ii) $\Box p \land \Diamond q \to \Diamond (p \land q)$.

Proof. (i) The answer is NO. Let $\mathcal{M}_0 = (W_0, R_0, V_0)$, where

$$W_0 = \{a, b\}, \quad R_0 = \{(a, b)\}, \quad V_0(p) = \{a\}.$$

Then $\mathcal{M}, a \Vdash p$, but $\mathcal{M}, a \not\models \Diamond p$, since b is the only state R_0 -accesible from a and $b \notin V_0(p)$, hence $\mathcal{M}, b \not\models p$. Thus, $\mathcal{M}, a \not\models p \to \Diamond p$.

(ii) The answer is YES. Let $\mathcal{F} = (W, R)$ be an arbitrary frame, w a state in \mathcal{F} and $\mathcal{M} = (\mathcal{F}, V)$ be a model based on \mathcal{F} . We have to show that

$$\mathcal{M}, w \Vdash \Box p \land \Diamond q \to \Diamond (p \land q).$$

Assume that $\mathcal{M}, w \Vdash \Box p \land \Diamond q$, that is $\mathcal{M}, w \Vdash \Box p$ and $\mathcal{M}, w \Vdash \Diamond q$. As $\mathcal{M}, w \Vdash \Diamond q$, there exists $v \in W$ such that Rwv and $\mathcal{M}, v \Vdash q$. As $\mathcal{M}, w \Vdash \Box p$ and Rwv, we have that $\mathcal{M}, v \Vdash p$. It follows that $v \in W$ is such that Rwv and $\mathcal{M}, v \Vdash p \land q$. Thus, $\mathcal{M}, v \Vdash \Diamond (p \land q)$.

	I	
	I	