FMI, Computer Science, Master Advanced Logic for Computer Science

Exam

First Name: _____

Last Name: _____

P1	P2	P3	P4	$\mathbf{P5}$	P6	$\mathbf{P7}$	P8	Extra point
/2	/2	/1,5	/1,5	/2	/2	/1	/2	1

TOTAL	
/15	

1 First-order logic

(P1) [2 points]

(i) Prove that for every first-order language \mathcal{L} and any formulas φ, ψ of \mathcal{L} , we have that

 $\forall x(\varphi \lor \psi) \vDash \exists x \varphi \lor \exists x \psi \text{ for any variable } x.$

(ii) Give an example of a first-order language \mathcal{L} and formulas φ, ψ of \mathcal{L} such that:

 $\forall x \varphi \rightarrow \forall x \psi \not\models \forall x (\varphi \rightarrow \psi)$, where x is a variable.

Proof. (i) Let \mathcal{A} be an \mathcal{L} -structure and $e: V \to A$ be an \mathcal{A} -assignment. We have that

$$\begin{array}{lll} \mathcal{A} \vDash (\forall x (\varphi \lor \psi))[e] & \Longleftrightarrow & \text{for any } a \in A, \ \mathcal{A} \vDash (\varphi \lor \psi)[e_{x \leftarrow a}] \\ & \Leftrightarrow & \text{for any } a \in A, \\ & \mathcal{A} \vDash \varphi[e_{x \leftarrow a}] \text{ or } \mathcal{A} \vDash \psi[e_{x \leftarrow a}] \\ & \Rightarrow & \text{there exists } a \in A \text{ such that} \\ & \mathcal{A} \vDash \varphi[e_{x \leftarrow a}] \text{ or } \mathcal{A} \vDash \psi[e_{x \leftarrow a}] \\ & \Leftrightarrow & (\text{there exists } a \in A \text{ such that } \mathcal{A} \vDash \varphi[e_{x \leftarrow a}]) \text{ or} \\ & (\text{there exists } a \in A \text{ such that } \mathcal{A} \vDash \psi[e_{x \leftarrow a}]) \text{ or} \\ & (\text{there exists } a \in A \text{ such that } \mathcal{A} \vDash \psi[e_{x \leftarrow a}]) \text{ or} \\ & \Leftrightarrow & \mathcal{A} \vDash (\exists x \varphi)[e] \text{ or } \mathcal{A} \vDash (\exists x \psi)[e] \\ & \Leftrightarrow & \mathcal{A} \vDash (\exists x \varphi \lor \exists x \psi)[e]. \end{array}$$

(ii) Consider $\mathcal{L}_{ar} = (\dot{<}, \dot{+}, \dot{×}, \dot{S}, \dot{0})$, the \mathcal{L}_{ar} -structure $\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0)$ and $e : V \to \mathbb{N}$ be an arbitrary assignment. Let

$$\varphi := x = \dot{0}, \quad \psi := \dot{S}x = \dot{0},$$

We have that $\mathcal{N} \vDash (\forall x \varphi \to \forall x \psi)[e] \iff \mathcal{N} \nvDash (\forall x \varphi)[e] \text{ or } \mathcal{N} \vDash (\forall x \psi)[e].$

 $\mathcal{N} \models (\forall x \varphi)[e] \iff$ for any $n \in \mathbb{N}$, we have that n = 0, which is obviously false. Hence, $\mathcal{N} \not\models (\forall x \varphi)[e]$. It follows that

$$\mathcal{N} \vDash (\forall x \varphi \to \forall x \psi)[e].$$

We have that $\mathcal{N} \vDash (\forall x(\varphi \rightarrow \psi))[e] \iff$ for any $n \in \mathbb{N}$, if n = 0 then n + 1 = 0, which is obviously false. It follows that

$$\mathcal{N} \not\models (\forall x(\varphi \to \psi))[e].$$

(P2) [2 points] Let \mathcal{L} be a first-order language that contains

- two unary relation symbols S, T and one binary relation symbols P;
- a unary function symbol g;
- two constant symbols a, d.
- (i) Find prenex normal forms for the following formulas of \mathcal{L} :

$$\begin{split} \varphi &:= \neg \exists x P(x, a) \land \forall y \neg S(y), \\ \psi &:= \exists x (S(x) \to \forall y (g(y) = d)) \to \neg (\forall x T(x) \lor \forall y S(y)). \end{split}$$

