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1 First-order logic

(P1) [2 points]

(i) Prove that for every first-order language L and any formulas ϕ, ψ of L, we have that

∀x(ϕ ∨ ψ) � ∃xϕ ∨ ∃xψ for any variable x.

(ii) Give an example of a first-order language L and formulas ϕ, ψ of L such that:

∀xϕ→ ∀xψ 6� ∀x(ϕ→ ψ), where x is a variable.

Proof. (i) Let A be an L-structure and e : V → A be an A-assignment. We have that

A � (∀x(ϕ ∨ ψ))[e] ⇐⇒ for any a ∈ A, A � (ϕ ∨ ψ)[ex←a]
⇐⇒ for any a ∈ A,

A � ϕ[ex←a] or A � ψ[ex←a]
=⇒ there exists a ∈ A such that

A � ϕ[ex←a] or A � ψ[ex←a]
⇐⇒ (there exists a ∈ A such that A � ϕ[ex←a]) or

(there exists a ∈ A such that A � ψ[ex←a])
⇐⇒ A � (∃xϕ)[e] or A � (∃xψ)[e]
⇐⇒ A � (∃xϕ ∨ ∃xψ)[e].



(ii) Consider Lar = (<̇, +̇, ×̇, Ṡ, 0̇), the Lar-structure N := (N, <,+, ·, S, 0) and e : V →
N be an arbitrary assignment. Let

ϕ := x = 0̇, ψ := Ṡx = 0̇.

We have that N � (∀xϕ→ ∀xψ)[e] ⇐⇒ N 6� (∀xϕ)[e] or N � (∀xψ)[e].

N � (∀xϕ)[e] ⇐⇒ for any n ∈ N, we have that n = 0, which is obviously false.
Hence, N 6� (∀xϕ)[e]. It follows that

N � (∀xϕ→ ∀xψ)[e].

We have that N � (∀x(ϕ → ψ))[e] ⇐⇒ for any n ∈ N, if n = 0 then n + 1 = 0,
which is obviously false. It follows that

N 6� (∀x(ϕ→ ψ))[e].

(P2) [2 points] Let L be a first-order language that contains

• two unary relation symbols S, T and one binary relation symbols P ;

• a unary function symbol g;

• two constant symbols a, d.

(i) Find prenex normal forms for the following formulas of L:

ϕ := ¬∃xP (x, a) ∧ ∀y¬S(y),

ψ := ∃x(S(x)→ ∀y(g(y) = d))→ ¬(∀xT (x) ∨ ∀yS(y)).

(ii) Find Skolem normal forms for the following sentences of L:

χ := ∃y∀x∃v(S(y) ∨ P (x, v)→ (T (v)→ S(y)))

δ := ∀x∃u∀y∃v ((S(u)→ P (v, y)) ∨ (S(v)→ T (x))) .

Proof. (i) We have that

ϕ �� ∀x¬P (x, a) ∧ ∀y¬S(y))

�� ∀x(¬P (x, a) ∧ ∀y¬S(y))

�� ∀x∀y(¬P (x, a) ∧ ¬S(y))
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ψ �� ∃x∀y(S(x)→ g(y) = d)→ ¬(∀xT (x) ∨ ∀yS(y))

�� ∃x∀y(S(x)→ g(y) = d)→ (¬∀xT (x) ∧ ¬∀yS(y))

�� ∃x∀y(S(x)→ g(y) = d)→ (∃x¬T (x) ∧ ∃y¬S(y))

�� ∃x∀y(S(x)→ g(y) = d)→ ∃x(¬T (x) ∧ ∃y¬S(y))

�� ∃x∀y(S(x)→ g(y) = d)→ ∃x∃y(¬T (x) ∧ ¬S(y))

�� ∀x
(
∀y(S(x)→ g(y) = d)→ ∃x∃y(¬T (x) ∧ ¬S(y))

)
�� ∀x∃y

(
(S(x)→ g(y) = d)→ ∃x∃y(¬T (x) ∧ ¬S(y))

)
�� ∀x∃y

(
(S(x)→ g(y) = d)→ ∃u∃v(¬T (u) ∧ ¬S(v))

)
�� ∀x∃y∃u

(
(S(x)→ g(y) = d)→ ∃v(¬T (u) ∧ ¬S(v))

)
�� ∀x∃y∃u∃v

(
(S(x)→ g(y) = d)→ (¬T (u) ∧ ¬S(v))

)
.

