FMI, Computer Science, Master Advanced Logic for Computer Science

Seminar 7

(S7.1) Let Λ be a normal logic and Σ be a Λ -MCS. Prove that $\Lambda \subseteq \Sigma$.

Proof. Suppose by contradiction that $\Lambda \not\subseteq \Sigma$. Then there exists φ such that $\vdash_{\Lambda} \varphi$ and $\varphi \notin \Sigma$. By Proposition 2.74.(ii), we get that $\Sigma \cup \{\varphi\}$ is Λ -inconsistent. Applying Proposition 2.65.(ii), it follows that $\Sigma \vdash_{\Lambda} \neg \varphi$. We have obtained that $\Sigma \vdash_{\Lambda} \varphi$ (since $\vdash_{\Lambda} \varphi$) and $\Sigma \vdash_{\Lambda} \neg \varphi$. Apply now Proposition 2.64.(ii) to get that Σ is Λ -inconsistent, which is a contradiction.

(S7.2) Let Λ be a normal logic. Prove that for all $w, v \in W^{\Lambda}$, the following are equivalent:

- (i) $R^{\Lambda}wv$;
- (ii) for any formula ψ ,

 $\Box \psi \in w \text{ implies } \psi \in v.$

Proof. (i) \Rightarrow (ii) Let ψ be a formula. We prove the contrapositive of (ii). Suppose that $\psi \notin v$. Since v is a Λ -MCS, we have, by Proposition 2.77.(iii), that $\neg \psi \in v$. Since $R^{\Lambda}wv$, we get that $\Diamond \neg \psi \in w$. We apply again Proposition 2.77.(iii) to obtain that $\neg \Diamond \neg \psi \notin w$, that is $\Box \psi \notin w$.

(ii) \Rightarrow (i) Let ψ be a formula such that $\psi \in v$. Since v is a Λ -MCS, we have, by Proposition 2.77.(iii), that $\neg \psi \notin v$. Applying the contrapositive of (ii), we get that $\Box \neg \psi \notin w$, hence, by Proposition 2.77.(iii) we obtain that $\neg \Box \neg \psi \in w$. We apply now (Dual) and Proposition 2.77.(i) to conclude that $\Diamond \psi \in w$.

(S7.3) Let us consider the following formula in ML_0 :

(B) $p \to \Box \Diamond p$, where $p \in PROP$

and let \boldsymbol{B} be the normal logic generated by (B). Prove the following:

- (i) (B) is valid in the class of symmetric frames.
- (ii) The canonical frame $\mathcal{F}^{B} = (W^{B}, R^{B})$ is symmetric.
- (iii) **B** is strongly complete with respect to the class of symmetric frames.

- (iv) \boldsymbol{B} is sound and weakly complete with respect to the class of symmetric frames.
- *Proof.* (i) Let $\mathcal{F} = (W, R)$ be a symmetric frame, w a state in \mathcal{F} and $\mathcal{M} = (\mathcal{F}, V)$ a model based on \mathcal{F} . Suppose that $\mathcal{M}, w \Vdash p$ and let $v \in W$ be such that Rwv. We have to prove that $\mathcal{M}, v \Vdash \Diamond p$, that is

there exists $u \in W$ such that Rvu and $\mathcal{M}, u \Vdash p$.

Take u := w. Then Rvw (since Rwv and R is symmetric) and $\mathcal{M}, w \Vdash p$ (by assumption).

(ii) Let $w, v \in W^{B}$ be such that $R^{B}wv$. We have to prove that $R^{B}vw$, that is

for any formula $\varphi, \varphi \in w$ implies $\Diamond \varphi \in v$.

Let φ be a formula such that $\varphi \in w$. Since w is a **B**-MCS, we can apply Proposition 2.77.(ii) to get that $\mathbf{B} \subseteq w$. In particular, $\varphi \to \Box \Diamond \varphi \in w$. By modus ponens (Proposition 2.77.(i)), we get that $\Box \Diamond \varphi \in w$. Since $R^{\mathbf{B}}wv$, we conclude, by an application of (S7.2), that $\Diamond \varphi \in v$.

- (iii) We apply Proposition 2.71. Let Γ be a **B**-consistent set. By Theorem 2.82, Γ is satisfiable in \mathcal{M}^{B} . By (ii), we have that \mathcal{F}^{B} is a symmetric frame.
- (iv) Soundness follows from (i) and Theorem 2.42. Weak completeness is a particular case of (iii).

(S7.4) Let $ML := ML(PROP, \tau)$ be a modal language (where $\tau = (O, \rho)$), $\mathcal{M} = (W, \{R_{\Delta} \mid \Delta \in O\}, V)$ be a model and w a state in \mathcal{M} . Suppose that $\Delta \in O_m, m \ge 1$ and that ∇ is its dual operator. Then for any formulas $\varphi_1, \ldots, \varphi_m$,

 $\mathcal{M}, w \Vdash \nabla \varphi_1 \dots \varphi_m \quad \text{iff} \quad \text{for any } v_1, \dots, v_m \in W, \\ R_{\Delta} w v_1 \dots v_m \text{ implies } \mathcal{M}, v_i \Vdash \varphi_i \text{ for some } i = 1, \dots, m.$

Proof. We have that

 $\mathcal{M}, w \Vdash \nabla \varphi_1 \dots \varphi_m$ iff $\mathcal{M}, w \Vdash \neg \Delta(\neg \varphi_1) \dots (\neg \varphi_m)$ $\mathcal{M}, w \not\models \Delta(\neg \varphi_1) \dots (\neg \varphi_m)$ iff iff it is not true that there exist $v_1, \ldots, v_m \in W$ such that $(R_{\Delta}wv_1 \dots v_m \text{ and (for all } i = 1, \dots, m, \text{ we have that } \mathcal{M}, v_i \Vdash \neg \varphi_i))$ iff for all $v_1, \ldots, v_m \in W$, it is not true that $(R_{\Delta}wv_1 \dots v_m \text{ and } (\text{for all } i = 1, \dots, m, \text{ we have that } \mathcal{M}, v_i \Vdash \neg \varphi_i))$ for all $v_1, \ldots, v_m \in W$, $(R_{\Delta}wv_1 \ldots v_m \text{ does not hold})$ or iff (it is not true that for all i = 1, ..., m, we have that $\mathcal{M}, v_i \Vdash \neg \varphi_i$) for all $v_1, \ldots, v_m \in W$, $(R_{\Delta}wv_1 \ldots v_m \text{ does not hold})$ or iff (there exists $i = 1, \ldots, m$ such that $\mathcal{M}, v_i \not\models \neg \varphi_i$) iff for all $v_1, \ldots, v_m \in W$, $(R_{\Delta}wv_1 \ldots v_m \text{ does not hold})$ or (there exists $i = 1, \ldots, m$ such that $\mathcal{M}, v_i \Vdash \varphi_i$) iff for all $v_1, \ldots, v_m \in W, R_{\Delta} w v_1 \ldots v_m$ implies that there exists $i = 1, \ldots, m$ such that $\mathcal{M}, v_i \Vdash \varphi_i$ for any $v_1, \ldots, v_m \in W$, iff $R_{\Delta}wv_1 \dots v_m$ implies $\mathcal{M}, v_i \Vdash \varphi_i$ for some $i = 1, \dots, m$.