FMI, Computer Science, Master
 Advanced Logic for Computer Science

Seminar 5

(S5.1) Let $\mathcal{M}=(W, R, V)$ be a model for $M L_{0}$ and w a state in \mathcal{M}. Prove that for every formula φ and any $n \geq 1$,
(1) $\mathcal{M}, w \Vdash \diamond^{n} \varphi \Longleftrightarrow$ there exists $v \in W$ such that $R^{n} w v$ and $\mathcal{M}, v \Vdash \varphi$
(2) $\mathcal{M}, w \Vdash \square^{n} \varphi \Longleftrightarrow$ for every $v \in W, R^{n} w v$ implies $\mathcal{M}, v \Vdash \varphi$.
(S5.2) Prove that for every $p, q \in P R O P$ the formula

$$
\square(p \rightarrow q) \rightarrow(\square p \rightarrow \square q)
$$

is valid in the class of all frames for $M L_{0}$.
(S5.3) Prove that for any formula φ,

$$
\diamond \varphi \leftrightarrow \neg \square \neg \varphi
$$

is valid in the class of all frames for $M L_{0}$.
(S5.4) Let $p \in P R O P$. Prove that the formula

$$
\square p \rightarrow \diamond p
$$

is not valid in the class of all frames for $M L_{0}$.
(S5.5) Let $p, q \in P R O P$. Verify if the following formulas are valid in the class of all frames for $M L_{0}$:
(i) $p \rightarrow \diamond p$.
(ii) $\square p \wedge \diamond q \rightarrow \diamond(p \wedge q)$.