(ii) Find Skolem normal forms for the following sentences of \mathcal{L} :

$$\begin{split} \chi &:= \exists y \forall x \exists v (S(y) \lor P(x,v) \to (T(v) \to S(y))) \\ \delta &:= \forall x \exists u \forall y \exists v ((S(u) \to P(v,y)) \lor (S(v) \to T(x))) \,. \end{split}$$

Proof. (i) We have that

$$\begin{array}{cccc} \varphi & \vDash & \forall x \neg P(x,a) \land \forall y \neg S(y)) \\ & \vDash & \forall x (\neg P(x,a) \land \forall y \neg S(y)) \\ & \vDash & \forall x \forall y (\neg P(x,a) \land \neg S(y)) \end{array}$$

(ii) We obtain that

$$\chi^{1} = \forall x \exists v (S(e) \lor P(x, v) \to (T(v) \to S(e)))$$

where e is a new constant symbol
$$\chi^{2} = \forall x (S(e) \lor P(x, h(x)) \to (T(g(x)) \to S(e)))$$

where h is a new unary function symbol.

As χ^2 is a universal sentence, it follows that χ^2 is a Skolem normal form for χ .

$$\begin{split} \delta^1 &= & \forall x \forall y \exists v \left((S(l(x)) \to P(v, y)) \lor (S(v) \to T(x)) \right) \\ & \text{where } l \text{ is a new unary function symbol} \\ \delta^2 &= & \forall x \forall y \left((S(l(x)) \to R(n(x, y), y)) \lor (S(n(x, y)) \to T(x)) \right) \\ & \text{where } n \text{ is a new binary function symbol.} \end{split}$$

As δ^2 is a universal sentence, it follows that δ^2 is a Skolem normal form for δ .

(P3) [1,5 points] Let \mathcal{L} be a first-order language and Δ be a set of sentences satisfying

(*) for all $p \in \mathbb{N}$, Δ has a finite model of cardinality $\geq p$.

Prove that the class of finite models of Δ is not axiomatizable.

Proof. Let us denote with \mathcal{T} the class of finite models of Δ . Suppose by contradiction that \mathcal{T} is axiomatizable and let $\Gamma \subseteq Sen_{\mathcal{L}}$ be such that $\mathcal{T} = Mod(\Gamma)$. Let

$$\Sigma:=\Gamma\cup\left\{\exists^{\geq n}\mid n\geq 1\right\}$$

We prove that Σ is satisfiable with the help of the Compactness Theorem. Let Σ_0 be a finite subset of Σ . Then

$$\Sigma_0 \subseteq \Gamma \cup \{\exists^{\geq n_1}, \ldots, \exists^{\geq n_k}\}$$
 for some $k \in \mathbb{N}$.

By (*), there exists $\mathcal{A} \in \mathcal{T}$ such that $|\mathcal{A}| \geq \max\{n_1, \ldots, n_k\}$. Then $\mathcal{A} \models \exists^{\geq n_i}$ for all $i = 1, \ldots, k$ and $\mathcal{A} \models \Gamma$, since $\mathcal{T} = Mod(\Gamma)$. We get that $\mathcal{A} \models \Gamma \cup \{\exists^{\geq n_1}, \ldots, \exists^{\geq n_k}\}$, so $\mathcal{A} \models \Sigma_0$. Thus, Σ_0 is satisfiable. Applying the Compactness Theorem, it follows that Σ has a model \mathcal{B} .

Since $\mathcal{B} \vDash \Gamma$, we have that \mathcal{B} is finite.

Since $\mathcal{B} \models \{\exists^{\geq n} \mid n \geq 1\}$, we have that \mathcal{B} is infinite.

We have obtained a contradiction.

(P4) [1,5 points] Let \mathcal{L} be a first-order language and \mathcal{K} be a finitely axiomatizable class of \mathcal{L} -structures. Prove the following:

(i) \mathcal{K} is axiomatized by a single sentence.

(ii) The class \mathcal{K}^c (of \mathcal{L} -structures that are not members of \mathcal{K}) is finitely axiomatizable.