(ii) We obtain that

χ1 = ∀x∃v(S(e) ∨ P (x, v)→ (T (v)→ S(e)))

where e is a new constant symbol

χ2 = ∀x(S(e) ∨ P (x, h(x))→ (T (g(x))→ S(e)))

where h is a new unary function symbol.

As χ2 is a universal sentence, it follows that χ2 is a Skolem normal form for χ.

δ1 = ∀x∀y∃v ((S(l(x))→ P (v, y)) ∨ (S(v)→ T (x)))

where l is a new unary function symbol

δ2 = ∀x∀y ((S(l(x))→ R(n(x, y), y)) ∨ (S(n(x, y))→ T (x)))

where n is a new binary function symbol.

As δ2 is a universal sentence, it follows that δ2 is a Skolem normal form for δ.

(P3) [1,5 points] Let L be a first-order language and ∆ be a set of sentences satisfying

(*) for all p ∈ N, ∆ has a finite model of cardinality ≥ p.

Prove that the class of finite models of ∆ is not axiomatizable.

Proof. Let us denote with T the class of finite models of ∆. Suppose by contradiction that
T is axiomatizable and let Γ ⊆ SenL be such that T = Mod(Γ). Let

Σ := Γ ∪ {∃≥n | n ≥ 1}.
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We prove that Σ is satisfiable with the help of the Compactness Theorem. Let Σ0 be a
finite subset of Σ. Then

Σ0 ⊆ Γ ∪ {∃≥n1 , . . . ,∃≥nk} for some k ∈ N.

By (*), there exists A ∈ T such that |A| ≥ max{n1, . . . , nk}. Then A � ∃≥ni for all
i = 1, . . . , k and A � Γ, since T = Mod(Γ). We get that A � Γ ∪ {∃≥n1 , . . . ,∃≥nk}, so
A � Σ0. Thus, Σ0 is satisfiable.
Applying the Compactness Theorem, it follows that Σ has a model B.
Since B � Γ, we have that B is finite.
Since B � {∃≥n | n ≥ 1}, we have that B is infinite.
We have obtained a contradiction.

(P4) [1,5 points] Let L be a first-order language and K be a finitely axiomatizable class
of L-structures. Prove the following:

(i) K is axiomatized by a single sentence.

(ii) The class Kc (of L-structures that are not members of K ) is finitely axiomatizable.

Proof. (i) Let Γ = {ϕ1, . . . , ϕn} be a finite set of sentences such that K = Mod(Γ). Take

ϕ := ϕ1 ∧ . . . ∧ ϕn.

Then, for every L-structure A, we have that

A � ϕ ⇐⇒ A � ϕi for every i = 1, . . . , n ⇐⇒ A � Γ.

Thus, Mod(ϕ) = Mod(Γ) = K.

(ii) By (i), K is axiomatized by a single sentence ϕ, hence K = Mod(ϕ). It follows
immediately that for any L-structure A,

A ∈ Kc ⇐⇒ A /∈ K ⇐⇒ A 6� ϕ⇐⇒ A � ¬ϕ.

Thus, Kc = Mod(¬ϕ).

2 Modal logics

(P5) [2 points] Let p, q ∈ PROP . Verify if the following formulas are valid in the class of
all frames for ML0:

(i) ♦p→ �p.

(ii) �q ∧ ♦p→ ♦(p ∧ q).
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Proof. (i) The answer is NO. Let M0 = (W0, R0, V0), where

W0 = {a, b}, R0 = {(a, a), (a, b)}, V0(p) = {b}.

Then M, a  ♦p, since R0ab and b ∈ V0(p), hence M, b  p. On the other hand,
M, a 6 �p, since R0aa and a /∈ V0(p), hence M, a 6 p. Thus, M, a 6 ♦p→ �p.