Proof. (i) Let $\Gamma = \{\varphi_1, \ldots, \varphi_n\}$ be a finite set of sentences such that $\mathcal{K} = Mod(\Gamma)$. Take

$$\varphi := \varphi_1 \wedge \ldots \wedge \varphi_n.$$

Then, for every \mathcal{L} -structure \mathcal{A} , we have that

$$\mathcal{A} \vDash \varphi \iff \mathcal{A} \vDash \varphi_i \text{ for every } i = 1, \dots, n \iff \mathcal{A} \vDash \Gamma.$$

Thus, $Mod(\varphi) = Mod(\Gamma) = \mathcal{K}$.

(ii) By (i), \mathcal{K} is axiomatized by a single sentence φ , hence $\mathcal{K} = Mod(\varphi)$. It follows immediately that for any \mathcal{L} -structure \mathcal{A} ,

$$\mathcal{A} \in \mathcal{K}^c \Longleftrightarrow \mathcal{A} \notin \mathcal{K} \Longleftrightarrow \mathcal{A} \not\models \varphi \Longleftrightarrow \mathcal{A} \models \neg \varphi.$$

Thus, $\mathcal{K}^c = Mod(\neg \varphi)$.

2 Modal logics

(P5) [2 points] Let $p, q \in PROP$. Verify if the following formulas are valid in the class of all frames for ML_0 :

- (i) $\Diamond p \to \Box p$.
- (ii) $\Box q \land \Diamond p \to \Diamond (p \land q)$.

Proof. (i) The answer is NO. Let $\mathcal{M}_0 = (W_0, R_0, V_0)$, where

$$W_0 = \{a, b\}, \quad R_0 = \{(a, a), (a, b)\}, \quad V_0(p) = \{b\}.$$

Then $\mathcal{M}, a \Vdash \Diamond p$, since $R_0 a b$ and $b \in V_0(p)$, hence $\mathcal{M}, b \Vdash p$. On the other hand, $\mathcal{M}, a \nvDash \Box p$, since $R_0 a a$ and $a \notin V_0(p)$, hence $\mathcal{M}, a \nvDash p$. Thus, $\mathcal{M}, a \nvDash \Diamond p \to \Box p$.

(ii) The answer is YES. Let $\mathcal{F} = (W, R)$ be an arbitrary frame, w a state in \mathcal{F} and $\mathcal{M} = (\mathcal{F}, V)$ be a model based on \mathcal{F} . We have to show that

$$\mathcal{M}, w \Vdash \Box q \land \Diamond p \to \Diamond (p \land q).$$

Assume that $\mathcal{M}, w \Vdash \Box q \land \Diamond p$, that is $\mathcal{M}, w \Vdash \Box q$ and $\mathcal{M}, w \Vdash \Diamond p$. As $\mathcal{M}, w \Vdash \Diamond p$, there exists $v \in W$ such that Rwv and $\mathcal{M}, v \Vdash p$. As $\mathcal{M}, w \Vdash \Box q$ and Rwv, we have that $\mathcal{M}, v \Vdash q$. It follows that $v \in W$ is such that Rwv and $\mathcal{M}, v \Vdash p \land q$. Thus, $\mathcal{M}, v \Vdash \Diamond (p \land q)$.

(P6) [2 points] Prove the following for any formulas φ, ψ of ML_0 :

- (i) $\vdash_{\mathbf{K}} \varphi \to \psi$ implies $\vdash_{\mathbf{K}} \Diamond \Box \varphi \to \Diamond \Box \psi$.
- (ii) $\vdash_{\mathbf{K}} \Diamond \Diamond \varphi \lor \Diamond \Diamond \psi \to \Diamond \Diamond (\varphi \lor \psi).$

Proof. (i) We have that

(1)	$\vdash_{\pmb{K}} \varphi \to \psi$	hypothesis
(2)	$\vdash_{\boldsymbol{K}} \Box \varphi \to \Box \psi$	(S6.1).(i):(1)
(3)	$\vdash_{\pmb{K}} \Diamond \Box \varphi \to \Diamond \Box \psi$	(S6.4).(i): (2).