(ii) The answer is YES. Let F = (W,R) be an arbitrary frame, w a state in F and
M = (F , V ) be a model based on F . We have to show that

M, w  �q ∧ ♦p→ ♦(p ∧ q).

Assume that M, w  �q ∧ ♦p, that is M, w  �q and M, w  ♦p. As M, w  ♦p,
there exists v ∈ W such that Rwv and M, v  p. As M, w  �q and Rwv, we have
that M, v  q. It follows that v ∈ W is such that Rwv and M, v  p ∧ q. Thus,
M, v  ♦(p ∧ q).

(P6) [2 points] Prove the following for any formulas ϕ, ψ of ML0:

(i) `K ϕ→ ψ implies `K ♦�ϕ→ ♦�ψ.

(ii) `K ♦♦ϕ ∨ ♦♦ψ → ♦♦(ϕ ∨ ψ).

Proof. (i) We have that

(1) `K ϕ→ ψ hypothesis
(2) `K �ϕ→ �ψ (S6.1).(i): (1)
(3) `K ♦�ϕ→ ♦�ψ (S6.4).(i): (2).

(ii) We have that

(1) `K ♦♦ϕ ∨ ♦♦ψ → ♦(♦ϕ ∨ ♦ψ) (S6.5).(ii) with ϕ := ♦ϕ and ψ := ♦ψ
(2) `K ♦ϕ ∨ ♦ψ → ♦(ϕ ∨ ψ) (S6.5).(ii)
(3) `K ♦(♦ϕ ∨ ♦ψ)→ ♦♦(ϕ ∨ ψ) (S6.4).(i): (2)
(4) `K ♦♦ϕ ∨ ♦♦ψ → ♦♦(ϕ ∨ ψ) P. 2.56: (1), (3) and the tautology

(σ1 → σ2) ∧ (σ2 → σ3)→ (σ1 → σ3)
with σ1 := ♦♦ϕ ∨ ♦♦ψ, σ2 := ♦(♦ϕ ∨ ♦ψ)
and σ3 := ♦♦(ϕ ∨ ψ)

(P7) [1 point] Let Λ be a normal logic and Γ ∪ {ϕ, ψ} be a set of formulas of Λ. Prove
that

if Γ `Λ ϕ and ψ is deducible in propositional logic from ϕ, then Γ `Λ ψ.
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Proof. Since Γ `Λ ϕ, there exist θ1, . . . , θn ∈ Γ (n ≥ 0) such that

`Λ (θ1 ∧ . . . ∧ θn)→ ϕ.

As ψ is deducible in propositional logic from ϕ, we get that ϕ → ψ is a tautology, hence
`Λ ϕ→ ψ.
We have the following cases:

(i) n = 0. Then `Λ ϕ and `Λ ϕ→ ψ. Applying (MP), we get that `Λ ψ.

(ii) n ≥ 1. Let us denote θ := θ1 ∧ . . . ∧ θn.

We have that

(1) `Λ θ → ϕ hypothesis
(2) `Λ ϕ→ ψ hypothesis
(3) `Λ θ → ψ P. 2.56: (1), (2) and the tautology

(σ1 → σ2) ∧ (σ2 → σ3)→ (σ1 → σ3).

We have proved that `Λ (θ1 ∧ . . . ∧ θp)→ ψ. Hence, Γ `Λ ψ.

(P8) [2 points] Let Λ be a normal logic and Γ be a Λ-MCS. Prove that Λ ⊆ Γ.

Proof. Suppose by contradiction that Λ 6⊆ Γ. Then there exists ϕ such that `Λ ϕ and
ϕ /∈ Γ. By Proposition 2.74.(ii), we get that Γ ∪ {ϕ} is Λ-inconsistent. Applying Propo-
sition 2.65.(ii), it follows that Γ `Λ ¬ϕ. We have obtained that Γ `Λ ϕ (since `Λ ϕ)
and Γ `Λ ¬ϕ. Apply now Proposition 2.64.(ii) to get that Γ is Λ-inconsistent, which is a
contradiction.
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