(ii) We have that

$$\begin{array}{ll} (1) & \vdash_{\boldsymbol{K}} \Diamond \Diamond \varphi \lor \Diamond \Diamond \psi \to \Diamond (\Diamond \varphi \lor \Diamond \psi) & (\mathrm{S6.5}).(\mathrm{ii}) \text{ with } \varphi := \Diamond \varphi \text{ and } \psi := \Diamond \psi \\ (2) & \vdash_{\boldsymbol{K}} \Diamond \varphi \lor \Diamond \psi \to \Diamond (\varphi \lor \psi) & (\mathrm{S6.5}).(\mathrm{ii}) \\ (3) & \vdash_{\boldsymbol{K}} \Diamond (\Diamond \varphi \lor \Diamond \psi) \to \Diamond \Diamond (\varphi \lor \psi) & (\mathrm{S6.4}).(\mathrm{i}): (2) \\ (4) & \vdash_{\boldsymbol{K}} \Diamond \Diamond \varphi \lor \Diamond \Diamond \psi \to \Diamond \Diamond (\varphi \lor \psi) & \mathrm{P. 2.56: (1), (3) and the tautology} \\ & (\sigma_1 \to \sigma_2) \land (\sigma_2 \to \sigma_3) \to (\sigma_1 \to \sigma_3) \\ & \mathrm{with } \sigma_1 := \Diamond \Diamond \varphi \lor \Diamond \Diamond \psi, \sigma_2 := \Diamond (\Diamond \varphi \lor \Diamond \psi) \\ & \mathrm{and } \sigma_3 := \Diamond \Diamond (\varphi \lor \psi) \end{array} \right.$$

(P7) [1 point] Let Λ be a normal logic and $\Gamma \cup \{\varphi, \psi\}$ be a set of formulas of Λ . Prove that

if $\Gamma \vdash_{\Lambda} \varphi$ and ψ is deducible in propositional logic from φ , then $\Gamma \vdash_{\Lambda} \psi$.

Proof. Since $\Gamma \vdash_{\Lambda} \varphi$, there exist $\theta_1, \ldots, \theta_n \in \Gamma$ $(n \ge 0)$ such that

$$\vdash_{\Lambda} (\theta_1 \wedge \ldots \wedge \theta_n) \to \varphi.$$

As ψ is deducible in propositional logic from φ , we get that $\varphi \to \psi$ is a tautology, hence $\vdash_{\Lambda} \varphi \to \psi.$

We have the following cases:

- (i) n = 0. Then $\vdash_{\Lambda} \varphi$ and $\vdash_{\Lambda} \varphi \to \psi$. Applying (MP), we get that $\vdash_{\Lambda} \psi$.
- (ii) $n \geq 1$. Let us denote $\theta := \theta_1 \wedge \ldots \wedge \theta_n$.

We have that

(1) $\vdash_{\Lambda} \theta \to \varphi$ hypothesis (2) $\vdash_{\Lambda} \varphi \to \psi$ hypothesis (3) $\vdash_{\Lambda} \theta \to \psi$ P. 2.56: (1), (2) and the tautology $(\sigma_1 \to \sigma_2) \land (\sigma_2 \to \sigma_3) \to (\sigma_1 \to \sigma_3).$

We have proved that $\vdash_{\Lambda} (\theta_1 \land \ldots \land \theta_p) \to \psi$. Hence, $\Gamma \vdash_{\Lambda} \psi$.

(P8) [2 points] Let Λ be a normal logic and Γ be a Λ -MCS. Prove that $\Lambda \subseteq \Gamma$.

Proof. Suppose by contradiction that $\Lambda \not\subseteq \Gamma$. Then there exists φ such that $\vdash_{\Lambda} \varphi$ and $\varphi \notin \Gamma$. By Proposition 2.74.(ii), we get that $\Gamma \cup \{\varphi\}$ is A-inconsistent. Applying Proposition 2.65.(ii), it follows that $\Gamma \vdash_{\Lambda} \neg \varphi$. We have obtained that $\Gamma \vdash_{\Lambda} \varphi$ (since $\vdash_{\Lambda} \varphi$) and $\Gamma \vdash_{\Lambda} \neg \varphi$. Apply now Proposition 2.64.(ii) to get that Γ is Λ -inconsistent, which is a contradiction.